
Script syntax and chart functions
Qlik Sense®

May 2024
Copyright © 1993-2024 QlikTech International AB. All rights reserved.

HELP.QLIK.COM

© 2024 QlikTech International AB. All rights reserved. All company and/or product names may be
trade names, trademarks and/or registered trademarks of the respective owners with which they
are associated.

Script syntax and chart functions - Qlik Sense, May 2024 3

1 What is Qlik Sense? 16
1.1 What can you do in Qlik Sense? 16
1.2 How does Qlik Sense work? 16

The app model 16
The associative experience 16
Collaboration and mobility 16

1.3 How can you deploy Qlik Sense? 16
Qlik Sense Desktop 17
Qlik Sense Enterprise 17

1.4 How to administer and manage a Qlik Sense site 17
1.5 Extend Qlik Sense and adapt it for your own purposes 17

Building extensions and mashups 17
Building clients 17
Building server tools 17
Connecting to other data sources 17

2 Script syntax overview 18
2.1 Introduction to script syntax 18
2.2 What is Backus-Naur formalism? 18

3 Script statements and keywords 20
3.1 Script control statements 20

Script control statements overview 20
Call 22
Do..loop 23
End 24
Exit 24
Exit script 24
For..next 25
For each..next 26
If..then..elseif..else..end if 29
Next 30
Sub..end sub 30
Switch..case..default..end switch 32
To 32

3.2 Script prefixes 32
Script prefixes overview 33
Add 37
Buffer 38
Concatenate 40
Crosstable 45
First 55
Generic 57
Hierarchy 63
HierarchyBelongsTo 65
Inner 67
IntervalMatch 68
Join 71
Keep 81

Contents

Script syntax and chart functions - Qlik Sense, May 2024 4

Left 82
Mapping 83
Merge 84
NoConcatenate 89
Only 98
Outer 98
Partial reload 99
Replace 102
Right 104
Sample 105
Semantic 108
Unless 112
When 118

3.3 Script regular statements 124
Script regular statements overview 124
Alias 130
AutoNumber 131
Binary 134
Comment field 136
Comment table 136
Connect 137
Declare 139
Derive 141
Direct Query 142
Directory 147
Disconnect 148
Drop 149
Drop table 150
Execute 151
Field/Fields 152
FlushLog 152
Force 152
From 154
Load 154
Let 174
Loosen Table 175
Map 175
NullAsNull 176
NullAsValue 177
Qualify 177
Rem 178
Rename 179
Search 181
Section 181
Select 182
Set 184
Sleep 185
SQL 185

Contents

Script syntax and chart functions - Qlik Sense, May 2024 5

SQLColumns 186
SQLTables 187
SQLTypes 187
Star 188
Store 190
Table/Tables 196
Tag 196
Trace 197
Unmap 198
Unqualify 198
Untag 199

3.4 Working directory 200
Qlik Sense Desktop working directory 200
Qlik Sense working directory 200

4 Working with variables in the data load editor 201
4.1 Overview 201
4.2 Defining a variable 201
4.3 Deleting a variable 202
4.4 Loading a variable value as a field value 202
4.5 Variable calculation 202
4.6 System variables 203

System variables overview 203
CreateSearchIndexOnReload 206
HidePrefix 206
HideSuffix 207
Include 207
OpenUrlTimeout 208
StripComments 208
Verbatim 209

4.7 Value handling variables 209
Value handling variables overview 209
NullDisplay 210
NullInterpret 210
NullValue 210
OtherSymbol 211

4.8 Number interpretation variables 211
Currency formatting 211
Number formatting 212
Time formatting 212
BrokenWeeks 213
DateFormat 215
DayNames 221
DecimalSep 225
FirstWeekDay 228
LongDayNames 232
LongMonthNames 235
MoneyDecimalSep 239

Contents

Script syntax and chart functions - Qlik Sense, May 2024 6

MoneyFormat 243
MoneyThousandSep 247
MonthNames 251
NumericalAbbreviation 256
ReferenceDay 257
ThousandSep 261
TimeFormat 267
TimestampFormat 268

4.9 Direct Discovery variables 271
Direct Discovery system variables 271
Teradata query banding variables 272
Direct Discovery character variables 273
Direct Discovery number interpretation variables 274

4.10 Error variables 275
Error variables overview 275
ErrorMode 275
ScriptError 276
ScriptErrorCount 277
ScriptErrorList 277

5 Script expressions 278
6 Chart expressions 279

6.1 Defining the aggregation scope 279
6.2 Set analysis 282

Set expressions 282
Examples 283
Natural sets 283
Set identifiers 286
Set operators 287
Set modifiers 288
Inner and outer set expressions 311
Tutorial - Creating a set expression 313
Syntax for set expressions 322

6.3 General syntax for chart expressions 322
6.4 General syntax for aggregations 323

7 Operators 324
7.1 Bit operators 324
7.2 Logical operators 325
7.3 Numeric operators 325
7.4 Relational operators 326
7.5 String operators 328

& 328
like 328

8 Script and chart functions 329
8.1 Analytic connections for server-side extensions (SSE) 329
8.2 Aggregation functions 329

Using aggregation functions in a data load script 330

Contents

Script syntax and chart functions - Qlik Sense, May 2024 7

Using aggregation functions in chart expressions 330
How aggregations are calculated 330
Aggregation of key fields 330
Basic aggregation functions 331
Counter aggregation functions 354
Financial aggregation functions 371
Statistical aggregation functions 400
Statistical test functions 467
String aggregation functions 533
Synthetic dimension functions 546
Nested aggregations 549

8.3 Aggr - chart function 549
Examples: Chart expressions using Aggr 552

8.4 Color functions 555
Pre-defined color functions 558
ARGB 559
RGB 559
HSL 561

8.5 Conditional functions 562
Conditional functions overview 562
alt 563
class 564
coalesce 566
if 567
match 570
mixmatch 574
pick 577
wildmatch 578

8.6 Counter functions 581
Counter functions overview 581
autonumber 582
autonumberhash128 585
autonumberhash256 587
IterNo 589
RecNo 590
RowNo 591
RowNo - chart function 592

8.7 Date and time functions 594
Date and time functions overview 595
addmonths 603
addyears 613
age 620
converttolocaltime 622
day 626
dayend 632
daylightsaving 640
dayname 641
daynumberofquarter 643

Contents

Script syntax and chart functions - Qlik Sense, May 2024 8

daynumberofyear 649
daystart 655
firstworkdate 663
GMT 664
hour 668
inday 672
indaytotime 680
inlunarweek 690
inlunarweektodate 702
inmonth 713
inmonths 721
inmonthstodate 735
inmonthtodate 748
inquarter 758
inquartertodate 771
inweek 784
inweektodate 800
inyear 814
inyeartodate 827
lastworkdate 839
localtime 849
lunarweekend 853
lunarweekname 865
lunarweekstart 877
makedate 889
maketime 896
makeweekdate 903
minute 911
month 917
monthend 923
monthname 932
monthsend 940
monthsname 953
monthsstart 966
monthstart 979
networkdays 989
now 999
quarterend 1006
quartername 1019
quarterstart 1031
second 1043
setdateyear 1048
setdateyearmonth 1050
timezone 1052
today 1052
UTC 1058
week 1058
weekday 1074

Contents

Script syntax and chart functions - Qlik Sense, May 2024 9

weekend 1083
weekname 1095
weekstart 1110
weekyear 1122
year 1132
yearend 1138
yearname 1150
yearstart 1163
yeartodate 1175

8.8 Exponential and logarithmic functions 1190
8.9 Field functions 1191

Count functions 1192
Field and selection functions 1192
GetAlternativeCount - chart function 1193
GetCurrentSelections - chart function 1194
GetExcludedCount - chart function 1196
GetFieldSelections - chart function 1197
GetNotSelectedCount - chart function 1199
GetObjectDimension - chart function 1200
GetObjectField - chart function 1200
GetObjectMeasure - chart function 1201
GetPossibleCount - chart function 1202
GetSelectedCount - chart function 1203

8.10 File functions 1205
File functions overview 1205
Attribute 1207
ConnectString 1215
FileBaseName 1215
FileDir 1215
FileExtension 1216
FileName 1216
FilePath 1216
FileSize 1217
FileTime 1218
GetFolderPath 1218
QvdCreateTime 1219
QvdFieldName 1220
QvdNoOfFields 1221
QvdNoOfRecords 1222
QvdTableName 1223

8.11 Financial functions 1224
Financial functions overview 1225
BlackAndSchole 1225
FV 1226
nPer 1227
Pmt 1228
PV 1229
Rate 1230

Contents

Script syntax and chart functions - Qlik Sense, May 2024 10

8.12 Formatting functions 1231
Formatting functions overview 1231
ApplyCodepage 1232
Date 1233
Dual 1235
Interval 1236
Money 1237
Num 1239
Time 1241
Timestamp 1243

8.13 General numeric functions 1244
General numeric functions overview 1244
Combination and permutation functions 1245
Modulo functions 1245
Parity functions 1245
Rounding functions 1246
BitCount 1246
Ceil 1246
Combin 1248
Div 1248
Even 1249
Fabs 1249
Fact 1249
Floor 1250
Fmod 1251
Frac 1252
Mod 1253
Odd 1253
Permut 1254
Round 1254
Sign 1256

8.14 Geospatial functions 1256
Geospatial functions overview 1257
GeoAggrGeometry 1258
GeoBoundingBox 1259
GeoCountVertex 1260
GeoGetBoundingBox 1260
GeoGetPolygonCenter 1261
GeoInvProjectGeometry 1261
GeoMakePoint 1262
GeoProject 1263
GeoProjectGeometry 1263
GeoReduceGeometry 1264

8.15 Interpretation functions 1265
Interpretation functions overview 1266
Date# 1267
Interval# 1268
Money# 1269

Contents

Script syntax and chart functions - Qlik Sense, May 2024 11

Num# 1270
Text 1271
Time# 1271
Timestamp# 1272

8.16 Inter-record functions 1273
Row functions 1274
Column functions 1275
Field functions 1275
Pivot table functions 1275
Inter-record functions in the data load script 1276
Above - chart function 1277
Below - chart function 1282
Bottom - chart function 1285
Column - chart function 1290
Dimensionality - chart function 1292
Exists 1293
FieldIndex 1297
FieldValue 1299
FieldValueCount 1300
LookUp 1302
NoOfRows - chart function 1304
Peek 1306
Previous 1313
Top - chart function 1315
SecondaryDimensionality - chart function 1319
After - chart function 1319
Before - chart function 1320
First - chart function 1322
Last - chart function 1323
ColumnNo - chart function 1324
NoOfColumns - chart function 1324

8.17 Logical functions 1325
8.18 Mapping functions 1326

Mapping functions overview 1326
ApplyMap 1326
MapSubstring 1328

8.19 Mathematical functions 1330
8.20 NULL functions 1331

NULL functions overview 1331
EmptyIsNull 1331
IsNull 1332
NULL 1333

8.21 Range functions 1334
Basic range functions 1334
Counter range functions 1335
Statistical range functions 1335
Financial range functions 1336
RangeAvg 1337

Contents

Script syntax and chart functions - Qlik Sense, May 2024 12

RangeCorrel 1339
RangeCount 1341
RangeFractile 1343
RangeIRR 1345
RangeKurtosis 1346
RangeMax 1347
RangeMaxString 1349
RangeMin 1351
RangeMinString 1353
RangeMissingCount 1354
RangeMode 1356
RangeNPV 1358
RangeNullCount 1359
RangeNumericCount 1360
RangeOnly 1362
RangeSkew 1363
RangeStdev 1364
RangeSum 1365
RangeTextCount 1368
RangeXIRR 1369
RangeXNPV 1371

8.22 Relational functions 1373
Ranking functions 1373
Clustering functions 1374
Time series decomposition functions 1375
Rank - chart function 1376
HRank - chart function 1380
Optimizing with k-means: A real-world example 1382
KMeans2D - chart function 1391
KMeansND - chart function 1406
KMeansCentroid2D - chart function 1421
KMeansCentroidND - chart function 1422
STL_Trend - chart function 1423
STL_Seasonal - chart function 1425
STL_Residual - chart function 1427
Tutorial - Time series decomposition in Qlik Sense 1429

8.23 Statistical distribution functions 1434
Statistical distribution functions overview 1434
BetaDensity 1437
BetaDist 1437
BetaInv 1437
BinomDist 1438
BinomFrequency 1438
BinomInv 1439
ChiDensity 1439
ChiDist 1440
ChiInv 1440
FDensity 1441

Contents

Script syntax and chart functions - Qlik Sense, May 2024 13

FDist 1441
FInv 1442
GammaDensity 1443
GammaDist 1443
GammaInv 1444
NormDist 1444
NormInv 1445
PoissonDist 1446
PoissonFrequency 1446
PoissonInv 1447
TDensity 1447
TDist 1447
TInv 1448

8.24 String functions 1449
String functions overview 1449
Capitalize 1452
Chr 1453
Evaluate 1454
FindOneOf 1454
Hash128 1456
Hash160 1456
Hash256 1457
Index 1458
IsJson 1460
JsonGet 1461
JsonSet 1462
KeepChar 1462
Left 1464
Len 1464
LevenshteinDist 1465
Lower 1467
LTrim 1468
Mid 1469
Ord 1470
PurgeChar 1471
Repeat 1472
Replace 1473
Right 1473
RTrim 1474
SubField 1475
SubStringCount 1479
TextBetween 1480
Trim 1481
Upper 1482

8.25 System functions 1482
System functions overview 1482
EngineVersion 1485
GetSysAttr 1486

Contents

Script syntax and chart functions - Qlik Sense, May 2024 14

InObject - chart function 1486
IsPartialReload 1490
ObjectId - chart function 1490
ProductVersion 1493
StateName - chart function 1494

8.26 Table functions 1494
Table functions overview 1494
FieldName 1496
FieldNumber 1497
NoOfFields 1497
NoOfRows 1498

8.27 Trigonometric and hyperbolic functions 1498
8.28 Window functions 1500

Window - script function 1501
WRank - script function 1509

9 File system access restriction 1516
9.1 Security aspects when connecting to file based ODBC and OLE DB data
connections 1516
9.2 Limitations in standard mode 1516

System variables 1516
Regular script statements 1518
Script control statements 1519
File functions 1520
System functions 1522

9.3 Disabling standard mode 1522
Qlik Sense 1522
Qlik Sense Desktop 1522

10 Chart level scripting 1524
10.1 Control statements 1524

Chart modifier control statements overview 1524
Call 1526
Do..loop 1527
End 1527
Exit 1528
Exit script 1528
For..next 1528
For each..next 1529
If..then..elseif..else..end if 1532
Next 1533
Sub..end sub 1533
Switch..case..default..end switch 1535
To 1535

10.2 Prefixes 1535
Chart modifier prefixes overview 1536
Add 1536
Replace 1536

10.3 Regular statements 1537

Contents

Script syntax and chart functions - Qlik Sense, May 2024 15

Chart modifier regular statements overview 1537
Load 1538
Let 1542
Set 1543
Put 1543
HCValue 1544

11 QlikView functions and statements not supported in Qlik Sense 1546
11.1 Script statements not supported in Qlik Sense 1546
11.2 Functions not supported in Qlik Sense 1546
11.3 Prefixes not supported in Qlik Sense 1546

12 Functions and statements not recommended in Qlik Sense 1547
12.1 Script statements not recommended in Qlik Sense 1547
12.2 Script statement parameters not recommended in Qlik Sense 1547
12.3 Functions not recommended in Qlik Sense 1548

ALL qualifier 1549

Contents

1 What is Qlik Sense?

1 What is Qlik Sense?
Qlik Sense is a platform for data analysis. With Qlik Sense you can analyze data and make data
discoveries on your own. You can share knowledge and analyze data in groups and across
organizations. Qlik Sense lets you ask and answer your own questions and follow your own paths to
insight. Qlik Sense enables you and your colleagues to reach decisions collaboratively.

1.1 What can you do in Qlik Sense?
Most Business Intelligence (BI) products can help you answer questions that are understood in
advance. But what about your follow-up questions? The ones that come after someone reads your
report or sees your visualization? With the Qlik Sense associative experience, you can answer
question after question after question, moving along your own path to insight. With Qlik Sense you
can explore your data freely, with just clicks, learning at each step along the way and coming up
with next steps based on earlier findings.

1.2 How does Qlik Sense work?
Qlik Sense generates views of information on the fly for you. Qlik Sense does not require predefined
and static reports or you being dependent on other users – you just click and learn. Every time you
click, Qlik Sense instantly responds, updating every Qlik Sense visualization and view in the app
with a newly calculated set of data and visualizations specific to your selections.

The app model
Instead of deploying and managing huge business applications, you can create your own Qlik Sense
apps that you can reuse, modify and share with others. The app model helps you ask and answer
the next question on your own, without having to go back to an expert for a new report or
visualization.

The associative experience
Qlik Sense automatically manages all the relationships in the data and presents information to you
using a green/white/gray metaphor. Selections are highlighted in green, associated data is
represented in white, and excluded (unassociated) data appears in gray. This instant feedback
enables you to think of new questions and continue to explore and discover.

Collaboration and mobility
Qlik Sense further enables you to collaborate with colleagues no matter when and where they are
located. All Qlik Sense capabilities, including the associative experience and collaboration, are
available on mobile devices. With Qlik Sense, you can ask and answer your questions and follow-up
questions, with your colleagues, wherever you are.

1.3 How can you deploy Qlik Sense?
There are two versions of Qlik Sense to deploy, Qlik Sense Desktop and Qlik Sense Enterprise.

Script syntax and chart functions - Qlik Sense, May 2024 16

1 What is Qlik Sense?

Qlik Sense Desktop
This is an easy-to-install single user version that is typically installed on a local computer.

Qlik Sense Enterprise
This version is used to deploy Qlik Sense sites. A site is a collection of one or more server machines
connected to a common logical repository or central node.

1.4 How to administer and manage a Qlik Sense site
With the Qlik Management Console you can configure, manage and monitor Qlik Sense sites in an
easy and intuitive way. You can manage licenses, access and security rules, configure nodes and
data source connections and synchronize content and users among many other activities and
resources.

1.5 Extend Qlik Sense and adapt it for your own
purposes

Qlik Sense provides you with flexible APIs and SDKs to develop your own extensions and adapt and
integrate Qlik Sense for different purposes, such as:

Building extensions and mashups
Here you can do web development using JavaScript to build extensions that are custom
visualization in Qlik Sense apps, or you use a mashups APIs to build websites with Qlik Sense
content.

Building clients
You can build clients in .NET and embed Qlik Sense objects in your own applications. You can also
build native clients in any programming language that can handle WebSocket communication by
using the Qlik Sense client protocol.

Building server tools
With service and user directory APIs you can build your own tool to administer and manage Qlik
Sense sites.

Connecting to other data sources
Create Qlik Sense connectors to retrieve data from custom data sources.

Script syntax and chart functions - Qlik Sense, May 2024 17

2 Script syntax overview

2 Script syntax overview

2.1 Introduction to script syntax
In a script, the name of the data source, the names of the tables, and the names of the fields
included in the logic are defined. Furthermore, the fields in the access rights definition are defined
in the script. A script consists of a number of statements that are executed consecutively.

The Qlik Sense command line syntax and script syntax are described in a notation called Backus-
Naur Formalism, or BNF code.

The first lines of code are already generated when a new Qlik Sense file is created. The default
values of these number interpretation variables are derived from the regional settings of the OS.

The script consists of a number of script statements and keywords that are executed
consecutively. All script statements must end with a semicolon, ";".

You can use expressions and functions in the LOAD-statements to transform the data that has
been loaded.

For a table file with commas, tabs or semicolons as delimiters, a LOAD-statement may be used. By
default a LOAD-statement will load all fields of the file.

General databases can be accessed through ODBC or OLE DBdatabase connectors. Here standard
SQL statements are used. The SQL syntax accepted differs between different ODBC drivers.

Additionally, you can access other data sources using custom connectors.

2.2 What is Backus-Naur formalism?
The Qlik Sense command line syntax and script syntax are described in a notation
called Backus-Naur formalism, also known as BNF code.

The following table provides a list of symbols used in BNF code, with a description of how they are
interpreted:

Symbol Description

| Logical OR: the symbol on either side can be used.

() Parentheses defining precedence: used for structuring the BNF syntax.

[] Square brackets: enclosed items are optional.

{ } Braces: enclosed items may be repeated zero or more times.

Symbols

Script syntax and chart functions - Qlik Sense, May 2024 18

2 Script syntax overview

Symbol Description

Symbol A non-terminal syntactic category, that: can be divided further into other symbols.
For example, compounds of the above, other non-terminal symbols, text strings,
and so on.

::= Marks the beginning of a block that defines a symbol.

LOAD A terminal symbol consisting of a text string. Should be written as it is into the
script.

All terminal symbols are printed in a bold face font. For example, "(" should be interpreted as a
parenthesis defining precedence, whereas "(" should be interpreted as a character to be printed in
the script.

Example:

The description of the alias statement is:

alias fieldname as aliasname { , fieldname as aliasname}

This should be interpreted as the text string "alias", followed by an arbitrary field name, followed by
the text string "as", followed by an arbitrary alias name. Any number of additional combinations of
"fieldname as alias" may be given, separated by commas.

The following statements are correct:

alias a as first;

alias a as first, b as second;

alias a as first, b as second, c as third;

The following statements are not correct:

alias a as first b as second;

alias a as first { , b as second };

Script syntax and chart functions - Qlik Sense, May 2024 19

3 Script statements and keywords

3 Script statements and keywords
The Qlik Sense script consists of a number of statements. A statement can be either a regular script
statement or a script control statement. Certain statements can be preceded by prefixes.

Regular statements are typically used for manipulating data in one way or another. These
statements may be written over any number of lines in the script and must always be terminated by
a semicolon, ";".

Control statements are typically used for controlling the flow of the script execution. Each clause of
a control statement must be kept inside one script line and may be terminated by a semicolon or the
end-of-line.

Prefixes may be applied to applicable regular statements but never to control statements. The
when and unless prefixes can however be used as suffixes to a few specific control statement
clauses.

In the next subchapter, an alphabetical listing of all script statements, control statements and
prefixes, are found.

All script keywords can be typed with any combination of lower case and upper case characters.
Field and variable names used in the statements are however case sensitive.

3.1 Script control statements
The Qlik Sense script consists of a number of statements. A statement can be either a regular script
statement or a script control statement.

Control statements are typically used for controlling the flow of the script execution. Each clause of
a control statement must be kept inside one script line and may be terminated by semicolon or end-
of-line.

Prefixes are never applied to control statements, with the exceptions of the prefixes when and
unless which may be used with a few specific control statements.

All script keywords can be typed with any combination of lower case and upper case characters.

Script control statements overview
Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

Call
The call control statement calls a subroutine which must be defined by a previous sub statement.

Call name ([paramlist])

Script syntax and chart functions - Qlik Sense, May 2024 20

3 Script statements and keywords

Do..loop
The do..loop control statement is a script iteration construct which executes one or several
statements until a logical condition is met.

Do..loop [(while | until) condition] [statements]

[exit do [(when | unless) condition] [statements]

loop [(while | until) condition]

Exit script
This control statement stops script execution. It may be inserted anywhere in the script.

Exit script[(when | unless) condition]

For each ..next
The for each..next control statement is a script iteration construct which executes one or several
statements for each value in a comma separated list. The statements inside the loop enclosed by
for and next will be executed for each value of the list.

For each..next var in list
[statements]
[exit for [(when | unless) condition]
[statements]
next [var]

For..next
The for..next control statement is a script iteration construct with a counter. The statements inside
the loop enclosed by for and next will be executed for each value of the counter variable between
specified low and high limits.

For..next counter = expr1 to expr2 [stepexpr3]
[statements]
[exit for [(when | unless) condition]
[statements]
Next [counter]

If..then
The if..then control statement is a script selection construct forcing the script execution to follow
different paths depending on one or several logical conditions.

Since the if..then statement is a control statement and as such is ended with either a
semicolon or end-of-line, each of its four possible clauses (if..then, elseif..then, else
and end if) must not cross a line boundary.

If..then..elseif..else..end if condition then
[statements]

{ elseif condition then
[statements] }

[else
[statements]]

Script syntax and chart functions - Qlik Sense, May 2024 21

3 Script statements and keywords

end if

Sub
The sub..end sub control statement defines a subroutine which can be called upon from a call
statement.

Sub..end sub name [(paramlist)] statements end sub

Switch
The switch control statement is a script selection construct forcing the script execution to follow
different paths, depending on the value of an expression.

Switch..case..default..end switch expression {case valuelist [statements]}

[default statements] end switch

Call
The call control statement calls a subroutine which must be defined by a previous sub
statement.

Syntax:
Call name ([paramlist])

Arguments:

Argument Description

name The name of the subroutine.

paramlist A comma separated list of the actual parameters to be sent to the
subroutine. Each item in the list may be a field name, a variable, or
an arbitrary expression.

Arguments

The subroutine called by a call statement must be defined by a sub encountered earlier during
script execution.

Parameters are copied into the subroutine and, if the parameter in the call statement is a variable
and not an expression, copied back out again upon exiting the subroutine.

Limitations:

l Since the call statement is a control statement and as such is ended with either a semicolon
or end-of-line, it must not cross a line boundary.

l When you define a subroutine with Sub..end sub inside a control statement, for example
if..then, you can only call the subroutine from within the same control statement.

Script syntax and chart functions - Qlik Sense, May 2024 22

3 Script statements and keywords

Example:

This example lists all Qlik related files in a folder and its subfolders, and stores file information in a
table. It is assumed that you have created a data connection named Apps to the folder .

The DoDir subroutine is called with the reference to the folder, 'lib://Apps', as parameter. Inside the
subroutine, there is a recursive call, Call DoDir (Dir), that makes the function look for files
recursively in subfolders.

sub DoDir (Root)

For Each Ext in 'qvw', 'qvo', 'qvs', 'qvt', 'qvd', 'qvc', 'qvf'

For Each File in filelist (Root&'*.' &Ext)

LOAD

'$(File)' as Name,

FileSize('$(File)') as Size,

FileTime('$(File)') as FileTime

autogenerate 1;

Next File

Next Ext

For Each Dir in dirlist (Root&'*')

Call DoDir (Dir)

Next Dir

End Sub

Call DoDir ('lib://Apps')

Do..loop
The do..loop control statement is a script iteration construct which executes one or
several statements until a logical condition is met.

Syntax:
Do [(while | until) condition] [statements]

[exit do [(when | unless) condition] [statements]

loop[(while | until) condition]

Since the do..loop statement is a control statement and as such is ended with either a
semicolon or end-of-line, each of its three possible clauses (do, exit do and loop) must
not cross a line boundary.

Arguments:

Argument Description

condition A logical expression evaluating to True or False.

statements Any group of one or more Qlik Sense script statements.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 23

3 Script statements and keywords

Argument Description

while / until The while or until conditional clause must only appear once in any do..loop
statement, i.e. either after do or after loop. Each condition is interpreted only the
first time it is encountered but is evaluated for every time it encountered in the
loop.

exit do If an exit do clause is encountered inside the loop, the execution of the script will
be transferred to the first statement after the loop clause denoting the end of
the loop. An exit do clause can be made conditional by the optional use of a
when or unless suffix.

Example:

// LOAD files file1.csv..file9.csv

Set a=1;

Do while a<10

LOAD * from file$(a).csv;

Let a=a+1;

Loop

End
The End script keyword is used to close If, Sub and Switch clauses.

Exit
The Exit script keyword is part of the Exit Script statement, but can also be used to
exit Do, For or Sub clauses.

Exit script
This control statement stops script execution. It may be inserted anywhere in the
script.

Syntax:
Exit Script [(when | unless) condition]

Since the exit script statement is a control statement and as such is ended with either a semicolon
or end-of-line, it must not cross a line boundary.

Arguments:

Argument Description

condition A logical expression evaluating to True or False.

when
/ unless

An exit script statement can be made conditional by the optional
use of when or unless clause.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 24

3 Script statements and keywords

Examples:

//Exit script

Exit Script;

//Exit script when a condition is fulfilled

Exit Script when a=1

For..next
The for..next control statement is a script iteration construct with a counter. The
statements inside the loop enclosed by for and next will be executed for each value of
the counter variable between specified low and high limits.

Syntax:
For counter = expr1 to expr2 [step expr3]
[statements]
[exit for [(when | unless) condition]
[statements]
Next [counter]

The expressions expr1, expr2 and expr3 are only evaluated the first time the loop is entered. The
value of the counter variable may be changed by statements inside the loop, but this is not good
programming practice.

If an exit for clause is encountered inside the loop, the execution of the script will be transferred to
the first statement after the next clause denoting the end of the loop. An exit for clause can be
made conditional by the optional use of a when or unless suffix.

Since the for..next statement is a control statement and as such is ended with either a
semicolon or end-of-line, each of its three possible clauses (for..to..step, exit for and
next) must not cross a line boundary.

Arguments:

Argument Description

counter A variable name. If counter is specified after next it must be the same variable
name as the one found after the corresponding for.

expr1 An expression which determines the first value of the counter variable for which
the loop should be executed.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 25

3 Script statements and keywords

Argument Description

expr2 An expression which determines the last value of the counter variable for which
the loop should be executed.

expr3 An expression which determines the value indicating the increment of the
counter variable each time the loop has been executed.

condition a logical expression evaluating to True or False.

statements Any group of one or more Qlik Sense script statements.

Example 1: Loading a sequence of files

// LOAD files file1.csv..file9.csv

for a=1 to 9

LOAD * from file$(a).csv;

next

Example 2: Loading a random number of files

In this example, we assume there are data files x1.csv, x3.csv, x5.csv, x7.csv and x9.csv. Loading is
stopped at a random point using the if rand()<0.5 then condition.

for counter=1 to 9 step 2

set filename=x$(counter).csv;

if rand()<0.5 then

exit for unless counter=1

end if

LOAD a,b from $(filename);

next

For each..next
The for each..next control statement is a script iteration construct which executes one
or several statements for each value in a comma separated list. The statements inside
the loop enclosed by for and next will be executed for each value of the list.

Syntax:
Special syntax makes it possible to generate lists with file and directory names in the current
directory.

for each var in list
[statements]
[exit for [(when | unless) condition]
[statements]
next [var]

Script syntax and chart functions - Qlik Sense, May 2024 26

3 Script statements and keywords

Arguments:

Argument Description

var A script variable sname which will acquire a new value from list for each loop
execution. If var is specified after next it must be the same variable name as the
one found after the corresponding for each.

Arguments

The value of the var variable may be changed by statements inside the loop, but this is not good
programming practice.

If an exit for clause is encountered inside the loop, the execution of the script will be transferred to
the first statement after the next clause denoting the end of the loop. An exit for clause can be
made conditional by the optional use of a when or unless suffix.

Since the for each..next statement is a control statement and as such is ended with
either a semicolon or end-of-line, each of its three possible clauses (for each, exit for
and next) must not cross a line boundary.

Syntax:
list := item { , item }
item := constant | (expression) | filelist mask | dirlist mask |

fieldvaluelist mask

Argument Description

constant Any number or string. Note that a string written directly in the script must be
enclosed by single quotes. A string without single quotes will be interpreted as
a variable, and the value of the variable will be used. Numbers do not need to
be enclosed by single quotes.

expression An arbitrary expression.

mask A filename or folder name mask which may include any valid filename
characters as well as the standard wildcard characters, * and ?.

You can use absolute file paths or lib:// paths.

condition A logical expression evaluating to True or False.

statements Any group of one or more Qlik Sense script statements.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 27

3 Script statements and keywords

Argument Description

filelist mask This syntax produces a comma separated list of all files in the current directory
matching the filename mask.

This argument supports only library connections in standard mode.

dirlist mask This syntax produces a comma separated list of all folders in the current folder
matching the folder name mask.

This argument supports only library connections in standard mode.

fieldvaluelist
mask

This syntax iterates through the values of a field already loaded into Qlik Sense.

The Qlik Web Storage Provider Connectors and other DataFiles connections do not
support filter masks that use wildcard (* and ?) characters.

Example 1: Loading a list of files

// LOAD the files 1.csv, 3.csv, 7.csv and xyz.csv

for each a in 1,3,7,'xyz'

LOAD * from file$(a).csv;

next

Example 2: Creating a list of files on disk

This example loads a list of all Qlik Sense related files in a folder.

sub DoDir (Root)

for each Ext in 'qvw', 'qva', 'qvo', 'qvs', 'qvc', 'qvf', 'qvd'

for each File in filelist (Root&'/*.' &Ext)

LOAD

'$(File)' as Name,

FileSize('$(File)') as Size,

FileTime('$(File)') as FileTime

autogenerate 1;

next File

next Ext

for each Dir in dirlist (Root&'/*')

call DoDir (Dir)

next Dir

Script syntax and chart functions - Qlik Sense, May 2024 28

3 Script statements and keywords

end sub

call DoDir ('lib://DataFiles')

Example 3: Iterating through a the values of a field

This example iterates through the list of loaded values of FIELD and generates a new field,
NEWFIELD. For each value of FIELD, two NEWFIELD records will be created.

load * inline [

FIELD

one

two

three

];

FOR Each a in FieldValueList('FIELD')

LOAD '$(a)' &'-'&RecNo() as NEWFIELD AutoGenerate 2;

NEXT a

The resulting table looks like this:

NEWFIELD

one-1

one-2

two-1

two-2

three-1

three-2

Example table

If..then..elseif..else..end if
The if..then control statement is a script selection construct forcing the script
execution to follow different paths depending on one or several logical conditions.

Control statements are typically used to control the flow of the script execution. In a chart
expression, use the if conditional function instead.

Syntax:
If condition then
[statements]

{ elseif condition then
[statements] }

[else
[statements]]

end if

Script syntax and chart functions - Qlik Sense, May 2024 29

3 Script statements and keywords

Since the if..then statement is a control statement and as such is ended with either a semicolon or
end-of-line, each of its four possible clauses (if..then, elseif..then, else and end if) must not cross
a line boundary.

Arguments:

Argument Description

condition A logical expression which can be evaluated as True or False.

statements Any group of one or more Qlik Sense script statements.

Arguments

Example 1:

if a=1 then

LOAD * from abc.csv;

SQL SELECT e, f, g from tab1;

end if

Example 2:

if a=1 then; drop table xyz; end if;

Example 3:

if x>0 then

LOAD * from pos.csv;

elseif x<0 then

LOAD * from neg.csv;

else

LOAD * from zero.txt;

end if

Next
The Next script keyword is used to close For loops.

Sub..end sub
The sub..end sub control statement defines a subroutine which can be called upon
from a call statement.

Syntax:
Sub name [(paramlist)] statements end sub

Script syntax and chart functions - Qlik Sense, May 2024 30

3 Script statements and keywords

Arguments are copied into the subroutine and, if the corresponding actual parameter in the call
statement is a variable name, copied back out again upon exiting the subroutine.

If a subroutine has more formal parameters than actual parameters passed by a call statement, the
extra parameters will be initialized to NULL and can be used as local variables within the subroutine.

Arguments:

Argument Description

name The name of the subroutine.

paramlist A comma separated list of variable names for the formal
parameters of the subroutine. These can be used as any variable
inside the subroutine.

statements Any group of one or more Qlik Sense script statements.

Arguments

Limitations:

l Since the sub statement is a control statement and as such is ended with either a semicolon
or end-of-line, each of its two clauses (sub and end sub) must not cross a line boundary.

l When you define a subroutine with Sub..end sub inside a control statement, for example
if..then, you can only call the subroutine from within the same control statement.

Example 1:

Sub INCR (I,J)

I = I + 1

Exit Sub when I < 10

J = J + 1

End Sub

Call INCR (X,Y)

Example 2: - parameter transfer

Sub ParTrans (A,B,C)

A=A+1

B=B+1

C=C+1

End Sub

A=1

X=1

C=1

Call ParTrans (A, (X+1)*2)

The result of the above will be that locally, inside the subroutine, A will be initialized to 1, B will be
initialized to 4 and C will be initialized to NULL.

When exiting the subroutine, the global variable A will get 2 as value (copied back from subroutine).
The second actual parameter “(X+1)*2” will not be copied back since it is not a variable. Finally, the
global variable C will not be affected by the subroutine call.

Script syntax and chart functions - Qlik Sense, May 2024 31

3 Script statements and keywords

Switch..case..default..end switch
The switch control statement is a script selection construct forcing the script
execution to follow different paths, depending on the value of an expression.

Syntax:
Switch expression {case valuelist [statements]} [default statements] end
switch

Since the switch statement is a control statement and as such is ended with either a
semicolon or end-of-line, each of its four possible clauses (switch, case, default and
end switch) must not cross a line boundary.

Arguments:

Argument Description

expression An arbitrary expression.

valuelist A comma separated list of values with which the value of expression will be
compared. Execution of the script will continue with the statements in the first
group encountered with a value in valuelist equal to the value in expression. Each
value in valuelist may be an arbitrary expression. If no match is found in any case
clause, the statements under the default clause, if specified, will be executed.

statements Any group of one or more Qlik Sense script statements.

Arguments

Example:

Switch I

Case 1

LOAD '$(I): CASE 1' as case autogenerate 1;

Case 2

LOAD '$(I): CASE 2' as case autogenerate 1;

Default

LOAD '$(I): DEFAULT' as case autogenerate 1;

End Switch

To
The To script keyword is used in several script statements.

3.2 Script prefixes
Prefixes may be applied to applicable regular statements but never to control statements. The
when and unless prefixes can however be used as suffixes to a few specific control statement
clauses.

Script syntax and chart functions - Qlik Sense, May 2024 32

3 Script statements and keywords

All script keywords can be typed with any combination of lower case and upper case characters.
Field and variable names used in the statements are however case sensitive.

Script prefixes overview
Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

Add
The Add prefix can be added to any LOAD or SELECT statement in the script to specify that it
should add records to another table. It also specifies that this statement should be run in a partial
reload. The Add prefix can also be used in a Map statement.

Add [only] [Concatenate[(tablename)]] (loadstatement | selectstatement)
Add [Only] mapstatement

Buffer
QVD files can be created and maintained automatically via the buffer prefix. This prefix can be used
on most LOAD and SELECT statements in script. It indicates that QVD files are used to cache/buffer
the result of the statement.

Buffer[(option [, option])] (loadstatement | selectstatement)
option::= incremental | stale [after] amount [(days | hours)]

Concatenate
If two tables that are to be concatenated have different sets of fields, concatenation of two tables
can still be forced with the Concatenate prefix.

Concatenate[(tablename)] (loadstatement | selectstatement)

Crosstable
The crosstable load prefix is used to transpose “cross table” or “pivot table” structured data. Data
structured this way is commonly encountered when working with spreadsheet sources. The output
and aim of the crosstable load prefix is to transpose such structures into a regular column-oriented
table equivalent, as this structure is generally better suited for analysis in Qlik Sense.

Crosstable (attribute field name, data field name [, n]) (loadstatement |

selectstatement)

First
The First prefix to a LOAD or SELECT (SQL) statement is used for loading a set maximum number
of records from a data source table.

First n(loadstatement | selectstatement)

Generic
The Generic load prefix allows for conversion of entity–attribute–value modeled data (EAV) into a
traditional, normalized relational table structure. EAV modeling is alternatively referred to as
"generic data modeling" or "open schema".

Script syntax and chart functions - Qlik Sense, May 2024 33

3 Script statements and keywords

Generic (loadstatement | selectstatement)

Hierarchy
The hierarchy prefix is used to transform a parent-child hierarchy table to a table that is useful in a
Qlik Sense data model. It can be put in front of a LOAD or a SELECT statement and will use the
result of the loading statement as input for a table transformation.

Hierarchy (NodeID, ParentID, NodeName, [ParentName], [PathSource],

[PathName], [PathDelimiter], [Depth])(loadstatement | selectstatement)

HierarchBelongsTo
This prefix is used to transform a parent-child hierarchy table to a table that is useful in a Qlik Sense
data model. It can be put in front of a LOAD or a SELECT statement and will use the result of the
loading statement as input for a table transformation.

HierarchyBelongsTo (NodeID, ParentID, NodeName, AncestorID, AncestorName,

[DepthDiff])(loadstatement | selectstatement)

Inner
The join and keep prefixes can be preceded by the prefix inner.

If used before join it specifies that an inner join should be used. The resulting table will thus only
contain combinations of field values from the raw data tables where the linking field values are
represented in both tables. If used before keep, it specifies that both raw data tables should be
reduced to their common intersection before being stored in Qlik Sense.
.

Inner (Join | Keep) [(tablename)](loadstatement |selectstatement)

IntervalMatch
The IntervalMatch prefix is used to create a table matching discrete numeric values to one or more
numeric intervals, and optionally matching the values of one or several additional keys.

IntervalMatch (matchfield)(loadstatement | selectstatement)
IntervalMatch (matchfield,keyfield1 [, keyfield2, ... keyfield5])
(loadstatement | selectstatement)

Join
The join prefix joins the loaded table with an existing named table or the last previously created
data table.

[Inner | Outer | Left | Right] Join [(tablename)](loadstatement |

selectstatement)

Keep
The keep prefix is similar to the join prefix. Just as the join prefix, it compares the loaded table with
an existing named table or the last previously created data table, but instead of joining the loaded
table with an existing table, it has the effect of reducing one or both of the two tables before they
are stored in Qlik Sense, based on the intersection of table data. The comparison made is
equivalent to a natural join made over all the common fields, i.e. the same way as in a corresponding

Script syntax and chart functions - Qlik Sense, May 2024 34

3 Script statements and keywords

join. However, the two tables are not joined and will be kept in Qlik Sense as two separately named
tables.

(Inner | Left | Right) Keep [(tablename)](loadstatement | selectstatement

)

Left
The Join and Keep prefixes can be preceded by the prefix left.

If used before join it specifies that a left join should be used. The resulting table will only contain
combinations of field values from the raw data tables where the linking field values are represented
in the first table. If used before keep, it specifies that the second raw data table should be reduced
to its common intersection with the first table, before being stored in Qlik Sense.

Left (Join | Keep) [(tablename)](loadstatement |selectstatement)

Mapping
The mapping prefix is used to create a mapping table that can be used to, for example, replacing
field values and field names during script execution.

Mapping (loadstatement | selectstatement)

Merge
The Merge prefix can be added to any LOAD or SELECT statement in the script to specify that the
loaded table should be merged into another table. It also specifies that this statement should be run
in a partial reload.

Merge [only] [(SequenceNoField [, SequenceNoVar])] On ListOfKeys [Concatenate
[(TableName)]] (loadstatement | selectstatement)

NoConcatenate
The NoConcatenate prefix forces two loaded tables with identical field sets to be treated as two
separate internal tables, when they would otherwise be automatically concatenated.

NoConcatenate(loadstatement | selectstatement)

Outer
The explicit Join prefix can be preceded by the prefix Outer to specify an outer join. In an outer join,
all combinations between the two tables are generated. The resulting table will thus contain
combinations of field values from the raw data tables where the linking field values are represented
in one or both tables. The Outer keyword is optional and is the default join type used when a join
prefix is not specified.

Outer Join [(tablename)](loadstatement |selectstatement)

Partial reload
A full reload always starts by deleting all tables in the existing data model, and then runs the load
script.

Script syntax and chart functions - Qlik Sense, May 2024 35

3 Script statements and keywords

A Partial reload (page 99) will not do this. Instead it keeps all tables in the data model and then
executes only Load and Select statements preceded by an Add, Merge, or Replace prefix. Other
data tables are not affected by the command. The only argument denotes that the statement
should be executed only during partial reloads, and should be disregarded during full reloads. The
following table summarizes statement execution for partial and full reloads.

Replace
The Replace prefix can be added to any LOAD or SELECT statement in the script to specify that the
loaded table should replace another table. It also specifies that this statement should be run in a
partial reload. The Replace prefix can also be used in a Map statement.

Replace [only] [Concatenate[(tablename)]] (loadstatement | selectstatement)
Replace [only] mapstatement

Right
The Join and Keep prefixes can be preceded by the prefix right.

If used before join it specifies that a right join should be used. The resulting table will only contain
combinations of field values from the raw data tables where the linking field values are represented
in the second table. If used before keep, it specifies that the first raw data table should be reduced
to its common intersection with the second table, before being stored in Qlik Sense.

Right (Join | Keep) [(tablename)](loadstatement |selectstatement)

Sample
The sample prefix to a LOAD or SELECT statement is used for loading a random sample of records
from the data source.

Sample p (loadstatement | selectstatement)

Semantic
Tables containing relations between records can be loaded through a semantic prefix. This can for
example be self-references within a table, where one record points to another, such as parent,
belongs to, or predecessor.

Semantic (loadstatement | selectstatement)

Unless
The unless prefix and suffix is used for creating a conditional clause which determines whether a
statement or exit clause should be evaluated or not. It may be seen as a compact alternative to the
full if..end if statement.

(Unless condition statement | exitstatement Unless condition)

When
The when prefix and suffix is used for creating a conditional clause which determines whether a
statement or exit clause should be executed or not. It may be seen as a compact alternative to the
full if..end if statement.

(When condition statement | exitstatement when condition)

Script syntax and chart functions - Qlik Sense, May 2024 36

3 Script statements and keywords

Add
The Add prefix can be added to any LOAD or SELECT statement in the script to specify that it
should add records to another table. It also specifies that this statement should be run in a partial
reload. The Add prefix can also be used in a Map statement.

For partial reload to work properly, the app must be opened with data before a partial
reload is triggered.

Perform a partial reload using the Reload button. You can also use the Qlik Engine JSON API.

Syntax:
Add [only] [Concatenate[(tablename)]] (loadstatement | selectstatement)

Add [only] mapstatement

During a normal (non-partial) reload, the Add LOAD construction will work as a normal LOAD
statement. Records will be generated and stored in a table.

If the Concatenate prefix is used, or if there exists a table with the same set of fields, the records
will be appended to the relevant existing table. Otherwise, the Add LOAD construction will create a
new table.

A partial reload will do the same. The only difference is that the Add LOAD construction will never
create a new table. There always exists a relevant table from the previous script execution to which
the records should be appended.

No check for duplicates is performed. Therefore, a statement using the Add prefix will often include
either a distinct qualifier or a where clause guarding duplicates.

The Add Map...Using statement causes mapping to take place also during partial script execution.

Arguments:

Argument Description

only An optional qualifier denoting that the statement should be
executed only during partial reloads. It should be disregarded during
normal (non-partial) reloads.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 37

3 Script statements and keywords

Examples and results:

Example Result

Tab1:

LOAD Name, Number FROM

Persons.csv;

Add LOAD Name, Number

FROM newPersons.csv;

During normal reload, data is loaded from Persons.csv and stored in
the Qlik Sense table Tab1. Data from NewPersons.csv is then
concatenated to the same Qlik Sense table.

During partial reload, data is loaded from NewPersons.csv and
appended to the Qlik Sense table Tab1. No check for duplicates is
made.

Tab1:

SQL SELECT Name,

Number FROM

Persons.csv;

Add LOAD Name, Number

FROM NewPersons.csv

where not exists

(Name);

A check for duplicates is made by means of looking if Name exists in
the previously loaded table data.

During normal reload, data is loaded from Persons.csv and stored in
the Qlik Sense table Tab1. Data from NewPersons.csv is then
concatenated to the same Qlik Sense table.

During partial reload, data is loaded from NewPersons.csv which is
appended to the Qlik Sense table Tab1. A check for duplicates is made
by means of seeing if Name exists in the previously loaded table data.

Tab1:

LOAD Name, Number FROM

Persons.csv;

Add Only LOAD Name,

Number FROM

NewPersons.csv where

not exists(Name);

During normal reload, data is loaded from Persons.csv and stored in
the Qlik Sense table Tab1. The statement loading NewPersons.csv is
disregarded.

During partial reload, data is loaded from NewPersons.csv which is
appended to the Qlik Sense table Tab1. A check for duplicates is made
by means of seeing if Name exists in the previously loaded table data.

Buffer
QVD files can be created and maintained automatically via the buffer prefix. This prefix
can be used on most LOAD and SELECT statements in script. It indicates that QVD files
are used to cache/buffer the result of the statement.

Syntax:
Buffer [(option [, option])] (loadstatement | selectstatement)
option::= incremental | stale [after] amount [(days | hours)]

If no option is used, the QVD buffer created by the first execution of the script will be used
indefinitely.

The buffer file is stored in the Buffers sub-folder, typically
C:\ProgramData\Qlik\Sense\Engine\Buffers (server installation) or C:\Users\
{user}\Documents\Qlik\Sense\Buffers (Qlik Sense Desktop).

The name of the QVD file is a calculated name, a 160-bit hexadecimal hash of the entire following
LOAD or SELECT statement and other discriminating info. This means that the QVD buffer will be
rendered invalid by any change in the following LOAD or SELECT statement.

Script syntax and chart functions - Qlik Sense, May 2024 38

3 Script statements and keywords

QVD buffers will normally be removed when no longer referenced anywhere throughout a complete
script execution in the app that created it or when the app that created it no longer exists.

Arguments:

Argument Description

incremental The incremental option enables the ability to read only part of an
underlying file. Previous size of the file is stored in the XML header
in the QVD file. This is particularly useful with log files. All records
loaded at a previous occasion are read from the QVD file whereas
the following new records are read from the original source and
finally an updated QVD-file is created.

The incremental option can only be used with LOAD statements
and text files. Incremental load cannot be used where old data is
changed or deleted.

stale [after]
amount
[(days |
hours)]

amount is a number specifying the time period. Decimals may be
used. The unit is assumed to be days if omitted.
The stale after option is typically used with DB sources where
there is no simple timestamp on the original data. Instead you
specify how old the QVD snapshot can be to be used. A stale after
clause simply states a time period from the creation time of the
QVD buffer after which it will no longer be considered valid. Before
that time the QVD buffer will be used as source for data and after
that the original data source will be used. The QVD buffer file will
then automatically be updated and a new period starts.

Arguments

Limitations:

Numerous limitations exist, most notable is that there must be either a file LOAD or a SELECT
statement at the core of any complex statement.

Example 1:

Buffer SELECT * from MyTable;

Example 2:

Buffer (stale after 7 days) SELECT * from MyTable;

Example 3:

Buffer (incremental) LOAD * from MyLog.log;

Script syntax and chart functions - Qlik Sense, May 2024 39

3 Script statements and keywords

Concatenate
Concatenate is a script load prefix that enables a dataset to be appended to an already
existing in-memory table. It is often used to append different sets of transactional data
to a single central fact table, or to build up common reference datasets of a specific
type that originate from multiple sources. It is similar in functionality to a SQL UNION
operator.

The resulting table from a concatenate operation will contain the original dataset with the new rows
of data appended to the bottom of that table. The source and target tables may have different
fields present. Where fields are different, the resulting table will be widened to represent the
combined result of all fields present in both the source table and the target table.

Syntax:
Concatenate[(tablename)] (loadstatement | selectstatement)

Argument Description

tablename The name of an existing table. The named table will be the
target of the Concatenate operation and any records of data
loaded will be appended to that table. If the tablename

parameter isn't used, the target table will be the last loaded
table before this statement.

loadstatement/selectstatement The loadstatement/selectstatement argument that follows the
tablename argument will be concatenated to the specified
table.

Arguments

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Script syntax and chart functions - Qlik Sense, May 2024 40

3 Script statements and keywords

Example Result

Concatenate

(Transactions)

Load …. ;

The data loaded in the load statement below the Concatenate prefix will be
appended to the existing in-memory table named Transactions (assuming
that a table named Transactions has been loaded prior to this point in the load
script.

Function example

Example 1 – Appending multiple sets of data to a target table with
Concatenate load prefix
Load script and results

Overview

In this example you will load two scripts in sequential order.

l The first load script contains an initial dataset with dates and amounts that is sent to a table
named Transactions.

l The second load script contains:
l A second dataset that is appended to the initial dataset by using the Concatenate

prefix. This dataset has an additional field, type, that is not in the initial dataset.
l The Concatenate prefix.

Open the data load editor and add the load script below to a new tab.

First load script

Transactions:

Load * Inline [

id, date, amount

3750, 08/30/2018, 23.56

3751, 09/07/2018, 556.31

3752, 09/16/2018, 5.75

3753, 09/22/2018, 125.00

3754, 09/22/2018, 484.21

3756, 09/22/2018, 59.18

3757, 09/23/2018, 177.42

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l amount

Script syntax and chart functions - Qlik Sense, May 2024 41

3 Script statements and keywords

id date amount

3750 08/30/2018 23.56

3751 09/07/2018 556.31

3752 09/16/2018 5.75

3753 09/22/2018 125.00

3754 09/22/2018 484.21

3756 09/22/2018 59.18

3757 09/23/2018 177.42

First load script results table

The table shows the initial dataset.

Second load script

Open the data load editor and add the load script below .

Concatenate(Transactions)

Load * Inline [

id, date, amount, type

3758, 10/01/2018, 164.27, Internal

3759, 10/03/2018, 384.00, External

3760, 10/06/2018, 25.82, Internal

3761, 10/09/2018, 312.00, Internal

3762, 10/15/2018, 4.56, Internal

3763, 10/16/2018, 90.24, Internal

3764, 10/18/2018, 19.32, External

];

Results

Load the data and go to the sheet. Create this field as a dimension.

l type

id date amount type

3750 08/30/2018 23.56 -

3751 09/07/2018 556.31 -

3752 09/16/2018 5.75 -

3753 09/22/2018 125.00 -

3754 09/22/2018 484.21 -

3756 09/22/2018 59.18 -

Second load script results table

Script syntax and chart functions - Qlik Sense, May 2024 42

3 Script statements and keywords

id date amount type

3757 09/23/2018 177.42 -

3758 10/01/2018 164.27 Internal

3759 10/03/2018 384.00 External

3760 10/06/2018 25.82 Internal

3761 10/09/2018 312.00 Internal

3762 10/15/2018 4.56 Internal

3763 10/16/2018 90.24 Internal

3764 10/18/2018 19.32 External

Note the null values in the type field for the first seven records loaded where type had not been
defined.

Example 2 – Appending multiple sets of data to a target table using implicit
concatenation
Load script and results

Overview

A typical use case for implicitly appending data is when you load several files of identically
structured data and want to append them all to a target table.

For example, by using wildcards in file names with syntax such as:

myTable:

Load * from [myFile_*.qvd] (qvd);

or in loops using constructs such as:

for each file in filelist('myFile_*.qvd')

myTable:

Load * from [$(file)] (qvd);

next file

Implicit concatenation will take place between any two tables that are loaded with
identically named fields, even if they aren't defined after one another in the script. This
can lead to data being unintentionally appended to tables. If you don't want a secondary
table with identical fields to be appended in this way, use the NoConcatenate load prefix.
Renaming the table with an alternate table name tag is not sufficient to prevent implicit
concatenation to occur. For more information, see NoConcatenate (page 89).

In this example you will load two scripts in sequential order.

Script syntax and chart functions - Qlik Sense, May 2024 43

3 Script statements and keywords

l The first load script contains an initial dataset with four fields that is sent to a table named
Transactions.

l The second load script contains a dataset with the same fields as the first dataset.

Open the data load editor and add the load script below to a new tab.

First load script

Transactions:

Load * Inline [

id, date, amount, type

3758, 10/01/2018, 164.27, Internal

3759, 10/03/2018, 384.00, External

3760, 10/06/2018, 25.82, Internal

3761, 10/09/2018, 312.00, Internal

3762, 10/15/2018, 4.56, Internal

3763, 10/16/2018, 90.24, Internal

3764, 10/18/2018, 19.32, External

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l amount

l type

id date type amount

3758 10/01/2018 Internal 164.27

3759 10/03/2018 External 384.00

3760 10/06/2018 Internal 25.82

3761 10/09/2018 Internal 312.00

3762 10/15/2018 Internal 4.56

3763 10/16/2018 Internal 90.24

3764 10/18/2018 External 19.32

First load script results table

The table shows the initial dataset.

Second load script

Open the data load editor and add the load script below .

Load * Inline [

id, date, amount, type

Script syntax and chart functions - Qlik Sense, May 2024 44

3 Script statements and keywords

3765, 11/03/2018, 129.40, Internal

3766, 11/05/2018, 638.50, External

];

Results

Load the data and go to the sheet.

id date type amount

3758 10/01/2018 Internal 164.27

3759 10/03/2018 External 384.00

3760 10/06/2018 Internal 25.82

3761 10/09/2018 Internal 312.00

3762 10/15/2018 Internal 4.56

3763 10/16/2018 Internal 90.24

3764 10/18/2018 External 19.32

3765 11/03/2018 Internal 129.40

3766 11/05/2018 External 638.50

Second load script results table

The second dataset was implicitly concatenated onto the initial dataset because they had identical
fields.

Crosstable
The crosstable load prefix is used to transpose “cross table” or “pivot table” structured
data. Data structured this way is commonly encountered when working with
spreadsheet sources. The output and aim of the crosstable load prefix is to transpose
such structures into a regular column-oriented table equivalent, as this structure is
generally better suited for analysis in Qlik Sense.

Script syntax and chart functions - Qlik Sense, May 2024 45

3 Script statements and keywords

Example of data structured as a crosstable and its equivalent structure after a crosstable transformation

Syntax:
crosstable (attribute field name, data field name [, n]) (loadstatement |

selectstatement)

Argument Description

attribute
field name

The desired output field name describing the horizontally oriented dimension that
is to be transposed (the header row).

data field
name

The desired output field name which describes the horizontally oriented data of
the dimension that is to be transposed (the matrix of data values beneath the
header row).

n The number of qualifier fields, or unchanged dimensions preceding the table to
be transformed to generic form. The default value is 1.

Arguments

This scripting function is related to the following functions:

Function Interaction

Generic
(page 57)

A transformation load prefix which takes an entity-attribute-value structured data
set and transforms it into a regular relational table structure, separating each
attribute encountered into a new field or column of data.

Related functions

Script syntax and chart functions - Qlik Sense, May 2024 46

3 Script statements and keywords

Example 1 – Transforming pivoted sales data (simple)
Load scripts and results

Overview

Open the Data load editor and add the first load script below to a new tab.

The first load script contains a dataset to which the crosstable script prefix will be applied later,
with the section applying crosstable commented out. This means that comment syntax was used to
disable this section in the load script.

The second load script is the same as the first, but with the application of crosstable uncommented
(enabled by removing the comment syntax). The scripts are shown this way to highlight the value of
this scripting function in transforming data.

First load script (function not applied)

tmpData:

//Crosstable (MonthText, Sales)

Load * inline [

Product, Jan 2021, Feb 2021, Mar 2021, Apr 2021, May 2021, Jun 2021

A, 100, 98, 103, 63, 108, 82

B, 284, 279, 297, 305, 294, 292

C, 50, 53, 50, 54, 49, 51];

//Final:

//Load Product,

//Date(Date#(MonthText,'MMM YYYY'),'MMM YYYY') as Month,

//Sales

//Resident tmpData;

//Drop Table tmpData;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l Product

l Jan 2021

l Feb 2021

l Mar 2021

l Apr 2021

l May 2021

l Jun 2021

Script syntax and chart functions - Qlik Sense, May 2024 47

3 Script statements and keywords

Product Jan 2021 Feb 2021 Mar 2021 Apr 2021 May 2021
Jun
2021

A 100 98 103 63 108 82

B 284 279 297 305 294 292

C 50 53 50 54 49 51

Results table

This script allows the creation of a crosstable with one column for each month and one row per
product. In its current format, this data is not easy to analyze. It would be much better to have all
numbers in one field and all months in another, in a three-column table. The next section explains
how to do this transformation to the crosstable.

Second load script (function applied)

Uncomment the script by removing the //. The load script should look like this:

tmpData:

Crosstable (MonthText, Sales)

Load * inline [

Product, Jan 2021, Feb 2021, Mar 2021, Apr 2021, May 2021, Jun 2021

A, 100, 98, 103, 63, 108, 82

B, 284, 279, 297, 305, 294, 292

C, 50, 53, 50, 54, 49, 51];

Final:

Load Product,

Date(Date#(MonthText,'MMM YYYY'),'MMM YYYY') as Month,

Sales

Resident tmpData;

Drop Table tmpData;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l Product

l Month

l Sales

Product Month Sales

A Jan 2021 100

A Feb 2021 98

A Mar 2021 103

Results table

Script syntax and chart functions - Qlik Sense, May 2024 48

3 Script statements and keywords

Product Month Sales

A Apr 2021 63

A May 2021 108

A Jun 2021 82

B Jan 2021 284

B Feb 2021 279

B Mar 2021 297

B Apr 2021 305

B May 2021 294

B Jun 2021 292

C Jan 2021 50

C Feb 2021 53

C Mar 2021 50

C Apr 2021 54

C May 2021 49

C Jun 2021 51

Once the script prefix has been applied, the crosstable is transformed into a straight table with one
column for Month and another for Sales. This improves the readability of the data.

Example 2 – Transforming pivoted sales target data into a vertical table
structure (intermediate)
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table named Targets.
l The crosstable load prefix, which transposes the pivoted sales person names into a field of

its own, labeled Sales Person.
l The associated sales target data, which is structured into a field called Target.

Load script

SalesTargets:

CROSSTABLE([Sales Person],Target,1)

Script syntax and chart functions - Qlik Sense, May 2024 49

3 Script statements and keywords

LOAD

*

INLINE [

Area, Lisa, James, Sharon

APAC, 1500, 1750, 1850

EMEA, 1350, 950, 2050

NA, 1800, 1200, 1350

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l Area

l Sales Person

Add this measure:

=Sum(Target)

Area Sales Person =Sum(Target)

APAC James 1750

APAC Lisa 1500

APAC Sharon 1850

EMEA James 950

EMEA Lisa 1350

EMEA Sharon 2050

NA James 1200

NA Lisa 1800

NA Sharon 1350

Results table

If you want to replicate the display of data as the pivoted input table, you can create an equivalent
pivot table in a sheet.

Do the following:

1. Copy and paste the table you have just created into the sheet.
2. Drag the Pivot table chart object on top of the newly created table copy. Select Convert.

3. Click Done editing.

4. Drag the Sales Person field from the vertical column shelf to the horizontal column shelf.

The following table shows the data in its initial table form, as it is displayed in Qlik Sense:

Script syntax and chart functions - Qlik Sense, May 2024 50

3 Script statements and keywords

Area Sales Person =Sum(Target)

Totals - 13800

APAC James 1750

APAC Lisa 1500

APAC Sharon 1850

EMEA James 950

EMEA Lisa 1350

EMEA Sharon 2050

NA James 1200

NA Lisa 1800

NA Sharon 1350

Original results table, as shown in Qlik Sense

The equivalent pivot table looks similar to the following, with the column for each sales person's
name being contained within the larger row for Sales Person:

Area James Lisa Sharon

APAC 1750 1500 1850

EMEA 950 1350 2050

NA 1350 1350 1350

Equivalent pivot table with the Sales Person

field pivoted horizontally

Example of data displayed as a table and an equivalent pivot table with the Sales Person field pivoted
horizontally

Script syntax and chart functions - Qlik Sense, May 2024 51

3 Script statements and keywords

Example 3 – Transforming pivoted sales and target data into a vertical table
structure (advanced)
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset representing sales and targets data, organized by area and month of the year. This
is loaded into a table called SalesAndTargets.

l The crosstable load prefix. This is used to unpivot the Month Year dimension into a dedicated
field, as well as to transpose the matrix of sales and target amounts into a dedicated field
called Amount.

l A conversion of the Month Year field from text to a proper date, using the text-to-date
conversion function date#. This date-converted Month Year field is joined back onto the
SalesAndTarget table via a Join load prefix.

Load script

SalesAndTargets:

CROSSTABLE(MonthYearAsText,Amount,2)

LOAD

*

INLINE [

Area Type Jan-22 Feb-22 Mar-22 Apr-22 May-22 Jun-22 Jul-22 Aug-22 Sep-22 Oct-22 Nov-22 Dec-22

APAC Target 425 425 425 425 425 425 425 425 425 425 425 425

APAC Actual 435 434 397 404 458 447 413 458 385 421 448 397

EMEA Target 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5

EMEA Actual 363.5 359.5 337.5 361.5 341.5 337.5 379.5 352.5 327.5 337.5 360.5 334.5

NA Target 375 375 375 375 375 375 375 375 375 375 375 375

NA Actual 378 415 363 356 403 343 401 365 393 340 360 405

] (delimiter is '\t');

tmp:

LOAD DISTINCT MonthYearAsText,date#(MonthYearAsText,'MMM-YY') AS [Month Year]

RESIDENT SalesAndTargets;

JOIN (SalesAndTargets)

LOAD * RESIDENT tmp;

DROP TABLE tmp;

DROP FIELD MonthYearAsText;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 52

3 Script statements and keywords

l Area

l Month Year

Create the following measure, with the label Actual:

=Sum({<Type={'Actual'}>} Amount)

Also create this measure, with the label Target:

=Sum({<Type={'Target'}>} Amount)

Area Month Year Actual Target

APAC Jan-22 435 425

APAC Feb-22 434 425

APAC Mar-22 397 425

APAC Apr-22 404 425

APAC May-22 458 425

APAC Jun-22 447 425

APAC Jul-22 413 425

APAC Aug-22 458 425

APAC Sep-22 385 425

APAC Oct-22 421 425

APAC Nov-22 448 425

APAC Dec-22 397 425

EMEA Jan-22 363.5 362.5

EMEA Feb-22 359.5 362.5

Results table (cropped)

If you wish to replicate the display of data as the pivoted input table, you can create an equivalent
pivot table in a sheet.

Do the following:

1. Copy and paste the table you have just created into the sheet.
2. Drag the Pivot table chart object on top of the newly created table copy. Select Convert.

3. Click Done editing.

4. Drag the Month Year field from the vertical column shelf to the horizontal column shelf.
5. Drag the Values item from the horizontal column shelf to the vertical column shelf.

The following table shows the data in its initial table form, as it is displayed in Qlik Sense:

Script syntax and chart functions - Qlik Sense, May 2024 53

3 Script statements and keywords

Area Month Year Actual Target

Totals - 13812 13950

APAC Jan-22 435 425

APAC Feb-22 434 425

APAC Mar-22 397 425

APAC Apr-22 404 425

APAC May-22 458 425

APAC Jun-22 447 425

APAC Jul-22 413 425

APAC Aug-22 458 425

APAC Sep-22 385 425

APAC Oct-22 421 425

APAC Nov-22 448 425

APAC Dec-22 397 425

EMEA Jan-22 363.5 362.5

EMEA Feb-22 359.5 362.5

Original results table (cropped), as shown in Qlik
Sense

The equivalent pivot table looks similar to the following, with the column for each individual month
of the year being contained within the larger row for Month Year:

Area
(Value
s)

Jan-
22

Feb-
22

Mar-
22

Apr-
22

Ma
y-22

Jun-
22

Jul-
22

Au
g-22

Sep-
22

Oct-
22

No
v-22

Dec-
22

APAC
-
Actual

435 434 397 404 458 447 413 458 385 421 448 397

APAC
-
Target

425 425 425 425 425 425 425 425 425 425 425 425

EMEA
-
Actual

363.
5

359.
5

337.
5

361.
5

341.
5

337.
5

379.
5

352.
5

327.
5

337.
5

360.
5

334.
5

Equivalent pivot table (cropped) with the Month Year field pivoted horizontally

Script syntax and chart functions - Qlik Sense, May 2024 54

3 Script statements and keywords

Area
(Value
s)

Jan-
22

Feb-
22

Mar-
22

Apr-
22

Ma
y-22

Jun-
22

Jul-
22

Au
g-22

Sep-
22

Oct-
22

No
v-22

Dec-
22

EMEA
-
Target

362.
5

362.
5

362.
5

362.
5

362.
5

362.
5

362.
5

362.
5

362.
5

362.
5

362.
5

362.
5

NA -
Actual

378 415 363 356 403 343 401 365 393 340 360 405

NA -
Target

375 375 375 375 375 375 375 375 375 375 375 375

Example of data displayed as a table and an equivalent pivot table with the Month Year field pivoted
horizontally

First
The First prefix to a LOAD or SELECT (SQL) statement is used for loading a set maximum
number of records from a data source table. A typical use case for using the First prefix
is when you want to retrieve a small subset of records from a large and/or slow data
load step. As soon as the defined “n” number of records has been loaded, the load step
terminates prematurely, and the rest of the script execution continues as normal.

Syntax:
First n (loadstatement | selectstatement)

Argument Description

n An arbitrary expression that evaluates to an integer indicating the maximum
number of records to be read. n can also be enclosed in parentheses: (n).

loadstatement |

selectstatement

The load statement/select statement that follows the n argument will define
the specified table that must be loaded with the set maximum number of
records.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 55

3 Script statements and keywords

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example Result

FIRST 10 LOAD * from abc.csv; This example will retrieve the first ten lines from an excel file.
FIRST (1) SQL SELECT * from

Orders;

This example will retrieve the first selected line from the
Orders dataset.

Function examples

Example – Load the first five rows
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates from the first two weeks of 2020.
l The First variable that instructs the application to only load the first five records.

Load script

Sales:

FIRST 5

LOAD

*

Inline [

date,sales

01/01/2020,6000

01/02/2020,3000

01/03/2020,6000

01/04/2020,8000

01/05/2020,5000

01/06/2020,7000

01/07/2020,3000

01/08/2020,5000

01/09/2020,9000

Script syntax and chart functions - Qlik Sense, May 2024 56

3 Script statements and keywords

01/10/2020,5000

01/11/2020,7000

01/12/2020,7000

01/13/2020,7000

01/14/2020,7000

];

Results

Load the data and open a sheet. Create a new table and add Date as a field and sum(sales) as a
measure:

Date sum(sales)

01/01/2020 6000

01/02/2020 3000

01/03/2020 6000

01/04/2020 8000

01/05/2020 5000

Results table

The script only loads the first five records of the Sales table.

Generic
The Generic load prefix allows for conversion of entity–attribute–value modeled data
(EAV) into a traditional, normalized relational table structure. EAV modeling is
alternatively referred to as "generic data modeling" or "open schema".

Example of EAV modeled data and an equivalent denormalized relational table

Script syntax and chart functions - Qlik Sense, May 2024 57

3 Script statements and keywords

Example of EAV modeled data and an equivalent set of normalized relational tables

While it is technically possible to load and analyze EAV modeled data in Qlik, it is often easier to
work with an equivalent traditional relational data structure.

Syntax:
Generic(loadstatement | selectstatement)

These topics may help you work with this function:

Topic Description

Crosstable
(page 45)

The Crosstable load prefix transforms data that is horizontally-oriented into
vertically-oriented data. From a purely functional perspective, it performs the
opposite transformation to the Generic load prefix, although the prefixes typically
serve entirely different use cases.

Generic
databases in
Manage data

EAV structured data models are further described here.

Related topics

Example 1 – Transforming EAV structured data with the Generic load prefix
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, May 2024 58

3 Script statements and keywords

The load script contains a dataset which is loaded into a table named Transactions. The dataset
includes a date field. The default MonthNames definition is used.

Load script

Products:

Generic

Load * inline [

Product ID, Attribute, Value

13, Status, Discontinued

13, Color, Brown

20, Color, White

13, Size, 13-15

20, Size, 16-18

2, Status, Discontinued

5, Color, Brown

2, Color, White

44, Color, Brown

45, Size, 16-18

45, Color, Brown

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: Color.

Add this measure:

=Count([Product ID])

Now you can inspect the number of products by color.

Color =Count([Product ID])

Brown 4

White 2

Results table

Note the shape of the data model, where each attribute has been broken out into a separate table
named according to the original target table tag Product.Each table has the attribute as a suffix. One
example of this is Product.Color. The resulting Product Attribute output records are associated by
the Product ID.

Script syntax and chart functions - Qlik Sense, May 2024 59

3 Script statements and keywords

Data model viewer representation of the results

Product ID Status

13 Discontinued

2 Discontinued

Resulting table of
records: Products.Status

Product ID Size

13 13-15

20 16-18

45 16-18

Resulting table of
records: Products.Size

Product ID Color

13 Brown

5 Brown

44 Brown

45 Brown

20 White

2 White

Resulting table of
records: Products.Color

Script syntax and chart functions - Qlik Sense, May 2024 60

3 Script statements and keywords

Example 2 – Analyzing EAV structured data without the Generic load prefix
Load script and chart expression

Overview

This example shows how to analyze EAV structured data in its original form.

Open the Data load editor and add the load script below to a new tab.

The load script contains a dataset which is loaded into a table named Products in an EAV structure.

In this example, we are still counting products by color attribute. In order to analyze data structured
in this way, you will need to apply expression-level filtering of products carrying the Attribute value
Color.

Furthermore, individual attributes are not available to select as dimensions or fields, making it
harder to determine how to build effective visualizations.

Load script

Products:

Load * Inline

[

Product ID, Attribute, Value

13, Status, Discontinued

13, Color, Brown

20, Color, White

13, Size, 13-15

20, Size, 16-18

2, Status, Discontinued

5, Color, Brown

2, Color, White

44, Color, Brown

45, Size, 16-18

45, Color, Brown

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: Value.

Create the following measure:

=Count({<Attribute={'Color'}>} [Product ID])

Now you can inspect the number of products by color.

Script syntax and chart functions - Qlik Sense, May 2024 61

3 Script statements and keywords

Value =Count({<Attribute={'Color'}>} [Product ID])

Brown 4

White 2

Resulting table of records: Products.Status

Example 3 – Denormalizing the resulting output tables from a Generic load
(advanced)
Load script and chart expression

Overview

In this example, we show how the normalised data structure produced by the Generic load prefix
can be denormalised back into a consolidated Product dimension table. This is an advanced
modeling technique which can be employed as part of data model performance tuning.

Open the Data load editor and add the load script below to a new tab.

Load script

Products:

Generic

Load * inline [

Product ID, Attribute, Value

13, Status, Discontinued

13, Color, Brown

20, Color, White

13, Size, 13-15

20, Size, 16-18

2, Status, Discontinued

5, Color, Brown

2, Color, White

44, Color, Brown

45, Size, 16-18

45, Color, Brown

];

RENAME TABLE Products.Color TO Products;

OUTER JOIN (Products)

LOAD * RESIDENT Products.Size;

OUTER JOIN (Products)

LOAD * RESIDENT Products.Status;

DROP TABLES Products.Size,Products.Status;

Script syntax and chart functions - Qlik Sense, May 2024 62

3 Script statements and keywords

Results

Open the Data model viewer and note the shape of the resulting data model. Only one denormalized
table is present. It is a combination of the three intermediary output tables: Products.Size,
Products.Status, and Products.Color.

Products

Product ID

Status

Color

Size

Resulting
internal data

model

Product ID Status Color Size

13 Discontinued Brown 13-15

20 - White 16-18

2 Discontinued White -

5 - Brown -

44 - Brown -

45 - Brown 16-18

Resulting table of records: Products

Load the data and open a sheet. Create a new table and add this field as a dimension: Color.

Add this measure:

=Count([Product ID])

Color =Count([Product ID])

Brown 4

White 2

Results table

Hierarchy
The hierarchy prefix is used to transform a parent-child hierarchy table to a table that
is useful in a Qlik Sense data model. It can be put in front of a LOAD or a SELECT
statement and will use the result of the loading statement as input for a table

Script syntax and chart functions - Qlik Sense, May 2024 63

3 Script statements and keywords

transformation.

The prefix creates an expanded nodes table, which normally has the same number of records as the
input table, but in addition each level in the hierarchy is stored in a separate field. The path field can
be used in a tree structure.

Syntax:
Hierarchy (NodeID, ParentID, NodeName, [ParentName, [PathSource, [PathName,

[PathDelimiter, Depth]]]])(loadstatement | selectstatement)

The input table must be an adjacent nodes table. Adjacent nodes tables are tables where each
record corresponds to a node and has a field that contains a reference to the parent node. In such a
table the node is stored on one record only but the node can still have any number of children. The
table may of course contain additional fields describing attributes for the nodes.

The prefix creates an expanded nodes table, which normally has the same number of records as the
input table, but in addition each level in the hierarchy is stored in a separate field. The path field can
be used in a tree structure.

Usually the input table has exactly one record per node and in such a case the output table will
contain the same number of records. However, sometimes there are nodes with multiple parents,
i.e. one node is represented by several records in the input table. If so, the output table may have
more records than the input table.

All nodes with a parent id not found in the node id column (including nodes with missing parent id)
will be considered as roots. Also, only nodes with a connection to a root node - direct or indirect -
will be loaded, thus avoiding circular references.

Additional fields containing the name of the parent node, the path of the node and the depth of the
node can be created.

Arguments:

Argument Description

NodeID The name of the field that contains the node id. This field must exist in the
input table.

ParentID The name of the field that contains the node id of the parent node. This field
must exist in the input table.

NodeName The name of the field that contains the name of the node. This field must exist
in the input table.

ParentName A string used to name the new ParentName field. If omitted, this field will not
be created.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 64

3 Script statements and keywords

Argument Description

ParentSource The name of the field that contains the name of the node used to build the
node path. Optional parameter. If omitted, NodeName will be used.

PathName A string used to name the new Path field, which contains the path from the
root to the node. Optional parameter. If omitted, this field will not be created.

PathDelimiter A string used as delimiter in the new Path field. Optional parameter. If omitted,
'/' will be used.

Depth A string used to name the new Depth field, which contains the depth of the
node in the hierarchy. Optional parameter. If omitted, this field will not be
created.

Example:

Hierarchy(NodeID, ParentID, NodeName, ParentName, NodeName, PathName, '\', Depth) LOAD *

inline [

NodeID, ParentID, NodeName

1, 4, London

2, 3, Munich

3, 5, Germany

4, 5, UK

5, , Europe

];

Nod
eID

Paren
tID

NodeN
ame

NodeNa
me1

NodeNa
me2

NodeNa
me3

ParentN
ame

PathName Dep
th

1 4 London Europe UK London UK Europe\UK\Lon
don

3

2 3 Munich Europe German
y

Munich German
y

Europe\German
y\Munich

3

3 5 Germa
ny

Europe German
y

- Europe Europe\German
y

2

4 5 UK Europe UK - Europe Europe\UK 2

5 Europe Europe - - - Europe 1

HierarchyBelongsTo
This prefix is used to transform a parent-child hierarchy table to a table that is useful in
a Qlik Sense data model. It can be put in front of a LOAD or a SELECT statement and
will use the result of the loading statement as input for a table transformation.

The prefix creates a table containing all ancestor-child relations of the hierarchy. The ancestor
fields can then be used to select entire trees in the hierarchy. The output table in most cases
contains several records per node.

Script syntax and chart functions - Qlik Sense, May 2024 65

3 Script statements and keywords

Syntax:
HierarchyBelongsTo (NodeID, ParentID, NodeName, AncestorID, AncestorName,

[DepthDiff])(loadstatement | selectstatement)

The input table must be an adjacent nodes table. Adjacent nodes tables are tables where each
record corresponds to a node and has a field that contains a reference to the parent node. In such a
table the node is stored on one record only but the node can still have any number of children. The
table may of course contain additional fields describing attributes for the nodes.

The prefix creates a table containing all ancestor-child relations of the hierarchy. The ancestor
fields can then be used to select entire trees in the hierarchy. The output table in most cases
contains several records per node.

An additional field containing the depth difference of the nodes can be created.

Arguments:

Argument Description

NodeID The name of the field that contains the node id. This field must exist in the
input table.

ParentID The name of the field that contains the node id of the parent node. This field
must exist in the input table.

NodeName The name of the field that contains the name of the node. This field must
exist in the input table.

AncestorID A string used to name the new ancestor id field, which contains the id of the
ancestor node.

AncestorName A string used to name the new ancestor field, which contains the name of the
ancestor node.

DepthDiff A string used to name the new DepthDiff field, which contains the depth of
the node in the hierarchy relative the ancestor node. Optional parameter. If
omitted, this field will not be created.

Arguments

Example:

HierarchyBelongsTo (NodeID, AncestorID, NodeName, AncestorID, AncestorName, DepthDiff) LOAD *

inline [

NodeID, AncestorID, NodeName

1, 4, London

2, 3, Munich

3, 5, Germany

4, 5, UK

5, , Europe

];

Script syntax and chart functions - Qlik Sense, May 2024 66

3 Script statements and keywords

NodeID AncestorID NodeName AncestorName DepthDiff

1 1 London London 0

1 4 London UK 1

1 5 London Europe 2

2 2 Munich Munich 0

2 3 Munich Germany 1

2 5 Munich Europe 2

3 3 Germany Germany 0

3 5 Germany Europe 1

4 4 UK UK 0

4 5 UK Europe 1

5 5 Europe Europe 0

Results

Inner
The join and keep prefixes can be preceded by the prefix inner. If used before join it
specifies that an inner join should be used. The resulting table will thus only contain
combinations of field values from the raw data tables where the linking field values are
represented in both tables. If used before keep, it specifies that both raw data tables
should be reduced to their common intersection before being stored in Qlik Sense.

Syntax:
Inner (Join | Keep) [(tablename)](loadstatement |selectstatement)

Arguments:

Argument Description

tablename The named table to be compared to the loaded table.

loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.

Arguments

Example

Load script
Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Table1:

Load * inline [

Column1, Column2

Script syntax and chart functions - Qlik Sense, May 2024 67

3 Script statements and keywords

A, B

1, aa

2, cc

3, ee];

Table2:

Inner Join Load * inline [

Column1, Column3

A, C

1, xx

4, yy];

Result

Column1 Column2 Column3

A B C

1 aa xx

Resulting table

Explanation
This example demonstrates the Inner Join output where only values present in both the first (left)
and the second (right) tables are joined.

IntervalMatch
The IntervalMatch prefix is used to create a table matching discrete numeric values to
one or more numeric intervals, and optionally matching the values of one or several
additional keys.

Syntax:
IntervalMatch (matchfield)(loadstatement | selectstatement)
IntervalMatch (matchfield,keyfield1 [, keyfield2, ... keyfield5])
(loadstatement | selectstatement)

The IntervalMatch prefix must be placed before a LOAD or a SELECT statement that loads the
intervals. The field containing the discrete data points (Time in the example below) and additional
keys must already have been loaded into Qlik Sense before the statement with the IntervalMatch
prefix. The prefix does not by itself read this field from the database table. The prefix transforms
the loaded table of intervals and keys to a table that contains an additional column: the discrete
numeric data points. It also expands the number of records so that the new table has one record
per possible combination of discrete data point, interval and value of the key field(s).

The intervals may be overlapping and the discrete values will be linked to all matching intervals.

When the IntervalMatch prefix is extended with key fields, it is used to create a table matching
discrete numeric values to one or more numeric intervals, while at the same time matching the
values of one or several additional keys.

Script syntax and chart functions - Qlik Sense, May 2024 68

3 Script statements and keywords

In order to avoid undefined interval limits being disregarded, it may be necessary to allow NULL
values to map to other fields that constitute the lower or upper limits to the interval. This can be
handled by the NullAsValue statement or by an explicit test that replaces NULL values with a
numeric value well before or after any of the discrete numeric data points.

Arguments:

Argument Description

matchfield The field containing the discrete numeric values to be linked to intervals.

keyfield Fields that contain the additional attributes that are to be matched in the
transformation.

loadstatement
orselectstatement

Must result in a table, where the first field contains the lower limit of each
interval, the second field contains the upper limit of each interval, and in the
case of using key matching, the third and any subsequent fields contain the
keyfield(s) present in the IntervalMatch statement. The intervals are
always closed, i.e. the end points are included in the interval. Non-numeric
limits render the interval to be disregarded (undefined).

Arguments

Example 1:

In the two tables below, the first one lists a number of discrete events and the second one defines
the start and end times for the production of different orders. By means of the IntervalMatch prefix
it is possible to logically connect the two tables in order to find out e.g. which orders were affected
by disturbances and which orders were processed by which shifts.

EventLog:

LOAD * Inline [

Time, Event, Comment

00:00, 0, Start of shift 1

01:18, 1, Line stop

02:23, 2, Line restart 50%

04:15, 3, Line speed 100%

08:00, 4, Start of shift 2

11:43, 5, End of production

];

OrderLog:

LOAD * INLINE [

Start, End, Order

01:00, 03:35, A

02:30, 07:58, B

03:04, 10:27, C

07:23, 11:43, D

];

//Link the field Time to the time intervals defined by the fields Start and End.

Inner Join IntervalMatch (Time)

LOAD Start, End

Resident OrderLog;

Script syntax and chart functions - Qlik Sense, May 2024 69

3 Script statements and keywords

The table OrderLog contains now an additional column: Time. The number of records is also
expanded.

Time Start End Order

00:00 - - -

01:18 01:00 03:35 A

02:23 01:00 03:35 A

04:15 02:30 07:58 B

04:15 03:04 10:27 C

08:00 03:04 10:27 C

08:00 07:23 11:43 D

11:43 07:23 11:43 D

Table with additional column

Example 2: (using keyfield)

Same example than above, adding ProductionLine as a key field.

EventLog:

LOAD * Inline [

Time, Event, Comment, ProductionLine

00:00, 0, Start of shift 1, P1

01:00, 0, Start of shift 1, P2

01:18, 1, Line stop, P1

02:23, 2, Line restart 50%, P1

04:15, 3, Line speed 100%, P1

08:00, 4, Start of shift 2, P1

09:00, 4, Start of shift 2, P2

11:43, 5, End of production, P1

11:43, 5, End of production, P2

];

OrderLog:

LOAD * INLINE [

Start, End, Order, ProductionLine

01:00, 03:35, A, P1

02:30, 07:58, B, P1

03:04, 10:27, C, P1

07:23, 11:43, D, P2

];

//Link the field Time to the time intervals defined by the fields Start and End and match the

values

// to the key ProductionLine.

Inner Join

IntervalMatch (Time, ProductionLine)

LOAD Start, End, ProductionLine

Resident OrderLog;

Script syntax and chart functions - Qlik Sense, May 2024 70

3 Script statements and keywords

A table box could now be created as below:

ProductionLine Time Event Comment Order Start End

P1 00:00 0 Start of shift 1 - - -

P2 01:00 0 Start of shift 1 - - -

P1 01:18 1 Line stop A 01:00 03:35

P1 02:23 2 Line restart
50%

A 01:00 03:35

P1 04:15 3 Line speed
100%

B 02:30 07:58

P1 04:15 3 Line speed
100%

C 03:04 10:27

P1 08:00 4 Start of shift 2 C 03:04 10:27

P2 09:00 4 Start of shift 2 D 07:23 11:43

P1 11:43 5 End of
production

- - -

P2 11:43 5 End of
production

D 07:23 11:43

Tablebox example

Join
The join prefix joins the loaded table with an existing named table or the last previously
created data table.

The effect of joining data is to extend the target table by an additional set of fields or attributes,
namely ones not already present in the target table. Any common field names between the source
data set and the target table are used to work out how to associate the new incoming records. This
is commonly referred to as a “natural join”. A Qlik join operation can lead to the resulting target table
having more or fewer records than it started with, depending on the uniqueness of the join
association and the type of join employed.

There are four types of joins:

Left join

Left joins are the most common join type. For example, if you have a transaction data set and would
like to combine it with a reference data set, you would typically use a Left Join. You would load the
transaction table first, then load the reference data set while joining it via a Left Join prefix onto the
already loaded transaction table. A Left Join would keep all transactions as-is and add on the
supplementary reference data fields where a match is found.

Script syntax and chart functions - Qlik Sense, May 2024 71

3 Script statements and keywords

Inner join

When you have two data sets where you only care about any results where there is a matching
association, consider using an Inner Join. This will eliminate all records from both the source data
loaded and the target table if no match is found. As a result, this may leave your target table with
fewer records than before the join operation took place.

Outer join

When you need to keep both the target records and all of the incoming records, use an Outer Join.
Where no match is found, each set of records is still kept while the fields from the opposite side of
the join will remain unpopulated (null).

If the type keyword is omitted, the default join type is an outer join.

Right join

This join type keeps all the records about to be loaded, while reducing the records in the table
targeted by the join to only those records where there is an association match in the incoming
records. This is a niche join type that is sometimes used as a means of trimming down an already
pre-loaded table of records to a required subset.

Example results sets from different types of join operations

If there are no field names in common between the source and target of a join operation,
the join will result in a cartesian product of all rows – this is called a “cross join”.

Script syntax and chart functions - Qlik Sense, May 2024 72

3 Script statements and keywords

Example result set from a "cross join" operation

Syntax:
[inner | outer | left | right]Join [(tablename)](loadstatement |

selectstatement)

Argument Description

tablename The named table to be compared to the loaded table.

loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.

Arguments

These topics may help you work with this function:

Topic Description

Combining tables
with Join and
Keep in Manage
data

This topic provides further explanation of the concepts of “joining” and
“keeping” data sets.

Keep (page 81) The Keep load prefix is similar to the Join prefix, but it does not combine the
source and target datasets. Instead, it trims each dataset according to the
type of operation adopted (inner, outer, left, or right).

Related topics

Script syntax and chart functions - Qlik Sense, May 2024 73

3 Script statements and keywords

Example 1 - Left join: Enriching a target table with a reference data set
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset representing change records, which is loaded into a table named Changes. It
includes a Status ID key field.

l A second dataset representing change statuses, which is loaded and combined with the
original change records by joining it with a left Join load prefix.

This left join ensures that the change records remain intact while adding on status attributes where
a match in the incoming status records is found based on a common Status ID.

Load script

Changes:

Load * inline [

Change ID Status ID Scheduled Start Date Scheduled End Date Business Impact

10030 4 19/01/2022 23/02/2022 None

10015 3 04/01/2022 15/02/2022 Low

10103 1 02/04/2022 29/05/2022 Medium

10185 2 23/06/2022 08/09/2022 None

10323 1 08/11/2022 26/11/2022 High

10326 2 11/11/2022 05/12/2022 None

10138 2 07/05/2022 03/08/2022 None

10031 3 20/01/2022 25/03/2022 Low

10040 1 29/01/2022 22/04/2022 None

10134 1 03/05/2022 08/07/2022 Low

10334 2 19/11/2022 06/02/2023 Low

10220 2 28/07/2022 06/09/2022 None

10264 1 10/09/2022 17/10/2022 Medium

10116 1 15/04/2022 24/04/2022 None

10187 2 25/06/2022 24/08/2022 Low

] (delimiter is '\t');

Status:

Left Join (Changes)

Load * inline [

Status ID Status Sub Status

1 Open Not Started

2 Open Started

3 Closed Completed

4 Closed Cancelled

5 Closed Obsolete

] (delimiter is '\t');

Script syntax and chart functions - Qlik Sense, May 2024 74

3 Script statements and keywords

Results

Open the Data model viewer and note the shape of the data model. Only one denormalized table is
present. It is a combination of all the original change records, with the matching status attributes
joined onto each change record.

Changes

Change ID

Status ID

Scheduled Start Date

Scheduled End Date

Business Impact

Status

Sub Status

Resulting internal data
model

If you expand the preview window in the Data model viewer, you will see a portion of this full result
set organized into a table:

Change
ID

Status
ID

Scheduled
Start Date

Scheduled
End Date

Business
Impact

Status Sub Status

10030 4 19/01/2022 23/02/2022 None Closed Cancelled

10031 3 20/01/2022 25/03/2022 Low Closed Completed

10015 3 04/01/2022 15/02/2022 Low Closed Completed

10103 1 02/04/2022 29/05/2022 Medium Open Not Started

10116 1 15/04/2022 24/04/2022 None Open Not Started

10134 1 03/05/2022 08/07/2022 Low Open Not Started

10264 1 10/09/2022 17/10/2022 Medium Open Not Started

10040 1 29/01/2022 22/04/2022 None Open Not Started

10323 1 08/11/2022 26/11/2022 High Open Not Started

10187 2 25/06/2022 24/08/2022 Low Open Started

10185 2 23/06/2022 08/09/2022 None Open Started

10220 2 28/07/2022 06/09/2022 None Open Started

10326 2 11/11/2022 05/12/2022 None Open Started

Preview of Changes table in the Data model viewer

Script syntax and chart functions - Qlik Sense, May 2024 75

3 Script statements and keywords

Change
ID

Status
ID

Scheduled
Start Date

Scheduled
End Date

Business
Impact

Status Sub Status

10138 2 07/05/2022 03/08/2022 None Open Started

10334 2 19/11/2022 06/02/2023 Low Open Started

Since the fifth row in the Status table (Status ID: '5', Status: 'Closed', Sub Status: 'Obsolete') does
not correspond to any of the records in the Changes table, the information in this row does not
appear in the result set above.

Return to the Data load editor. Load the data and open a sheet. Create a new table and add this
field as a dimension: Status.

Add this measure:

=Count([Change ID])

Now you can inspect the number of Changes by Status.

Status =Count([Change ID])

Open 12

Closed 3

Results table

Example 2 – Inner join: Combining matching records only
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset representing change records, which is loaded into a table named Changes.
l A second dataset representing change records originating from the source system JIRA.This

is loaded and combined with the original records by joining it with an Inner Join load prefix.

This Inner Join ensures that only the five change records which are found in both datasets are
kept.

Load script

Changes:

Load * inline [

Change ID Status ID Scheduled Start Date Scheduled End Date Business Impact

10030 4 19/01/2022 23/02/2022 None

10015 3 04/01/2022 15/02/2022 Low

10103 1 02/04/2022 29/05/2022 Medium

Script syntax and chart functions - Qlik Sense, May 2024 76

3 Script statements and keywords

10185 2 23/06/2022 08/09/2022 None

10323 1 08/11/2022 26/11/2022 High

10326 2 11/11/2022 05/12/2022 None

10138 2 07/05/2022 03/08/2022 None

10031 3 20/01/2022 25/03/2022 Low

10040 1 29/01/2022 22/04/2022 None

10134 1 03/05/2022 08/07/2022 Low

10334 2 19/11/2022 06/02/2023 Low

10220 2 28/07/2022 06/09/2022 None

10264 1 10/09/2022 17/10/2022 Medium

10116 1 15/04/2022 24/04/2022 None

10187 2 25/06/2022 24/08/2022 Low

] (delimiter is '\t');

JIRA_changes:

Inner Join (Changes)

Load

[Ticket ID] AS [Change ID],

[Source System]

inline

[

Ticket ID Source System

10000 JIRA

10030 JIRA

10323 JIRA

10134 JIRA

10334 JIRA

10220 JIRA

20000 TFS

] (delimiter is '\t');

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l Source System

l Change ID

l Business Impact

Now you can inspect the five resulting records. The resultant table from an Inner Join will only
include records with matching information in both datasets.

Source System Change ID Business Impact

JIRA 10030 None

JIRA 10134 Low

JIRA 10220 None

JIRA 10323 High

JIRA 10334 Low

Results table

Script syntax and chart functions - Qlik Sense, May 2024 77

3 Script statements and keywords

Example 3 – Outer join: Combining overlapping record sets
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset representing change records, which is loaded into a table named Changes.
l A second dataset representing change records originating from the source system JIRA,

which is loaded and combined with the original records by joining it with an Outer Join load
prefix.

This ensures that all the overlapping change records from both datasets are kept.

Load script

// 8 Change records

Changes:

Load * inline [

Change ID Status ID Scheduled Start Date Scheduled End Date Business Impact

10030 4 19/01/2022 23/02/2022 None

10015 3 04/01/2022 15/02/2022 Low

10138 2 07/05/2022 03/08/2022 None

10031 3 20/01/2022 25/03/2022 Low

10040 1 29/01/2022 22/04/2022 None

10134 1 03/05/2022 08/07/2022 Low

10334 2 19/11/2022 06/02/2023 Low

10220 2 28/07/2022 06/09/2022 None

] (delimiter is '\t');

// 6 Change records

JIRA_changes:

Outer Join (Changes)

Load

[Ticket ID] AS [Change ID],

[Source System]

inline

[

Ticket ID Source System

10030 JIRA

10323 JIRA

10134 JIRA

10334 JIRA

10220 JIRA

10597 JIRA

] (delimiter is '\t');

Script syntax and chart functions - Qlik Sense, May 2024 78

3 Script statements and keywords

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l Source System

l Change ID

l Business Impact

Now you can inspect the 10 resulting records.

Source System Change ID Business Impact

JIRA 10030 None

JIRA 10134 Low

JIRA 10220 None

JIRA 10323 -

JIRA 10334 Low

JIRA 10597 -

- 10015 Low

- 10031 Low

- 10040 None

- 10138 None

Results table

Example 4 – Right join: Trimming down a target table by a secondary master
dataset
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset representing change records, which is loaded into a table named Changes.
l A second dataset representing change records originating from the source system Teamwork.

This is loaded and combined with the original records by joining it with a Right Join load
prefix.

This ensures that only Teamwork change records are kept, while not losing any Teamwork records if the
target table does not have a matching Change ID.

Script syntax and chart functions - Qlik Sense, May 2024 79

3 Script statements and keywords

Load script

Changes:

Load * inline [

Change ID Status ID Scheduled Start Date Scheduled End Date Business Impact

10030 4 19/01/2022 23/02/2022 None

10015 3 04/01/2022 15/02/2022 Low

10103 1 02/04/2022 29/05/2022 Medium

10185 2 23/06/2022 08/09/2022 None

10323 1 08/11/2022 26/11/2022 High

10326 2 11/11/2022 05/12/2022 None

10138 2 07/05/2022 03/08/2022 None

10031 3 20/01/2022 25/03/2022 Low

10040 1 29/01/2022 22/04/2022 None

10134 1 03/05/2022 08/07/2022 Low

10334 2 19/11/2022 06/02/2023 Low

10220 2 28/07/2022 06/09/2022 None

10264 1 10/09/2022 17/10/2022 Medium

10116 1 15/04/2022 24/04/2022 None

10187 2 25/06/2022 24/08/2022 Low

] (delimiter is '\t');

Teamwork_changes:

Right Join (Changes)

Load

[Ticket ID] AS [Change ID],

[Source System]

inline

[

Ticket ID Source System

10040 Teamwork

10015 Teamwork

10103 Teamwork

10031 Teamwork

50231 Teamwork

] (delimiter is '\t');

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l Source System

l Change ID

l Business Impact

Now you can inspect the five resulting records.

Script syntax and chart functions - Qlik Sense, May 2024 80

3 Script statements and keywords

Source System Change ID Business Impact

Teamwork 10015 Low

Teamwork 10031 Low

Teamwork 10040 None

Teamwork 10103 Medium

Teamwork 50231 -

Results table

Keep
The keep prefix is similar to the join prefix. Just as the join prefix, it compares the loaded table with
an existing named table or the last previously created data table, but instead of joining the loaded
table with an existing table, it has the effect of reducing one or both of the two tables before they
are stored in Qlik Sense, based on the intersection of table data. The comparison made is
equivalent to a natural join made over all the common fields, i.e. the same way as in a corresponding
join. However, the two tables are not joined and will be kept in Qlik Sense as two separately named
tables.

Syntax:
(inner | left | right) keep [(tablename)](loadstatement | selectstatement

)

The keep prefix must be preceded by one of the prefixes inner, left or right.

The explicit join prefix in Qlik Sense script language performs a full join of the two tables. The result
is one table. In many cases such joins will result in very large tables. One of the main features of Qlik
Sense is its ability to make associations between multiple tables instead of joining them, which
greatly reduces memory usage, increases processing speed and offers enormous flexibility. Explicit
joins should therefore generally be avoided in Qlik Sense scripts. The keep functionality was
designed to reduce the number of cases where explicit joins needs to be used.

Arguments:

Argument Description

tablename The named table to be compared to the loaded table.

loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.

Arguments

Example:

Inner Keep LOAD * from abc.csv;

Left Keep SELECT * from table1;

tab1:

LOAD * from file1.csv;

tab2:

Script syntax and chart functions - Qlik Sense, May 2024 81

3 Script statements and keywords

LOAD * from file2.csv;

..

Left Keep (tab1) LOAD * from file3.csv;

Left
The Join and Keep prefixes can be preceded by the prefix left.

If used before join it specifies that a left join should be used. The resulting table will only contain
combinations of field values from the raw data tables where the linking field values are represented
in the first table. If used before keep, it specifies that the second raw data table should be reduced
to its common intersection with the first table, before being stored in Qlik Sense.

Were you looking for the string function by the same name? See: Left (page 1464)

Syntax:
Left (Join | Keep) [(tablename)](loadstatement | selectstatement)

Arguments:

Argument Description

tablename The named table to be compared to the loaded table.

loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.

Arguments

Example

Load script
Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Table1:

Load * inline [

Column1, Column2

A, B

1, aa

2, cc

3, ee];

Table2:

Left Join Load * inline [

Column1, Column3

A, C

1, xx

4, yy];

Script syntax and chart functions - Qlik Sense, May 2024 82

3 Script statements and keywords

Result

Column1 Column2 Column3

A B C

1 aa xx

2 cc -

3 ee -

Resulting table

Explanation
This example demonstrates the Left Join output where only values present in the first (left) table
are joined.

Mapping
The mapping prefix is used to create a mapping table that can be used to, for example,
replacing field values and field names during script execution.

Syntax:
Mapping(loadstatement | selectstatement)

The mapping prefix can be put in front of a LOAD or a SELECT statement and will store the result of
the loading statement as a mapping table. Mapping provides an efficient way to substituting field
values during script execution, e.g. replacing US, U.S. or America with USA. A mapping table
consists of two columns, the first containing comparison values and the second containing the
desired mapping values. Mapping tables are stored temporarily in memory and dropped
automatically after script execution.

The content of the mapping table can be accessed using e.g. the Map … Using statement, the
Rename Field statement, the Applymap() function or the Mapsubstring() function.

Example:

In this example we load a list of salespersons with a country code representing their country of
residence. We use a table mapping a country code to a country to replace the country code with the
country name. Only three countries are defined in the mapping table, other country codes are
mapped to 'Rest of the world'.

// Load mapping table of country codes:

map1:

mapping LOAD *

Inline [

CCode, Country

Sw, Sweden

Dk, Denmark

No, Norway

] ;

Script syntax and chart functions - Qlik Sense, May 2024 83

3 Script statements and keywords

// Load list of salesmen, mapping country code to country

// If the country code is not in the mapping table, put Rest of the world

Salespersons:

LOAD *,

ApplyMap('map1', CCode,'Rest of the world') As Country

Inline [

CCode, Salesperson

Sw, John

Sw, Mary

Sw, Per

Dk, Preben

Dk, Olle

No, Ole

Sf, Risttu] ;

// We don't need the CCode anymore

Drop Field 'CCode';

The resulting table looks like this:

Salesperson Country

John Sweden

Mary Sweden

Per Sweden

Preben Denmark

Olle Denmark

Ole Norway

Risttu Rest of the world

Mapping table

Merge
The Merge prefix can be added to any LOAD or SELECT statement in the script to
specify that the loaded table should be merged into another table. It also specifies that
this statement should be run in a partial reload.

The typical use case is when you load a change log and want to use this to apply inserts, updates,
and deletes to an existing table.

For partial reload to work properly, the app must be opened with data before a partial
reload is triggered.

Perform a partial reload using the Reload button. You can also use the Qlik Engine JSON API.

Syntax:
Merge [only] [(SequenceNoField [, SequenceNoVar])] On ListOfKeys [Concatenate
[(TableName)]] (loadstatement | selectstatement)

Script syntax and chart functions - Qlik Sense, May 2024 84

3 Script statements and keywords

Arguments:

Argument Description

only An optional qualifier denoting that the statement should be
executed only during partial reloads. The statement is
disregarded during normal (non-partial) reloads.

SequenceNoField The name of the field containing a timestamp or a sequence
number that defines the order of the operations.

SequenceNoVar The name of the variable that gets assigned the maximum value
for SequenceNoField of the table being merged.

ListOfKeys A comma separated list of field names specifying the primary
key.

Operation The first field of the load statement must contain the operation
as a text string: 'Insert', 'Update', or 'Delete'. ‘i’, ‘u’ and ‘d’ are also
accepted.

Arguments

General functionality
During a normal (non-partial) reload, the Merge LOAD construction works as a normal Load
statement but with the additional functionality of removing older obsolete records and records
marked for deletion. The first field of the Load statement must hold information about the
operation: Insert, Update, or Delete.

For each loaded record, the record identifier is compared with previously loaded records, and only
the latest record (according to the sequence number) will be kept. If the latest record is marked
with Delete, none will be kept.

Target table
Which table to modify is determined by the set of fields. If a table with the same set of fields (except
the first field; the operation) already exists, this will be the relevant table to modify. Alternatively, a
Concatenate prefix can be used to specify the table. If the target table is not determined, the result
of the Merge LOAD construction is stored in a new table.

If the Concatenate prefix is used, the resulting table has a set of fields corresponding to the union
of the existing table and the input to the merge. Hence, the target table may get more fields than
the change log that is used as input to the merge.

A partial reload does the same as a full reload. One difference is that a partial reload rarely creates a
new table. Unless you have used the Only clause, a target table with the same set of fields from the
previous script execution always exists.

Script syntax and chart functions - Qlik Sense, May 2024 85

3 Script statements and keywords

Sequence number
If the loaded change log is an accumulated log, that is, it contains changes that already have been
loaded, the parameter SequenceNoVar can be used in a Where clause to limit the amount of input
data. The Merge LOAD could then be made to only load records where the field SequenceNoField
is greater than SequenceNoVar. Upon completion, the Merge LOAD assigns a new value to the
SequenceNoVar with the maximum value seen in the SequenceNoField field.

Operations
The Merge LOAD can have fewer fields than the target table. The different operations treat missing
fields differently:

Insert: Fields missing in the Merge LOAD, but existing in the target table, get a NULL in the target
table.

Delete: Missing fields do not affect the result. The relevant records are deleted anyway.

Update: Fields listed in the Merge LOAD are updated in the target table. Missing fields are not
changed. This means that the two following statements are not identical:

l Merge on Key Concatenate Load 'U' as Operation, Key, F1, Null() as F2 From ...;
l Merge on Key Concatenate Load 'U' as Operation, Key, F1 From ...;

The first statement updates the listed records and changes F2 to NULL. The second does not
change F2, but instead, leaves the values in the target table.

Examples

Example 1: Simple merge with specified table
In this example, an inline table named Persons is loaded with three rows. Merge then changes the
table as follows:

l Adds the row, Mary, 4 .
l Deletes the row, Steven, 3.
l Assigns the number 5 to Jake .

The LastChangeDate variable is set to the maximum value in the ChangeDate column after Merge is
executed.

Load script
Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Set DateFormat='D/M/YYYY';

Persons:

load * inline [

Name, Number

Jake, 3

Jill, 2

Steven, 3

Script syntax and chart functions - Qlik Sense, May 2024 86

3 Script statements and keywords

];

Merge (ChangeDate, LastChangeDate) on Name Concatenate(Persons)

LOAD * inline [

Operation, ChangeDate, Name, Number

Insert, 1/1/2021, Mary, 4

Delete, 1/1/2021, Steven,

Update, 2/1/2021, Jake, 5

];

Result
Prior to the Merge Load, the resulting table appears as follows:

Name Number

Jake 3

Jill 2

Steven 3

Resulting table

Following the Merge Load, the table appears as follows:

ChangeDate Name Number

2/1/2021 Jake 5

- Jill 2

1/1/2021 Mary 4

Resulting table

When the data is loaded, the Data load progress dialog box shows the operations that are
performed:

Data load progress dialog box

Script syntax and chart functions - Qlik Sense, May 2024 87

3 Script statements and keywords

Example 2: Data load script with missing fields
In this example, the same data as above is loaded, but now with an ID for each person.

Merge changes the table as follows:

l Adds the row, Mary, 4.
l Deletes the row, Steven, 3.
l Assigns the number 5 to Jake.
l Assigns the number 6 to Jill.

Load script
Here we use two Merge Load statements, one for ‘Insert’ and ‘Delete’, and a second one for the
‘Update’.

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Set DateFormat='D/M/YYYY';

Persons:

Load * Inline [

PersonID, Name, Number

1, Jake, 3

2, Jill, 2

3, Steven, 3

Script syntax and chart functions - Qlik Sense, May 2024 88

3 Script statements and keywords

];

Merge (ChangeDate, LastChangeDate) on PersonID Concatenate(Persons)

Load * Inline [

Operation, ChangeDate, PersonID, Name, Number

Insert, 1/1/2021, 4, Mary, 4

Delete, 1/1/2021, 3, Steven,

];

Merge (ChangeDate, LastChangeDate) on PersonID Concatenate(Persons)

Load * Inline [

Operation, ChangeDate, PersonID, Number

Update, 2/1/2021, 1, 5

Update, 3/1/2021, 2, 6

];

Result
Following the Merge Load statements, the table appears as follows:

PersonID ChangeDate Name Number

1 2/1/2021 Jake 5

2 3/1/2021 Jill 6

4 1/1/2021 Mary 4

Resulting table

Note that the second Merge statement does not include the field Name, and as a consequence, the
names have not been changed.

Example 3: Data load script - Partial reload using a Where-clause with
ChangeDate
In the following example, the Only argument specifies that the Merge command is only executed
during a partial reload. Updates are filtered based on the previously captured LastChangeDate.
After Merge is finished, LastChangeDate variable is assigned the maximum value of the
ChangeDate column processed during the merge.

Load script
Merge Only (ChangeDate, LastChangeDate) on Name Concatenate(Persons)

LOAD Operation, ChangeDate, Name, Number

from [lib://ChangeFilesFolder/BulkChangesInPersonsTable.csv] (txt)

where ChangeDate >='$(LastChangeDate)';

NoConcatenate
The NoConcatenate prefix forces two loaded tables with identical field sets to be
treated as two separate internal tables, when they would otherwise be automatically
concatenated.

Syntax:
NoConcatenate(loadstatement | selectstatement)

Script syntax and chart functions - Qlik Sense, May 2024 89

3 Script statements and keywords

By default, if a table is loaded that contains an identical number of fields and matching field names
to a table loaded earlier in the script, Qlik Sense will auto concatenate these two tables. This will
happen even if the second table is named differently.

However, if the script prefix NoConcatenate is included before the load statement or select statement
of the second table, then these two tables will be loaded separately.

A typical use case for NoConcatenate is when you may need to create a temporary copy of a table to
perform some temporary transformations on that copy, while retaining a copy of the original data.
NoConcatenate ensures that you can make that copy without implicitly adding it back onto the source
table.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example Result

Source: LOAD A,B from

file1.csv;

CopyOfSource:

NoConcatenate LOAD A,B

resident Source;

A table with A and B as measures is loaded. A second table with the
same fields is loaded separately by using the NoConcatenate

variable.

Function example

Example 1 – Implicit concatenation
Load script and results

Overview

In this example, you will add two load scripts in sequential order.

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l An initial dataset with dates and amounts that is sent to a table named Transactions.

Script syntax and chart functions - Qlik Sense, May 2024 90

3 Script statements and keywords

First load script

Transactions:

LOAD

*

Inline [

id, date, amount

1, 08/30/2018, 23.56

2, 09/07/2018, 556.31

3, 09/16/2018, 5.75

4, 09/22/2018, 125.00

5, 09/22/2018, 484.21

6, 09/22/2018, 59.18

7, 09/23/2018, 177.42

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l amount

id date amount

1 08/30/2018 23.56

2 09/07/2018 556.31

3 09/16/2018 5.75

4 09/22/2018 125.00

5 09/22/2018 484.21

6 09/22/2018 59.18

7 09/23/2018 177.42

First results table

Second load script

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A second dataset with identical fields is sent to a table named Sales.

Sales:

LOAD

*

Inline [

id, date, amount

8, 10/01/2018, 164.27

Script syntax and chart functions - Qlik Sense, May 2024 91

3 Script statements and keywords

9, 10/03/2018, 384.00

10, 10/06/2018, 25.82

11, 10/09/2018, 312.00

12, 10/15/2018, 4.56

13, 10/16/2018, 90.24

14, 10/18/2018, 19.32

];

Results

Load the data and go to the table.

id date amount

1 08/30/2018 23.56

2 09/07/2018 556.31

3 09/16/2018 5.75

4 09/22/2018 125.00

5 09/22/2018 484.21

6 09/22/2018 59.18

7 09/23/2018 177.42

8 10/01/2018 164.27

9 10/03/2018 384.00

10 10/06/2018 25.82

11 10/09/2018 312.00

12 10/15/2018 4.56

13 10/16/2018 90.24

14 10/18/2018 19.32

Second results table

When the script runs, the Sales table is implicitly concatenated onto the existing Transactions table
due to the two datasets sharing an identical number of fields, with identical field names. This
happens despite the second table name tag attempting to name the result set ‘Sales’.

You can see that the Sales dataset is implicitly concatenated by looking at the Data load progress
log.

Script syntax and chart functions - Qlik Sense, May 2024 92

3 Script statements and keywords

Data load progress log showing Transactions data being implicitly concatenated.

Example 2 – Use case scenario
Load script and results

Overview

In this use case scenario you have:

l A transactions dataset with:
l id
l date
l amount (in GBP)

l A currency table with:
l Conversion rates for USD to GBP

l A second transactions dataset with:
l id

Script syntax and chart functions - Qlik Sense, May 2024 93

3 Script statements and keywords

l date
l amount (in USD)

You will load five scripts in sequential order.

l The first load script contains an initial dataset with dates and amounts in GBP that is sent to a
table named Transactions.

l The second load script contains:
l A second dataset with dates and amounts in USD that is sent to a table named

Transactions_in_USD.
l The noconcatenate prefix which is placed before the load statement of the

Transactions_in_USD dataset to prevent implicit concatenation.
l The third load script contains the join prefix which will be used create a currency exchange

rate between GBP and USD in the Transactions_in_USD table.
l The fourth load script contains the concatenate prefix which will add the Transactions_in_USD

to the initial Transactions table.
l The fifth load script contains the drop table statement which will remove the Transactions_

in_USD table its data has been concatenated to the Transactions table.

First load script

Transactions:

Load * Inline [

id, date, amount

1, 12/30/2018, 23.56

2, 12/07/2018, 556.31

3, 12/16/2018, 5.75

4, 12/22/2018, 125.00

5, 12/22/2018, 484.21

6, 12/22/2018, 59.18

7, 12/23/2018, 177.42

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l amount

id date amount

1 12/30/2018 23.56

2 12/07/2018 556.31

First load script results

Script syntax and chart functions - Qlik Sense, May 2024 94

3 Script statements and keywords

id date amount

3 12/16/2018 5.75

4 12/22/2018 125.00

5 12/22/2018 484.21

6 12/22/2018 59.18

7 12/23/2018 177.42

The table shows the initial dataset with amounts in GBP.

Second load script

Transactions_in_USD:

NoConcatenate

Load * Inline [

id, date, amount

8, 01/01/2019, 164.27

9, 01/03/2019, 384.00

10, 01/06/2019, 25.82

11, 01/09/2019, 312.00

12, 01/15/2019, 4.56

13, 01/16/2019, 90.24

14, 01/18/2019, 19.32

];

Results

Load the data and go to the table.

id date amount

1 12/30/2018 23.56

2 12/07/2018 556.31

3 12/16/2018 5.75

4 12/22/2018 125.00

5 12/22/2018 484.21

6 12/22/2018 59.18

7 12/23/2018 177.42

8 01/01/2019 164.27

9 01/03/2019 384.00

10 01/06/2019 25.82

11 01/09/2019 312.00

Second load script results

Script syntax and chart functions - Qlik Sense, May 2024 95

3 Script statements and keywords

id date amount

12 01/15/2019 4.56

13 01/16/2019 90.24

14 01/18/2019 19.32

You will see that the second dataset from the Transactions_in_USD table has been added.

Third load script

This load script joins a currency exchange rate from USD to GBP to the Transactions_in_USD table.

Join (Transactions_in_USD)

Load * Inline [

rate

0.7

];

Results

Load the data and go to the Data model viewer. Select the Transactions_in_USD table and you will
see that every existing record has a 'rate' field value of 0.7.

Fourth load script

Using resident load, this load script will concatenate the Transactions_in_USD table to the
Transactions table after converting the amounts into USD.

Concatenate (Transactions)

LOAD

id,

date,

amount * rate as amount

Resident Transactions_in_USD;

Results

Load the data and go to the table. You will see new entries with amounts in GBP from lines eight to
fourteen.

id date amount

1 12/30/2018 23.56

2 12/07/2018 556.31

3 12/16/2018 5.75

4 12/22/2018 125.00

Fourth load script results

Script syntax and chart functions - Qlik Sense, May 2024 96

3 Script statements and keywords

id date amount

5 12/22/2018 484.21

6 12/22/2018 59.18

7 12/23/2018 177.42

8 01/01/2019 114.989

8 01/01/2019 164.27

9 01/03/2019 268.80

9 01/03/2019 384.00

10 01/06/2019 18.074

10 01/06/2019 25.82

11 01/09/2019 218.40

11 01/09/2019 312.00

12 01/15/2019 3.192

12 01/15/2019 4.56

13 01/16/2019 63.168

13 01/16/2019 90.24

14 01/18/2019 13.524

14 01/18/2019 19.32

Fifth load script

This load script will drop the duplicate entries from the fourth load script results table, leaving only
entries with amounts in GBP.

drop tables Transactions_in_USD;

Results

Load the data and go to the table.

id date amount

1 12/30/2018 23.56

2 12/07/2018 556.31

3 12/16/2018 5.75

4 12/22/2018 125.00

5 12/22/2018 484.21

Fifth load script results

Script syntax and chart functions - Qlik Sense, May 2024 97

3 Script statements and keywords

id date amount

6 12/22/2018 59.18

7 12/23/2018 177.42

8 01/01/2019 114.989

9 01/03/2019 268.80

10 01/06/2019 18.074

11 01/09/2019 218.40

12 01/15/2019 3.192

13 01/16/2019 63.168

14 01/18/2019 13.524

After loading the fifth load script, the results table shows all fourteen transactions that existed in
both transaction datasets; however, transactions 8-14 have had their amounts converted to GBP.

If we remove the NoConcatenate prefix that was used before the Transactions_in_USD in the second
load script, the script will fail with the error:“Table 'Transactions_in_USD' not found”. This is because
the Transactions_in_USD table would have been auto concatenated onto the original Transactions
table.

Only
The Only script keyword is used as an aggregation function, or as part of the syntax in partial reload
prefixes Add, Replace, and Merge.

Outer
The explicit Join prefix can be preceded by the prefix Outer to specify an outer join. In an outer join,
all combinations between the two tables are generated. The resulting table will thus contain
combinations of field values from the raw data tables where the linking field values are represented
in one or both tables. The Outer keyword is optional and is the default join type used when a join
prefix is not specified.

Syntax:
Outer Join [(tablename)](loadstatement |selectstatement)

Arguments:

Argument Description

tablename The named table to be compared to the loaded table.

loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 98

3 Script statements and keywords

Example

Load script
Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Table1:

Load * inline [

Column1, Column2

A, B

1, aa

2, cc

3, ee];

Table2:

Outer Join Load * inline [

Column1, Column3

A, C

1, xx

4, yy];

Column1 Column2 Column3

A B C

1 aa xx

2 cc -

3 ee -

4 - yy

Resulting table

Explanation
In this example, the two tables, Table1 and Table2, are merged into a single table labeled Table1. In
cases like this, the outer prefix is often used to join several tables into a single table to perform
aggregations over the values of a single table.

Partial reload
A full reload always starts by deleting all tables in the existing data model, and then
runs the load script.

A partial reload will not do this. Instead it keeps all tables in the data model and then executes only
Load and Select statements preceded by an Add, Merge, or Replace prefix. Other data tables are
not affected by the command. The only argument denotes that the statement should be executed
only during partial reloads, and should be disregarded during full reloads. The following table
summarizes statement execution for partial and full reloads.

Script syntax and chart functions - Qlik Sense, May 2024 99

3 Script statements and keywords

Statement Full reload
Partial
reload

Load ... Statement will run Statement
will not run

Add/Replace/Merge Load ... Statement will run Statement
will run

Add/Replace/Merge Only Load ... Statement will not run Statement
will run

Partial reloads have several benefits compared to full reloads:

l Faster, because only data recently changed needs to be loaded. With large data sets the
difference is significant.

l Less memory is consumed, because less data is loaded.
l More reliable, because queries to source data run faster, reducing the risk of network

problems.

For partial reload to work properly, the app must be opened with data before a partial
reload is triggered.

Perform a partial reload using the Reload button. You can also use the Qlik Engine JSON API.

Limitations
A partial reload will fail if there are commands with references to tables that existed during full
reload, but not during partial reload.

Example

Example commands
LEFT JOIN(<Table_removed_after_full_reload>)

CONCATENATE(<Table_removed_after_full_reload>)

Where <Table_removed_after_full_reload> is a table that existed in full reload, but not in partial
reload.

Workaround
As a workaround you can surround the command with following if-statement:

IF NOT IsPartialReload() THEN ... ENDIF.

A partial reload can remove values from the data. However, this will not be reflected in the list of
distinct values, which is a table maintained internally. So, after a partial reload, the list will contain all
distinct values that have existed in the field since the last full reload, which may be more than what
currently exists after the partial reload. This affects the output of the FieldValueCount() and the
FieldValue() functions. The FieldValueCount() could potentially return a number greater than the
current number of field values.

Script syntax and chart functions - Qlik Sense, May 2024 100

3 Script statements and keywords

Example

Example 1

Load script
Add the example script to your app and do a partial reload. To see the result, add the fields listed in
the results column to a sheet in your app.

T1:

Add only Load distinct recno()+10 as Num autogenerate 10;

Result

Num Count(Num)

11 1

12 1

13 1

14 1

15 1

16 1

17 1

18 1

19 1

20 1

Resulting table

Explanation
The statement is only executed during a partial reload. If the "distinct" prefix is omitted, the count of
the Num field will increase with each subsequent partial reload.

Example 2

Load script
Add the example script to your app. Do a full reload and view the result. Next, do a partial reload
and view the result. To see the results, add the fields listed in the results column to a sheet in your
app.

T1:

Load recno() as ID, recno() as Value autogenerate 10;

T1:

Replace only Load recno() as ID, repeat(recno(),3) as Value autogenerate 10;

Script syntax and chart functions - Qlik Sense, May 2024 101

3 Script statements and keywords

Result

ID Value

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

Output table after full reload

ID Value

1 111

2 222

3 333

4 444

5 555

6 666

7 777

8 888

9 999

10 101010

Output table after partial reload

Explanation
The first table is loaded during a full reload and the second table simply replaces the first table
during a partial reload.

Replace
The Replace script keyword is used as a string function, or as a prefix in partial reload.

Script syntax and chart functions - Qlik Sense, May 2024 102

3 Script statements and keywords

Replace
The Replace prefix can be added to any LOAD or SELECT statement in the script to specify that the
loaded table should replace another table. It also specifies that this statement should be run in a
partial reload. The Replace prefix can also be used in a Map statement.

For partial reload to work properly, the app must be opened with data before a partial
reload is triggered.

Perform a partial reload using the Reload button. You can also use the Qlik Engine JSON API.

Syntax:
Replace [only] [Concatenate[(tablename)]] (loadstatement | selectstatement)

Replace [only] mapstatement

During a normal (non-partial) reload, the Replace LOAD construction will work as a normal LOAD
statement but be preceded by a Drop Table. First the old table will be dropped, then records will be
generated and stored as a new table.

If the Concatenate prefix is used, or if there exists a table with the same set of fields, this will be the
relevant table to drop. Otherwise, there is no table to drop and the Replace LOAD construction will
be identical to a normal LOAD.

A partial reload will do the same. The only difference is that there is always a table from the
previous script execution to drop. The Replace LOAD construction will always first drop the old
table, then create a new one.

The Replace Map...Using statement causes mapping to take place also during partial script
execution.

Arguments:

Argument Description

only An optional qualifier denoting that the statement should be executed only during
partial reloads. It should be disregarded during normal (non-partial) reloads.

Arguments

Examples and results:

Example Result

Tab1:

Replace LOAD *

from File1.csv;

During both normal and partial reload, the Qlik Sense table Tab1 is initially
dropped. Thereafter new data is loaded from File1.csv and stored in Tab1.

Script syntax and chart functions - Qlik Sense, May 2024 103

3 Script statements and keywords

Example Result

Tab1:

Replace only

LOAD * from

File1.csv;

During normal reload, this statement is disregarded.

During partial reload, any Qlik Sense table previously named Tab1 is initially
dropped. Thereafter new data is loaded from File1.csv and stored in Tab1.

Tab1:

LOAD a,b,c from

File1.csv;

Replace LOAD

a,b,c from

File2.csv;

During normal reload, the file File1.csv is first read into the Qlik Sense table
Tab1, but then immediately dropped and replaced by new data loaded from
File2.csv. All data from File1.csv is lost.

During partial reload, the entire Qlik Sense table Tab1 is initially dropped.
Thereafter it is replaced by new data loaded from File2.csv.

Tab1:

LOAD a,b,c from

File1.csv;

Replace only

LOAD a,b,c from

File2.csv;

During normal reload, data is loaded from File1.csv and stored in the Qlik
Sense table Tab1. File2.csv is disregarded.

During partial reload, the entire Qlik Sense table Tab1 is initially dropped.
Thereafter it is replaced by new data loaded from File2.csv. All data from
File1.csv is lost.

Right
The Join and Keep prefixes can be preceded by the prefix right.

If used before join it specifies that a right join should be used. The resulting table will only contain
combinations of field values from the raw data tables where the linking field values are represented
in the second table. If used before keep, it specifies that the first raw data table should be reduced
to its common intersection with the second table, before being stored in Qlik Sense.

Were you looking for the string function by the same name? See: Right (page 1473)

Syntax:
Right (Join | Keep) [(tablename)](loadstatement |selectstatement)

Arguments:

Argument Description

tablename The named table to be compared to the loaded table.

loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 104

3 Script statements and keywords

Example

Load script
Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Table1:

Load * inline [

Column1, Column2

A, B

1, aa

2, cc

3, ee];

Table2:

Right Join Load * inline [

Column1, Column3

A, C

1, xx

4, yy];

Result

Column1 Column2 Column3

A B C

1 aa xx

4 - yy

Resulting table

Explanation
This example demonstrates the Right Join output where only values present in the second (right)
table are joined.

Sample
The sample prefix to a LOAD or SELECT statement is used for loading a random
sample of records from the data source.

Syntax:
Sample p (loadstatement | selectstatement)

The expression that is evaluated does not define the percentage of records from the dataset that
will be loaded into the Qlik Sense application, but the probability of each record that is read to be
loaded into the application. In other words, specifying a value p = 0.5 does not mean that 50% of
the total number of records will be loaded, but instead that for each record there will be a 50%
chance that it is loaded into the Qlik Sense application.

Script syntax and chart functions - Qlik Sense, May 2024 105

3 Script statements and keywords

Argument Description

p An arbitrary expression which valuates to a number larger than 0 and lower or
equal to 1. The number indicates the probability for a given record to be read.

All records will be read but only some of them will be loaded into Qlik Sense.

Arguments

When to use it
Sample is useful when you would like to sample data coming from a large table, to understand the
nature of data, distribution or field contents. As it brings a subset of data, the data loads are faster,
allowing faster testing of scripts. Unlike First, the Sample function brings data from the whole table,
instead of being limited to the first few rows. This can provide a more accurate representation of
the data in some cases.

The following examples show two possible uses of the Sample script prefix:

Sample 0.15 SQL SELECT * from Longtable;

Sample(0.15) LOAD * from Longtab.csv;

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – Sample from an inline table
Load script and results

Overview

In this example, the script loads a sample set of data from a dataset containing seven records into a
table named Transactions from an inline table.

Load script

Transactions:

SAMPLE 0.3

LOAD

*

Inline [

Script syntax and chart functions - Qlik Sense, May 2024 106

3 Script statements and keywords

id, date, amount

1, 08/30/2018, 23.56

2, 09/07/2018, 556.31

3, 09/16/2018, 5.75

4, 09/22/2018, 125.00

5, 09/22/2018, 484.21

6, 09/22/2018, 59.18

7, 09/23/2018, 177.42

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l amount

Add the following the measure:

=sum(amount)8

id date =Sum(amount)

2 09/07/2018 556.31

4 09/22/2018 125

1 08/30/2018 23.56

3 09/16/2018 5.75

Results table

In the iteration of the load used in this example, all seven records were read, but only four records
were loaded into the data table. Any re-run load could result in a different number, and a different
set of records being loaded into the application.

Example 2 – Sample from an autogenerated table
Load script and results

Overview

In this example, using Autogenerate, a dataset of 100 records is created with the fields date, id, and
amount. However, the Sample prefix is used, with a value of 0.1.

Load script

SampleData:

Sample 0.1

LOAD

RecNo() AS id,

MakeDate(2013, Ceil(Rand() * 12), Ceil(Rand() * 29)) as date,

Rand() * 1000 AS amount

Script syntax and chart functions - Qlik Sense, May 2024 107

3 Script statements and keywords

Autogenerate(100);

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l amount

Add the following the measure:

id date =Sum(amount)

48 9/28/2013 763

20 5/15/2013 752

19 11/8/2013 657

25 3/24/2013 522

27 8/23/2013 389

81 6/1/2013 53

100 8/15/2013 17

Results table

In the iteration of the load used in this example, seven records were loaded from the created
dataset. Once again, any re-run load could result in a different number, and a different set of
records being loaded into the application.

Semantic
The semantic load prefix creates a special type of field that can be used in Qlik Sense to
connect and manage relational data, such as tree structures, self-referencing parent-
child structured data and/or data that can be described as a graph.

Note that the semantic load can function similarly to the Hierarchy (page 63) and
HierarchyBelongsTo (page 65) prefixes. All three prefixes can be used as building
blocks in effective front-end solutions for traversing relational data.

Syntax:
Semantic(loadstatement | selectstatement)

A semantic load expects an input that is exactly three or four fields wide with a strict definition of
what each ordered field represents, as shown in the table below:

Script syntax and chart functions - Qlik Sense, May 2024 108

3 Script statements and keywords

Field
name

Field description

1st
Field:

This tag is a representation of the first of two objects between which there is a
relationship.

2nd
Field:

This tag will be used to describe the “forward” relationship between the first and
second object. If the first object is a child and the second object is a parent, you can
create a relationship tab that states “parent” or “parent of” as if you are following the
relationship from child to parent.

3rd
Field:

This tag is a representation of the second of two objects between which there is a
relationship.

4th
Field:

This field is optional. This tag describes the “backward” or “inverse” relationship
between the first and second object. If the first object is a child and the second object
is a parent, a relationship tab could state “child” or “child of” as if you are following the
relationship from parent to child. If you do not add a fourth field, then the second field
tag will be used to describe the relationship in either direction. In that case, an arrow
symbol is automatically added as part of the tag.

Semantic load fields

The following code is an example of the semantic prefix.

Semantic

Load

Object,

‘Parent’ AS Relationship,

NeighbouringObject AS Object,

‘Child’ AS Relationship

from graphdata.csv;

It is allowed and typical practice to label the third field the same as the first field. This
creates a self-referencing lookup, so that you can follow object(s) to the related object
(s) one relationship step away at a time. If the 3rd field does not carry the same name,
then the end result will be a simple lookup from an object(s) to its direct relational
neighbor(s) one step away only, which is an output of little practical use.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the

Script syntax and chart functions - Qlik Sense, May 2024 109

3 Script statements and keywords

Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Functions Interaction

Hierarchy (page 63) The Hierarchy load prefix is used to divide and organize nodes in
parent-child and other graph-like data structures and transform them
into tables.

HierarchyBelongsTo
(page 65)

The HierarchyBelongsTo load prefix is used to locate and organize the
ancestors of parent-child and other graph-like data structures and
transform them into tables.

Related functions

Example - Creating a special field for connecting relationships using the
semantic prefix
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset representing geography relation records which is loaded into a table named
GeographyTree.

l Each entry has an ID at the beginning of the line and a ParentID at the end of the line.
l The semantic prefix which will add one special behavior field labeled, Relation.

Load script

GeographyTree:

LOAD

ID,

Geography,

if(ParentID='',null(),ParentID) AS ParentID

INLINE [

ID,Geography,ParentID

1,World

2,Europe,1

3,Asia,1

4,North America,1

5,South America,1

6,UK,2

7,Germany,2

8,Sweden,2

9,South Korea,3

10,North Korea,3

Script syntax and chart functions - Qlik Sense, May 2024 110

3 Script statements and keywords

11,China,3

12,London,6

13,Birmingham,6

];

SemanticTable:

Semantic Load

ID as ID,

'Parent' as Relation,

ParentID as ID,

'Child' as Relation

resident GeographyTree;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions.

l Id

l Geography

Then, create a filter pane with Relation as a dimension. Click Done editing.

Id Geography

1 World

2 Europe

3 Asia

4 North America

5 South America

6 UK

7 Germany

8 Sweden

9 South Korea

10 North Korea

11 China

12 London

13 Birmingham

Results table

Relation

Child

Parent

Filter pane

Script syntax and chart functions - Qlik Sense, May 2024 111

3 Script statements and keywords

Click Europe from the Geography dimension in the table and click Child from the Relation dimension
in the filter pane. Note the expected result in the table:

Id Geography

6 UK

7 Germany

8 Sweden

Results table showing
"children" of Europe

Clicking Child again will show places that are "children" of the UK, one step further down.

Id Geography

12 London

13 Birmingham

Results table showing
"children" of UK

Unless
The unless prefix and suffix is used for creating a conditional clause which determines
whether a statement or exit clause should be evaluated or not. It may be seen as a
compact alternative to the full if..end if statement.

Syntax:
(Unless condition statement | exitstatement Unless condition)

The statement or the exitstatement will only be executed if condition is evaluated to False.

The unless prefix may be used on statements which already have one or several other statements,
including additional when or unless prefixes.

Argument Description

condition A logical expression evaluating to True or False.

statement Any Qlik Sense script statement except control statements.

exitstatement An exit for, exit do or exit sub clause or an exit script statement.

Arguments

When to use it
The Unless statement returns a Boolean result. Typically, this type of function will be used as a
condition when the user would like to conditionally load or exclude parts of the script.

The following lines show three examples of how the Unless function may be used:

exit script unless A=1;

unless A=1 LOAD * from myfile.csv;

Script syntax and chart functions - Qlik Sense, May 2024 112

3 Script statements and keywords

unless A=1 when B=2 drop table Tab1;

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – Unless prefix
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The creation of variable A, which is given a value of 1.
l A dataset which is loaded into a table named Transactions, unless the variable A = 2.

Load script

LET A = 1;

UNLESS A = 2

Transactions:

LOAD

*

Inline [

id, date, amount

1, 08/30/2018, 23.56

2, 09/07/2018, 556.31

3, 09/16/2018, 5.75

4, 09/22/2018, 125.00

5, 09/22/2018, 484.21

6, 09/22/2018, 59.18

7, 09/23/2018, 177.42

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 113

3 Script statements and keywords

l id

l date

l amount

id date amount

1 08/30/2018 23.56

2 09/07/2018 556.31

3 09/16/2018 5.75

4 09/22/2018 125.00

5 09/22/2018 484.21

6 09/22/2018 59.18

7 09/23/2018 177.42

Results table

Because the variable A is assigned the value of 1 at the start of the script, the condition following
the Unless prefix is evaluated, returning a result of FALSE. As a result, the script continues to run the
Load statement. In the results table, all the records from the Transactions table can be seen.

If this variable value is set to equal to 2, no data will be loaded into the data model.

Example 2 – Unless suffix
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script starts by loading an initial dataset into a table named Transactions. The script is then
terminated unless there are less than 10 records in the Transactions table.

If this condition does not result in a termination of the script, a further set of transactions is
concatenated into the Transactions table and this process is repeated.

Load script

Transactions:

LOAD

*

Inline [

id, date, amount

1, 08/30/2018, 23.56

2, 09/07/2018, 556.31

3, 09/16/2018, 5.75

4, 09/22/2018, 125.00

5, 09/22/2018, 484.21

Script syntax and chart functions - Qlik Sense, May 2024 114

3 Script statements and keywords

6, 09/22/2018, 59.18

7, 09/23/2018, 177.42

];

exit script unless NoOfRows('Transactions') < 10 ;

Concatenate

LOAD

*

Inline [

id, date, amount

8, 10/01/2018, 164.27

9, 10/03/2018, 384.00

10, 10/06/2018, 25.82

11, 10/09/2018, 312.00

12, 10/15/2018, 4.56

13, 10/16/2018, 90.24

14, 10/18/2018, 19.32

];

exit script unless NoOfRows('Transactions') < 10 ;

Concatenate

LOAD

*

Inline [

id, date, amount

15, 10/01/2018, 164.27

16, 10/03/2018, 384.00

17, 10/06/2018, 25.82

18, 10/09/2018, 312.00

19, 10/15/2018, 4.56

20, 10/16/2018, 90.24

21, 10/18/2018, 19.32

];

exit script unless NoOfRows('Transactions') < 10 ;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l amount

id date amount

1 08/30/2018 23.56

Results table

Script syntax and chart functions - Qlik Sense, May 2024 115

3 Script statements and keywords

id date amount

2 09/07/2018 556.31

3 09/16/2018 5.75

4 09/22/2018 125.00

5 09/22/2018 484.21

6 09/22/2018 59.18

7 09/23/2018 177.42

8 10/01/2018 164.27

9 10/03/2018 384.00

10 10/06/2018 25.82

11 10/09/2018 312.00

12 10/15/2018 4.56

13 10/16/2018 90.24

14 10/18/2018 19.32

There are seven records in each of the three datasets of the load script.

The first dataset (with transaction id 1 through 7) is loaded into the application. The Unless

condition evaluates whether there are less than 10 rows in the Transactions table. This evaluates to
TRUE, and therefore the second dataset (with transaction id 8 through 14) is loaded into the
application. The second Unless condition evaluates if there are less than 10 records in the
Transactions table. This evaluates to FALSE, and so the script terminates.

Example 3 – Multiple Unless prefixes
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

In this example, a dataset containing one transaction is created as a table called Transactions. A 'for'
loop is then triggered, in which two nested unless statements evaluate:

1. Unless there are more than 100 records in the Transactions table
2. Unless the number of records in the Transactions table is a multiple of 6

If these conditions are FALSE, a further seven records are generated and concatenated onto the
existing Transactions table. This process is repeated until one of the two transactions returns a
value of TRUE.

Script syntax and chart functions - Qlik Sense, May 2024 116

3 Script statements and keywords

Load script

Transactions:

Load

0 as id

Autogenerate 1;

For i = 1 to 100

unless NoOfRows('Transactions') > 100 unless mod(NoOfRows('Transactions'),6) = 0

Concatenate

Load

if(isnull(Peek(id)),1,peek(id)+1) as id

Autogenerate 7;

next i

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:id.

id

0

1

2

3

4

5

+30 more rows

Results table

The nested unless statements that occur in the 'for' loop evaluate the following:

1. Are there more than 100 rows in the Transactions table?
2. Is the total number of records in the Transactions table a multiple of 6?

Whenever both unless statements return a value of FALSE, a further seven records are generated
and concatenated onto the existing Transactions table.

These statements return a value of FALSE five times, at which point there are a total of 36 rows of
data in the Transactions table.

After this, the second Unless statement returns a value of TRUE, and therefore the load statement
following this will no longer be executed.

Script syntax and chart functions - Qlik Sense, May 2024 117

3 Script statements and keywords

When
The when prefix and suffix is used for creating a conditional clause which determines
whether a statement or exit clause should be executed or not. It may be seen as a
compact alternative to the full if..end if statement.

Syntax:
(when condition statement | exitstatement when condition)

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

The statement or the exitstatement will only be executed if condition is evaluated to TRUE.

The When prefix may be used on statements which already have one or several other statements,
including additional When or Unless prefixes.

When to use it

The When statement returns a Boolean result. Typically, this type of function will be used as a
condition when the user would like to load or exclude parts of a script.

Argument Description

condition A logical expression evaluating to TRUE or FALSE

statement Any Qlik Sense script statement except control statements.

exitstatement An exit for, exit do or exit sub clause or an exit script statement.

Arguments

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Script syntax and chart functions - Qlik Sense, May 2024 118

3 Script statements and keywords

Example Result

exit script when A=1; When the statement A=1 is evaluated to be TRUE, the script will stop.

when A=1 LOAD * from

myfile.csv;

When the statement A=1 is evaluated to be TRUE, the myfile.csv will be
loaded.

when A=1 unless B=2

drop table Tab1;

When the statement A=1 is evaluated to be TRUE, and if B=2 is evaluated
to be FALSE, than the Tab1 table will be dropped.

Function examples

Example 1 – When prefix
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset with dates and amounts that is sent to a table named ‘Transactions’.
l The Let statement which states that the variable A is created and has the value of 1.
l The When condition which provides the condition that if A equals 1, then the script will continue

to load.

Load script

LET A = 1;

WHEN A = 1

Transactions:

LOAD

*

Inline [

id, date, amount

1, 08/30/2018, 23.56

2, 09/07/2018, 556.31

3, 09/16/2018, 5.75

4, 09/22/2018, 125.00

5, 09/22/2018, 484.21

6, 09/22/2018, 59.18

7, 09/23/2018, 177.42

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 119

3 Script statements and keywords

l id

l date

l amount

id date amount

1 08/30/2018 23.56

2 09/07/2018 556.31

3 09/16/2018 5.75

4 09/22/2018 125.00

5 09/22/2018 484.21

6 09/22/2018 59.18

7 09/23/2018 177.42

Results table

Because the variable A is assigned the value of 1 at the start of the script, the condition following the
When prefix is evaluated and returns a result of TRUE. Because it returns a TRUE result, the script
continues to run the load statement. All the records from the results table can be seen.

If this variable value was set to any value not equal to 1, no data would be loaded into the data
model.

Example 2 – When suffix
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l Three datasets with dates and amounts that are sent to a table named ‘Transactions’.
l The first dataset contains transactions 1-7.
l The second dataset contains transactions 8-14.
l The third dataset contains transactions 15-21.

l A When condition which determines whether the ‘Transactions’ table contains more than ten
rows. If any of the When statements are evaluated to be TRUE, the load script will stop. This
condition is placed at the end of each of the three datasets.

Load script

Transactions:

LOAD

*

Inline [

Script syntax and chart functions - Qlik Sense, May 2024 120

3 Script statements and keywords

id, date, amount

1, 08/30/2018, 23.56

2, 09/07/2018, 556.31

3, 09/16/2018, 5.75

4, 09/22/2018, 125.00

5, 09/22/2018, 484.21

6, 09/22/2018, 59.18

7, 09/23/2018, 177.42

];

exit script when NoOfRows('Transactions') > 10 ;

Concatenate

LOAD

*

Inline [

id, date, amount

8, 10/01/2018, 164.27

9, 10/03/2018, 384.00

10, 10/06/2018, 25.82

11, 10/09/2018, 312.00

12, 10/15/2018, 4.56

13, 10/16/2018, 90.24

14, 10/18/2018, 19.32

];

exit script when NoOfRows('Transactions') > 10 ;

Concatenate

LOAD

*

Inline [

id, date, amount

15, 10/01/2018, 164.27

16, 10/03/2018, 384.00

17, 10/06/2018, 25.82

18, 10/09/2018, 312.00

19, 10/15/2018, 4.56

20, 10/16/2018, 90.24

21, 10/18/2018, 19.32

];

exit script when NoOfRows('Transactions') > 10 ;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l amount

Script syntax and chart functions - Qlik Sense, May 2024 121

3 Script statements and keywords

id date amount

1 08/30/2018 23.56

2 09/07/2018 556.31

3 09/16/2018 5.75

4 09/22/2018 125.00

5 09/22/2018 484.21

6 09/22/2018 59.18

7 09/23/2018 177.42

8 10/01/2018 164.27

9 10/03/2018 384.00

10 10/06/2018 25.82

11 10/09/2018 312.00

12 10/15/2018 4.56

13 10/16/2018 90.24

14 10/18/2018 19.32

Results table

There are seven transactions in each of the three datasets. The first dataset contains transaction 1-
7 and is loaded into the application. The When condition following this load statement is evaluated as
FALSE because there are less than ten rows in the ‘Transactions’ table. The load script continues to
the next dataset.

The second dataset contains transaction 8-14 and is loaded into the application. The second When

condition evaluates as TRUE because there are more than ten rows in the ‘Transactions’ table.
Therefore, the script terminates.

Example 3 – Multiple When prefixes
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a single transaction is created as a table called 'Transactions'.
l A For loop which is triggered contains two nested When conditions which evaluate whether:

1. There are less than 100 records in the 'Transactions' table.
2. The number of records in the 'Transactions' table is not a multiple of 6.

Script syntax and chart functions - Qlik Sense, May 2024 122

3 Script statements and keywords

Load script

RowsCheck = NoOfRows('Transactions') < 100 or mod(NoOfRows('Transactions'),6) <> 0;

Transactions:

Load

0 as id

Autogenerate 1;

For i = 1 to 100

when(RowsCheck)

Concatenate

Load

if(isnull(Peek(id)),1,peek(id)+1) as id

Autogenerate 7;

next i

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

l id

The results table only shows the first five transaction IDs but the load script creates 36 rows and
then terminates once the When condition is fulfilled.

id

0

1

2

3

4

5

+30 more rows

Results table

The nested When conditions in the For loop evaluate the following questions:

l Are there less than 100 rows in the 'Transactions' table?
l Is the total number of records in the 'Transactions' table not a multiple of six?

Whenever both When conditions return a value of TRUE, a further seven records are generated and
concatenated onto the existing ‘Transactions’ table.

The When conditions return a TRUE value five times. At that point there are a total of 36 rows of data
in the ‘Transactions’ table.

When 36 rows of data are created in the 'Transactions' table, the second When statement returns a
value of FALSE and therefore the load statement following this will no longer be executed.

Script syntax and chart functions - Qlik Sense, May 2024 123

3 Script statements and keywords

3.3 Script regular statements
Regular statements are typically used for manipulating data in one way or another. These
statements may be written over any number of lines in the script and must always be terminated by
a semicolon, ";".

All script keywords can be typed with any combination of lower case and upper case characters.
Field and variable names used in the statements are however case sensitive.

Script regular statements overview
Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

Alias
The alias statement is used for setting an alias according to which a field will be renamed whenever
it occurs in the script that follows.

Alias fieldname as aliasname {,fieldname as aliasname}

Autonumber
This statement creates a unique integer value for each distinct evaluated value in a field
encountered during the script execution.

AutoNumber fields [Using namespace]]

Binary
The binary statement is used for loading the data from another QlikView document, including
section access data.

Binary [path] filename

comment
Provides a way of displaying the field comments (metadata) from databases and spreadsheets.
Field names not present in the app will be ignored. If multiple occurrences of a field name are found,
the last value is used.

Comment field *fieldlist using mapname
Comment field fieldname with comment

comment table
Provides a way of displaying the table comments (metadata) from databases or spreadsheets.

Comment table tablelist using mapname
Comment table tablename with comment

Script syntax and chart functions - Qlik Sense, May 2024 124

3 Script statements and keywords

Connect

This functionality is not available in Qlik Sense SaaS.

The CONNECT statement is used to define Qlik Sense access to a general database through the
OLE DB/ODBC interface. For ODBC, the data source first needs to be specified using the ODBC
administrator.

ODBC Connect TO connect-string [(access_info)]
OLEDB CONNECT TO connect-string [(access_info)]
CUSTOM CONNECT TO connect-string [(access_info)]
LIB CONNECT TO connection

Declare
The Declare statement is used to create field definitions, where you can define relations between
fields or functions. A set of field definitions can be used to automatically generate derived fields,
which can be used as dimensions. For example, you can create a calendar definition, and use that
to generate related dimensions, such as year, month, week and day, from a date field.

definition_name:
Declare [Field[s]] Definition [Tagged tag_list]
[Parameters parameter_list]
Fields field_list
[Groups group_list]

<definition name>:
Declare [Field][s] Definition
Using <existing_definition>
[With <parameter_assignment>]

Derive
The Derive statement is used to generate derived fields based on a field definition created with a
Declare statement. You can either specify which data fields to derive fields for, or derive them
explicitly or implicitly based on field tags.

Derive [Field[s]] From [Field[s]] field_list Using definition
Derive [Field[s]] From Explicit [Tag[s]] (tag_list) Using definition
Derive [Field[s]] From Implicit [Tag[s]] Using definition

Direct Query
The DIRECT QUERY statement allows you to access tables through an ODBC or OLE DB connection
using the Direct Discovery function.

Direct Query [path]

Directory
The Directory statement defines which directory to look in for data files in subsequent LOAD
statements, until a new Directory statement is made.

Script syntax and chart functions - Qlik Sense, May 2024 125

3 Script statements and keywords

Directory [path]

Disconnect
The Disconnect statement terminates the current ODBC/OLE DB/Custom connection. This
statement is optional.

Disconnect

drop field
One or several Qlik Sense fields can be dropped from the data model, and thus from memory, at any
time during script execution, by means of a drop field statement. The "distinct" property of a table
is removed after a drop field statement.

Both drop field and drop fields are allowed forms with no difference in effect. If no table
is specified, the field will be dropped from all tables where it occurs.

Drop field fieldname [, fieldname2 ...] [from tablename1 [, tablename2

...]]
drop fields fieldname [, fieldname2 ...] [from tablename1 [, tablename2

...]]

drop table
One or several Qlik Sense internal tables can be dropped from the data model, and thus from
memory, at any time during script execution, by means of a drop table statement.

The forms drop table and drop tables are both accepted.

Drop table tablename [, tablename2 ...]
drop tables[tablename [, tablename2 ...]

Execute
The Execute statement is used to run other programs while Qlik Sense is loading data. For example,
to make conversions that are necessary.

Execute commandline

FlushLog
The FlushLog statement forces Qlik Sense to write the content of the script buffer to the script log
file.

FlushLog

Force
The force statement forces Qlik Sense to interpret field values of subsequent LOAD and SELECT
statements as written with only upper case letters, with only lower case letters, as always
capitalized or as they appear (mixed). This statement makes it possible to associate field values
from tables made according to different conventions.

Script syntax and chart functions - Qlik Sense, May 2024 126

3 Script statements and keywords

Force (capitalization | case upper | case lower | case mixed)

LOAD
The LOAD statement loads fields from a file, from data defined in the script, from a previously
loaded table, from a web page, from the result of a subsequent SELECT statement or by generating
data automatically. It is also possible to load data from analytic connections.

Load [distinct] *fieldlist
[(from file [format-spec] |
from_field fieldassource [format-spec]
inline data [format-spec] |
resident table-label |
autogenerate size)]
[where criterion | while criterion]
[group_by groupbyfieldlist]
[order_by orderbyfieldlist]
[extension pluginname.functionname(tabledescription)]

Let
The let statement is a complement to the set statement, used for defining script variables. The let
statement, in opposition to the set statement, evaluates the expression on the right side of the ' ='
at script run time before it is assigned to the variable.

Let variablename=expression

Loosen Table
One or more Qlik Sense internal data tables can be explicitly declared loosely coupled during script
execution by using a Loosen Table statement. When a table is loosely coupled, all associations
between field values in the table are removed. A similar effect could be achieved by loading each
field of the loosely coupled table as independent, unconnected tables. Loosely coupled can be
useful during testing to temporarily isolate different parts of the data structure. A loosely coupled
table can be identified in the table viewer by the dotted lines. The use of one or more Loosen Table
statements in the script will make Qlik Sense disregard any setting of tables as loosely coupled
made before the script execution.

tablename [, tablename2 ...]
Loosen Tables tablename [, tablename2 ...]

Map ... using
The map ... using statement is used for mapping a certain field value or expression to the values of
a specific mapping table. The mapping table is created through the Mapping statement.

Map *fieldlist Using mapname

NullAsNull
The NullAsNull statement turns off the conversion of NULL values to string values previously set by
a NullAsValue statement.

NullAsNull *fieldlist

Script syntax and chart functions - Qlik Sense, May 2024 127

3 Script statements and keywords

NullAsValue
The NullAsValue statement specifies for which fields that NULL should be converted to a value.

NullAsValue *fieldlist

Qualify
The Qualify statement is used for switching on the qualification of field names, i.e. field names will
get the table name as a prefix.

Qualify *fieldlist

Rem
The rem statement is used for inserting remarks, or comments, into the script, or to temporarily
deactivate script statements without removing them.

Rem string

Rename Field
This script function renames one or more existing Qlik Sense field(s) after they have been loaded.

Rename field (using mapname | oldname to newname{ , oldname to newname })

Rename Fields (using mapname | oldname to newname{ , oldname to newname })

Rename Table
This script function renames one or more existing Qlik Sense internal table(s) after they have been
loaded.

Rename table (using mapname | oldname to newname{ , oldname to newname })
Rename Tables (using mapname | oldname to newname{ , oldname to newname })

Section
With the section statement, it is possible to define whether the subsequent LOAD and SELECT
statements should be considered as data or as a definition of the access rights.

Section (access | application)

Select
The selection of fields from an ODBC data source or OLE DB provider is made through standard SQL
SELECT statements. However, whether the SELECT statements are accepted depends on the
ODBC driver or OLE DB provider used.

Select [all | distinct | distinctrow | top n [percent]] *fieldlist

From tablelist

[Where criterion]

[Group by fieldlist [having criterion]]

[Order by fieldlist [asc | desc]]

[(Inner | Left | Right | Full)Join tablename on fieldref = fieldref]

Script syntax and chart functions - Qlik Sense, May 2024 128

3 Script statements and keywords

Set
The set statement is used for defining script variables. These can be used for substituting strings,
paths, drives, and so on.

Set variablename=string

Sleep
The sleep statement pauses script execution for a specified time.

Sleep n

SQL
The SQL statement allows you to send an arbitrary SQL command through an ODBC or OLE DB
connection.

SQL sql_command

SQLColumns
The sqlcolumns statement returns a set of fields describing the columns of an ODBC or OLE DB
data source, to which a connect has been made.

SQLColumns

SQLTables
The sqltables statement returns a set of fields describing the tables of an ODBC or OLE DB data
source, to which a connect has been made.

SQLTables

SQLTypes
The sqltypes statement returns a set of fields describing the types of an ODBC or OLE DB data
source, to which a connect has been made.

SQLTypes

Star
The string used for representing the set of all the values of a field in the database can be set
through the star statement. It affects the subsequent LOAD and SELECT statements.

Star is [string]

Store
The Store statement creates a QVD, Parquet, CSV, or TXT file.

Store [*fieldlist from] table into filename [format-spec];

Tag
This script statement provides a way to assign tags to one or more fields or tables. If an attempt to
tag a field or table not present in the app is made, the tagging will be ignored. If conflicting
occurrences of a field or tag name are found, the last value is used.

Tag[field|fields] fieldlist with tagname

Script syntax and chart functions - Qlik Sense, May 2024 129

3 Script statements and keywords

Tag [field|fields] fieldlist using mapname
Tag table tablelist with tagname

Trace
The trace statement writes a string to the Script Execution Progress window and to the script log
file, when used. It is very useful for debugging purposes. Using $-expansions of variables that are
calculated prior to the trace statement, you can customize the message.

Trace string

Unmap
The Unmap statement disables field value mapping specified by a previous Map … Using
statement for subsequently loaded fields.

Unmap *fieldlist

Unqualify
The Unqualify statement is used for switching off the qualification of field names that has been
previously switched on by the Qualify statement.

Unqualify *fieldlist

Untag
This script statement provides a way to remove tags from fields or tables. If an attempt to untag a
field or table not present in the app is made, the untagging will be ignored.

Untag[field|fields] fieldlist with tagname
Tag [field|fields] fieldlist using mapname
Tag table tablelist with tagname

Alias
The alias statement is used for setting an alias according to which a field will be
renamed whenever it occurs in the script that follows.

Syntax:
alias fieldname as aliasname {,fieldname as aliasname}

Arguments:

Argument Description

fieldname The name of the fieldin your source data

aliasname An alias name you want to use instead

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 130

3 Script statements and keywords

Examples and results:

Example Result

Alias ID_N as

NameID;

Alias A as

Name, B as

Number, C as

Date;

The name changes defined through this statement are used on all subsequent
SELECT and LOAD statements. A new alias can be defined for a field name by a
new alias statement at any subsequent position in the script.

AutoNumber
This statement creates a unique integer value for each distinct evaluated value in a field
encountered during the script execution.

You can also use the autonumber (page 582) function inside a LOAD statement, but this has some
limitations when you want to use an optimized load. You can create an optimized load by loading
the data from a QVD file first, and then using the AutoNumber statement to convert values to
symbol keys.

Syntax:
AutoNumber *fieldlist [Using namespace]]

Arguments:

Argument Description

*fieldlist A comma-separated list of the fields where the values should be replaced by a
unique integer value.

You can use wildcard characters ? and * in the field names to include all fields
with matching names. You can also use * to include all fields. You need to quote
field names when wildcards are used.

namespace Using namespace is optional. You can use this option if you want to create a
namespace, where identical values in different fields share the same key.

If you do not use this option, all fields will have a separate key index.

Arguments

Limitations:

When you have several LOAD statements in the script, you need to place the AutoNumber
statement after the final LOAD statement.

Script syntax and chart functions - Qlik Sense, May 2024 131

3 Script statements and keywords

Example - script with AutoNumber

Script example
In this example, the data is first loaded without the AutoNumber statement. The AutoNumber
statement is then added to show the effect.

Data used in the example
Load the following data as an inline load in the data load editor to create the script example below.
Leave the AutoNumber statement commented out for now.

RegionSales:

LOAD *,

Region &'|'& Year &'|'& Month as KeyToOtherTable

INLINE

[Region, Year, Month, Sales

North, 2014, May, 245

North, 2014, May, 347

North, 2014, June, 127

South, 2014, June, 645

South, 2013, May, 367

South, 2013, May, 221

];

Budget:

LOAD Budget,

Region &'|'& Year &'|'& Month as KeyToOtherTable

INLINE

[Region, Year, Month, Budget

North, 2014, May, 200

North, 2014, May, 350

North, 2014, June, 150

South, 2014, June, 500

South, 2013, May, 300

South, 2013, May, 200

];

//AutoNumber KeyToOtherTable;

Create visualizations
Create two table visualizations in a Qlik Sense sheet. Add KeyToOtherTable, Region, Year, Month,
and Sales as dimensions to the first table. Add KeyToOtherTable, Region, Year, Month, and
Budget as dimensions to the second table.

Result

KeyToOtherTable Region Year Month Sales

North|2014|June North 2014 June 127

RegionSales table

Script syntax and chart functions - Qlik Sense, May 2024 132

3 Script statements and keywords

KeyToOtherTable Region Year Month Sales

North|2014|May North 2014 May 245

North|2014|May North 2014 May 347

South|2013|May South 2013 May 221

South|2013|May South 2013 May 367

South|2014|June South 2014 June 645

KeyToOtherTable Region Year Month Budget

North|2014|June North 2014 June 150

North|2014|May North 2014 May 200

North|2014|May North 2014 May 350

South|2013|May South 2013 May 200

South|2013|May South 2013 May 300

South|2014|June South 2014 June 500

Budget table

Explanation
The example shows a composite field KeyToOtherTable that links the two tables. AutoNumber is
not used. Note the length of the KeyToOtherTable values.

Add AutoNumber statement
Uncomment the AutoNumber statement in the load script:

AutoNumber KeyToOtherTable;

Result

KeyToOtherTable Region Year Month Sales

1 North 2014 June 127

1 North 2014 May 245

2 North 2014 May 347

3 South 2013 May 221

4 South 2013 May 367

4 South 2014 June 645

RegionSales table

Script syntax and chart functions - Qlik Sense, May 2024 133

3 Script statements and keywords

KeyToOtherTable Region Year Month Budget

1 North 2014 June 150

1 North 2014 May 200

2 North 2014 May 350

3 South 2013 May 200

4 South 2013 May 300

4 South 2014 June 500

Budget table

Explanation
The KeyToOtherTable field values have been replaced with unique integer values and, as a result,
the length of the field values has been reduced, thus conserving memory. The key fields in both
tables are affected by AutoNumber and the tables remain linked. The example is brief for
demonstration purposes, but would be meaningful with a table containing a large number of rows.

Binary
The binary statement is used for loading the data from another Qlik Sense app or
QlikView document, including section access data. Other elements of the app are not
included, for example, sheets, stories, visualizations, master items or variables.

Only one binary statement is allowed in the script. The binary statement must be the first
statement of the script, even before the SET statements usually located at the beginning of the
script.

Syntax:
binary [path] filename

Script syntax and chart functions - Qlik Sense, May 2024 134

3 Script statements and keywords

Arguments:

Argument Description

path The path to the file which should be a reference to a folder data connection. This
is required if the file is not located in the Qlik Sense working directory.

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

l absolute

Example: c:\data\

l relative to the app containing this script line.

Example: data\

filename The name of the file, including the file extension .qvw or .qvf.

Arguments

Limitations:

You cannot use binary to load data from an app on the same Qlik Sense Enterprise deployment by
referring to the app ID. You can only load from a .qvf file.

Examples

String Description

Binary lib://DataFolder/customer.qvw; In this example, the file must be in located in the
Folder data connection. This may be, for example, a
folder that your administrator creates on the Qlik
Sense server. Click Create new connection in the
data load editor and then select Folder under File
locations.

Binary customer.qvf; In this example, the file must be in located in the Qlik
Sense working directory.

Binary c:\qv\customer.qvw; This example using an absolute file path will only work
in legacy scripting mode.

Script syntax and chart functions - Qlik Sense, May 2024 135

3 Script statements and keywords

Comment field
Provides a way of displaying the field comments (metadata) from databases and
spreadsheets. Field names not present in the app will be ignored. If multiple
occurrences of a field name are found, the last value is used.

Syntax:
comment [fields] *fieldlist using mapname
comment [field] fieldname with comment

The map table used should have two columns, the first containing field names and the second the
comments.

Arguments:

Argument Description

*fieldlist A comma separated list of the fields to be commented. Using * as field list
indicates all fields. The wildcard characters * and ? are allowed in field names.
Quoting of field names may be necessary when wildcards are used.

mapname The name of a mapping table previously read in a mapping LOAD or mapping
SELECT statement.

fieldname The name of the field that should be commented.

comment The comment that should be added to the field.

Arguments

Example 1:

commentmap:

mapping LOAD * inline [

a,b

Alpha,This field contains text values

Num,This field contains numeric values

];

comment fields using commentmap;

Example 2:

comment field Alpha with AFieldContainingCharacters;

comment field Num with '*A field containing numbers';

comment Gamma with 'Mickey Mouse field';

Comment table
Provides a way of displaying the table comments (metadata) from databases or
spreadsheets.

Script syntax and chart functions - Qlik Sense, May 2024 136

3 Script statements and keywords

Table names not present in the app are ignored. If multiple occurrences of a table name are found,
the last value is used. The keyword can be used to read comments from a data source.

Syntax:
comment [tables] tablelist using mapname
comment [table] tablename with comment

Arguments:

Argument Description

tablelist (table{,table})

mapname The name of a mapping table previously read in a mapping LOAD or mapping
SELECT statement.

tablename The name of the table that should be commented.

comment The comment that should be added to the table.

Arguments

Example 1:

Commentmap:

mapping LOAD * inline [

a,b

Main,This is the fact table

Currencies, Currency helper table

];

comment tables using Commentmap;

Example 2:

comment table Main with 'Main fact table';

Connect
The CONNECT statement is used to define Qlik Sense access to a general database
through the OLE DB/ODBC interface. For ODBC, the data source first needs to be
specified using the ODBC administrator.

This functionality is not available in Qlik Sense SaaS.

This statement supports only folder data connections in standard mode.

Syntax:
ODBC CONNECT TO connect-string
OLEDB CONNECT TO connect-string
CUSTOM CONNECT TO connect-string

Script syntax and chart functions - Qlik Sense, May 2024 137

3 Script statements and keywords

LIB CONNECT TO connection

Arguments:

Argument Description

connect-
string

connect-string ::= datasourcename { ; conn-spec-item }

The connection string is the data source name and an optional list
of one or more connection specification items. If the data source
name contains blanks, or if any connection specification items are
listed, the connection string must be enclosed by quotation marks.

datasourcename must be a defined ODBC data source or a string
that defines an OLE DB provider.

conn-spec-item ::=DBQ=database_specifier |DriverID=driver_
specifier |UID=userid |PWD=password

The possible connection specification items may differ between
different databases. For some databases, also other items than the
above are possible. For OLE DB, some of the connection specific
items are mandatory and not optional.

connection The name of a data connection stored in the data load editor.

Arguments

If the ODBC is placed before CONNECT, the ODBC interface will be used; else, OLE DB will be used.

Using LIB CONNECT TO connects to a database using a stored data connection that was created in
the data load editor.

Example 1:

ODBC CONNECT TO 'Sales

DBQ=C:\Program Files\Access\Samples\Sales.mdb';

The data source defined through this statement is used by subsequent Select (SQL) statements,
until a new CONNECT statement is made.

Example 2:

LIB CONNECT TO 'DataConnection';

Connect32
This statement is used the same way as the CONNECT statement, but forces a 64-bit system to
use a 32-bit ODBC/OLE DB provider. Not applicable for custom connect.

Connect64
This statement is used the same way as the as the CONNECT statement, but forces use of a 64-bit
provider. Not applicable for custom connect.

Script syntax and chart functions - Qlik Sense, May 2024 138

3 Script statements and keywords

Declare
The Declare statement is used to create field definitions, where you can define relations between
fields or functions. A set of field definitions can be used to automatically generate derived fields,
which can be used as dimensions. For example, you can create a calendar definition, and use that
to generate related dimensions, such as year, month, week and day, from a date field.

You can use Declare to either set up a new field definition, or to create a field definition based on an
already existing definition.

Setting up a new field definition

Syntax:
definition_name:
Declare [Field[s]] Definition [Tagged tag_list]
[Parameters parameter_list]
Fields field_list

Arguments:

Argument Description

definition_
name

Name of the field definition, ended with a colon.

Do not use autoCalendar as name for field definitions, as this name is
reserved for auto-generated calendar templates.

Example:

Calendar:

tag_list A comma separated list of tags to apply to fields derived from the field definition.
Applying tags is optional, but if you do not apply tags that are used to specify
sort order, such as $date, $numeric or $text, the derived field will be sorted by
load order as default.

Example:

'$date'Thank you for bringing this to our attention, and apologies for the

inconvenience.

Script syntax and chart functions - Qlik Sense, May 2024 139

3 Script statements and keywords

Argument Description

parameter_
list

A comma separated list of parameters. A parameter is defined in the form
name=value and is assigned a start value, which can be overridden when a field
definition is re-used. Optional.

Example:

first_month_of_year = 1

field_list A comma separated list of fields to generate when the field definition is used. A
field is defined in the form <expression> As field_name tagged tag. Use $1 to
reference the data field from which the derived fields should be generated.

Example:

Year($1) As Year tagged ('$numeric')

Example:

Calendar:

DECLARE FIELD DEFINITION TAGGED '$date'

Parameters

first_month_of_year = 1

Fields

Year($1) As Year Tagged ('$numeric'),

Month($1) as Month Tagged ('$numeric'),

Date($1) as Date Tagged ('$date'),

Week($1) as Week Tagged ('$numeric'),

Weekday($1) as Weekday Tagged ('$numeric'),

DayNumberOfYear($1, first_month_of_year) as DayNumberOfYear Tagged ('$numeric')

;

The calendar is now defined, and you can apply it to the date fields that have been loaded, in this
case OrderDate and ShippingDate, using a Derive clause.

Re-using an existing field definition

Syntax:
<definition name>:
Declare [Field][s] Definition
Using <existing_definition>
[With <parameter_assignment>]

Script syntax and chart functions - Qlik Sense, May 2024 140

3 Script statements and keywords

Arguments:

Argument Description

definition_
name

Name of the field definition, ended with a colon.

Example:

MyCalendar:

existing_
definition

The field definition to re-use when creating the new field definition. The new
field definition will function the same way as the definition it is based on, with the
exception if you use parameter_assignment to change a value used in the field
expressions.

Example:

Using Calendar

parameter_
assignment

A comma separated list of parameter assignments. A parameter assignment is
defined in the form name=value and overrides the parameter value that is set in
the base field definition. Optional.

Example:

first_month_of_year = 4

Example:

In this example we re-use the calendar definition that was created in the previous example. In this
case we want to use a fiscal year that starts in April. This is achieved by assigning the value 4 to the
first_month_of_year parameter, which will affect the DayNumberOfYear field that is defined.

The example assumes that you use the sample data and field definition from the previous example.

MyCalendar:

DECLARE FIELD DEFINITION USING Calendar WITH first_month_of_year=4;

DERIVE FIELDS FROM FIELDS OrderDate,ShippingDate USING MyCalendar;

When you have reloaded the data script, the generated fields are available in the sheet editor, with
names OrderDate.MyCalendar.* and ShippingDate.MyCalendar.*.

Derive
The Derive statement is used to generate derived fields based on a field definition created with a
Declare statement. You can either specify which data fields to derive fields for, or derive them
explicitly or implicitly based on field tags.

Syntax:
Derive [fields]] From [Field[s]] field_list Using definition

Script syntax and chart functions - Qlik Sense, May 2024 141

3 Script statements and keywords

Derive [Field[s]] From Explicit [Tag[s]] tag_list Using definition
Derive [Field[s]] From Implicit [Tag[s]] Using definition

Arguments:

Argument Description

definition Name of the field definition to use when deriving fields.

Example: Calendar

field_list A comma separated list of data fields from which the derived fields should be
generated, based on the field definition. The data fields should be fields you have
already loaded in the script.

Example: OrderDate, ShippingDate

tag_list A comma separated list of tags. Derived fields will be generated for all data fields
with any of the listed tags. The list of tags should be enclosed by round brackets.

Example: ('$date','$timestamp')

Arguments

Examples:

l Derive fields for specific data fields.
In this case we specify the OrderDate and ShippingDate fields.
DERIVE FIELDS FROM FIELDS OrderDate,ShippingDate USING Calendar;

l Derive fields for all fields with a specific tag.
In this case we derive fields based on Calendar for all fields with a $date tag.
DERIVE FIELDS FROM EXPLICIT TAGS ('$date') USING Calendar;

l Derive fields for all fields with the field definition tag.
In this case we derive fields for all data fields with the same tag as the Calendar field
definition, which in this case is $date.
DERIVE FIELDS FROM IMPLICIT TAG USING Calendar;

Direct Query
The DIRECT QUERY statement allows you to access tables through an ODBC or OLE DB connection
using the Direct Discovery function.

Syntax:
DIRECT QUERY DIMENSION fieldlist [MEASURE fieldlist] [DETAIL fieldlist] FROM
tablelist
[WHERE where_clause]

The DIMENSION, MEASURE, and DETAIL keywords can be used in any order.

The DIMENSION and FROM keyword clauses are required on all DIRECT QUERY statements. The
FROM keyword must appear after the DIMENSION keyword.

Script syntax and chart functions - Qlik Sense, May 2024 142

3 Script statements and keywords

The fields specified directly after the DIMENSION keyword are loaded in memory and can be used
to create associations between in-memory and Direct Discovery data.

The DIRECT QUERY statement cannot contain DISTINCT or GROUP BY clauses.

Using the MEASURE keyword you can define fields that Qlik Sense is aware of on a “meta level”.
The actual data of a measure field resides only in the database during the data load process, and is
retrieved on an ad hoc basis driven by the chart expressions that are used in a visualization.

Typically, fields with discrete values that will be used as dimensions should be loaded with the
DIMENSION keyword, whereas numbers that will be used in aggregations only should be selected
with the MEASURE keyword.

DETAIL fields provide information or details, like comment fields, that a user may want to display in
a drill-to-details table box. DETAIL fields cannot be used in chart expressions.

By design, the DIRECT QUERY statement is data-source neutral for data sources that support SQL.
For that reason, the same DIRECT QUERY statement can be used for different SQL databases
without change. Direct Discovery generates database-appropriate queries as needed.

Native data-source syntax can be used when the user knows the database to be queried and wants
to exploit database-specific extensions to SQL. Native data-source syntax is supported:

l As field expressions in DIMENSION and MEASURE clauses
l As the content of the WHERE clause

Examples:

DIRECT QUERY

DIMENSION Dim1, Dim2

MEASURE

NATIVE ('X % Y') AS X_MOD_Y

FROM TableName

DIRECT QUERY

DIMENSION Dim1, Dim2

MEASURE X, Y

FROM TableName

WHERE NATIVE ('EMAIL MATCHES "*.EDU"')

The following terms are used as keywords and so cannot be used as column or field
names without being quoted: and, as, detach, detail, dimension, distinct, from, in, is, like,
measure, native, not, or, where

Script syntax and chart functions - Qlik Sense, May 2024 143

3 Script statements and keywords

Arguments:

Argument Description

fieldlist A comma-separated list of field specifications, fieldname {, fieldname}. A field
specification can be a field name, in which case the same name is used for the
database column name and the Qlik Sense field name. Or a field specification can
be a "field alias," in which case a database expression or column name is given a
Qlik Sense field name.

tablelist A list of the names of tables or views in the database from which data will be
loaded. Typically, it will be views that contain a JOIN performed on the database.

where_
clause

The full syntax of database WHERE clauses is not defined here, but most SQL
"relational expressions" are allowed, including the use of function calls, the LIKE
operator for strings, IS NULL and IS NOT NULL, and IN. BETWEEN is not
included.

NOT is a unary operator, as opposed to a modifier on certain keywords.

Examples:

WHERE x > 100 AND "Region Code" IN ('south', 'west')

WHERE Code IS NOT NULL and Code LIKE '%prospect'

WHERE NOT X in (1,2,3)

The last example can not be written as:

WHERE X NOT in (1,2,3)

Example:

In this example, a database table called TableName, containing fields Dim1, Dim2, Num1, Num2 and
Num3, is used.Dim1 and Dim2 will be loaded into the Qlik Sense dataset.

DIRECT QUERY DIMENSTION Dim1, Dim2 MEASURE Num1, Num2, Num3 FROM TableName ;

Dim1 and Dim2 will be available for use as dimensions. Num1, Num2 and Num3 will be available for
aggregations. Dim1 and Dim2 are also available for aggregations. The type of aggregations for
which Dim1 and Dim2 can be used depends on their data types. For example, in many cases
DIMENSION fields contain string data such as names or account numbers.Those fields cannot be
summed, but they can be counted: count(Dim1).

Script syntax and chart functions - Qlik Sense, May 2024 144

3 Script statements and keywords

DIRECT QUERY statements are written directly in the script editor. To simplify
construction of DIRECT QUERY statements, you can generate a SELECT statement from
a data connection, and then edit the generated script to change it into a DIRECT QUERY
statement.
For example, the SELECT statement:

SQL SELECT

SalesOrderID,

RevisionNumber,

OrderDate,

SubTotal,
TaxAmt

FROM MyDB.Sales.SalesOrderHeader;

could be changed to the following DIRECT QUERY statement:

DIRECT QUERY

DIMENSION

SalesOrderID,

RevisionNumber

MEASURE

SubTotal,
TaxAmt

DETAIL

OrderDate

FROM MyDB.Sales.SalesOrderHeader;

Direct Discovery field lists
A field list is a comma-separated list of field specifications, fieldname {, fieldname}. A
field specification can be a field name, in which case the same name is used for the
database column name and the field name. Or a field specification can be a field alias,
in which case a database expression or column name is given a Qlik Sense field name.

Field names can be either simple names or quoted names. A simple name begins with an alphabetic
Unicode character and is followed by any combination of alphabetic or numeric characters or
underscores. Quoted names begin with a double quotation mark and contain any sequence of
characters. If a quoted name contains double quotation marks, those quotation marks are
represented using two adjacent double quotation marks.

Script syntax and chart functions - Qlik Sense, May 2024 145

3 Script statements and keywords

Qlik Sense field names are case-sensitive. Database field names may or may not be case-sensitive,
depending on the database. A Direct Discovery query preserves the case of all field identifiers and
aliases. In the following example, the alias "MyState" is used internally to store the data from the
database column "STATEID".

DIRECT QUERY Dimension STATEID as MyState Measure AMOUNT from SALES_TABLE;

This differs from the result of an SQL Select statement with an alias. If the alias is not explicitly
quoted, the result contains the default case of column returned by the target database. In the
following example, the SQL Select statement to an Oracle database creates "MYSTATE," with all
upper case letters, as the internal Qlik Sense alias even though the alias is specified as mixed case.
The SQL Select statement uses the column name returned by the database, which in the case of
Oracle is all upper case.

SQL Select STATEID as MyState, STATENAME from STATE_TABLE;

To avoid this behavior, use the LOAD statement to specify the alias.

Load STATEID as MyState, STATENAME;

SQL Select STATEID, STATEMENT from STATE_TABLE;

In this example, the "STATEID" column is stored internally byQlik Sense as "MyState".

Most database scalar expressions are allowed as field specifications. Function calls can also be
used in field specifications. Expressions can contain constants that are boolean, numeric, or strings
contained in single quotation marks (embedded single quotation marks are represented by
adjacent single quotation marks).

Examples:

DIRECT QUERY

DIMENSION

SalesOrderID, RevisionNumber

MEASURE

SubTotal AS "Sub Total"

FROM AdventureWorks.Sales.SalesOrderHeader;

DIRECT QUERY

DIMENSION

"SalesOrderID" AS "Sales Order ID"

MEASURE

SubTotal,TaxAmt,(SubTotal-TaxAmt) AS "Net Total"

FROM AdventureWorks.Sales.SalesOrderHeader;

Script syntax and chart functions - Qlik Sense, May 2024 146

3 Script statements and keywords

DIRECT QUERY

DIMENSION

(2*Radius*3.14159) AS Circumference,

Molecules/6.02e23 AS Moles

MEASURE

Num1 AS numA

FROM TableName;

DIRECT QUERY

DIMENSION

concat(region, 'code') AS region_code

MEASURE

Num1 AS NumA

FROM TableName;

Direct Discovery does not support using aggregations in LOAD statements. If aggregations are
used, the results are unpredictable. A LOAD statement such as the following should not be used:

DIRECT QUERY DIMENSION stateid, SUM(amount*7) AS MultiFirst MEASURE amount FROM sales_table;

The SUM should not be in the LOAD statement.

Direct Discovery also does not support Qlik Sense functions in Direct Query statements. For
example, the following specification for a DIMENSION field results in a failure when the "Mth" field is
used as a dimension in a visualization:

month(ModifiedDate) as Mth

Directory
The Directory statement defines which directory to look in for data files in subsequent
LOAD statements, until a new Directory statement is made.

Syntax:
Directory[path]

If the Directory statement is issued without a path or left out, Qlik Sense will look in the Qlik Sense
working directory.

Script syntax and chart functions - Qlik Sense, May 2024 147

3 Script statements and keywords

Arguments:

Argument Description

path A text that can be interpreted as the path to the data file.

The path is the path to the file, either:

l absolute

Example: c:\data\

l relative to the Qlik Sense app working directory.

Example: data\

l URL address (HTTP or FTP), pointing to a location on the Internet or an
intranet.

Example: http://www.qlik.com

Arguments

Examples:

DIRECTORY C:\userfiles\data; // OR -> DIRECTORY data\

LOAD * FROM

[data1.csv] // ONLY THE FILE NAME CAN BE SPECIFIED HERE (WITHOUT THE FULL PATH)

(ansi, txt, delimiter is ',', embedded labels);

LOAD * FROM

[data2.txt] // ONLY THE FILE NAME CAN BE SPECIFIED HERE UNTIL A NEW DIRECTORY STATEMENT IS

MADE

(ansi, txt, delimiter is '\t', embedded labels);

Disconnect
The Disconnect statement terminates the current ODBC/OLE DB/Custom connection. This
statement is optional.

Syntax:
Disconnect

The connection will be automatically terminated when a new connect statement is executed or
when the script execution is finished.

Example:

Disconnect;

Script syntax and chart functions - Qlik Sense, May 2024 148

3 Script statements and keywords

Drop
The Drop script keyword can be used to drop tables or fields from the database.

Drop field
One or several Qlik Sense fields can be dropped from the data model, and thus from memory, at any
time during script execution, by means of a drop field statement. The "distinct" property of a table
is removed after a drop field statement.

Both drop field and drop fields are allowed forms with no difference in effect. If no table
is specified, the field will be dropped from all tables where it occurs.

Syntax:
Drop field fieldname { , fieldname2 ...} [from tablename1 { , tablename2

...}]
Drop fields fieldname { , fieldname2 ...} [from tablename1 { , tablename2

...}]

Examples:

Drop field A;

Drop fields A,B;

Drop field A from X;

Drop fields A,B from X,Y;

Drop table
One or several Qlik Sense internal tables can be dropped from the data model, and thus
from memory, at any time during script execution, by means of a drop table statement.

Syntax:
drop table tablename {, tablename2 ...}
drop tables tablename {, tablename2 ...}

The forms drop table and drop tables are both accepted.

The following items will be lost as a result of this:

l The actual table(s).
l All fields which are not part of remaining tables.
l Field values in remaining fields, which came exclusively from the dropped table(s).

Script syntax and chart functions - Qlik Sense, May 2024 149

3 Script statements and keywords

Examples and results:

Example Result

drop table Orders, Salesmen, T456a; This line results in three tables being
dropped from memory.

Tab1:

Load * Inline [

Customer, Items, UnitPrice

Bob, 5, 1.50

];

Tab2:

LOAD Customer, Sum(Items * UnitPrice) as Sales

resident Tab1

group by Customer;

drop table Tab1;

Once the table Tab2 is created, the table
Tab1 is dropped.

Drop table
One or several Qlik Sense internal tables can be dropped from the data model, and thus
from memory, at any time during script execution, by means of a drop table statement.

Syntax:
drop table tablename {, tablename2 ...}
drop tables tablename {, tablename2 ...}

The forms drop table and drop tables are both accepted.

The following items will be lost as a result of this:

l The actual table(s).
l All fields which are not part of remaining tables.
l Field values in remaining fields, which came exclusively from the dropped table(s).

Examples and results:

Example Result

drop table Orders, Salesmen, T456a; This line results in three tables being
dropped from memory.

Script syntax and chart functions - Qlik Sense, May 2024 150

3 Script statements and keywords

Example Result

Tab1:

Load * Inline [

Customer, Items, UnitPrice

Bob, 5, 1.50

];

Tab2:

LOAD Customer, Sum(Items * UnitPrice) as Sales

resident Tab1

group by Customer;

drop table Tab1;

Once the table Tab2 is created, the table
Tab1 is dropped.

Execute
The Execute statement is used to run other programs while Qlik Sense is loading data.
For example, to make conversions that are necessary.

This functionality is not available in Qlik Sense SaaS.

This statement is not supported in standard mode.

Syntax:
execute commandline

Arguments:

Argument Description

commandline A text that can be interpreted by the operating system as a
command line. You can refer to an absolute file path or a lib://
folder path.

Arguments

If you want to use Execute the following conditions need to be met:

l You must run in legacy mode (applicable for Qlik Sense and Qlik Sense Desktop).
l You need to set OverrideScriptSecurity to 1 in Settings.ini (applicable for Qlik Sense).

Settings.ini is located in C:\ProgramData\Qlik\Sense\Engine\ and is generally an empty file.

If you set OverrideScriptSecurity to enable Execute, any user can execute files on the
server. For example, a user can attach an executable file to an app, and then execute the
file in the data load script.

Script syntax and chart functions - Qlik Sense, May 2024 151

3 Script statements and keywords

Do the following:

1. Make a copy of Settings.ini and open it in a text editor.
2. Check that the file includes [Settings 7] in the first line.
3. Insert a new line and type OverrideScriptSecurity=1.
4. Insert an empty line at the end of the file.
5. Save the file.
6. Substitute Settings.ini with your edited file.
7. Restart Qlik Sense Engine Service (QES).

If Qlik Sense is running as a service, some commands may not behave as expected.

Example:

Execute C:\Program Files\Office12\Excel.exe;

Execute lib://win\notepad.exe // win is a folder connection referring to c:\windows

Field/Fields
The Field and Fields script keywords are used in Declare, Derive, Drop, Comment, Rename and
Tag/Untag statements.

FlushLog
The FlushLog statement forces Qlik Sense to write the content of the script buffer to the script log
file.

Syntax:
FlushLog

The content of the buffer is written to the log file. This command can be useful for debugging
purposes, as you will receive data that otherwise may have been lost in a failed script execution.

Example:

FlushLog;

Force
The force statement forces Qlik Sense to interpret field values of subsequent LOAD
and SELECT statements as written with only upper case letters, with only lower case
letters, as always capitalized or as they appear (mixed). This statement makes it
possible to associate field values from tables made according to different conventions.

Script syntax and chart functions - Qlik Sense, May 2024 152

3 Script statements and keywords

The force statement can also change field names during a load or select with the following data
sources:

l QVD
l CSV (text files)
l XLS
l QVX (files and ODBC connections)

The force statement only changes field names if the data is loaded in compact mode (loaded with
*).

The field names of the following data sources are not affected by the force statement:

l JSON
l Parquet
l XML
l XLSX

Syntax:
Force (capitalization | case upper | case lower | case mixed)

If nothing is specified, force case mixed is assumed. The force statement is valid until a new force
statement is made.

The force statement has no effect in the access section: all field values loaded are case insensitive.

Example Result

This example shows how to force
capitalization.

FORCE Capitalization;

Capitalization:

LOAD * Inline [

ab

Cd

eF

GH

];

The Capitalization table contains the following
values:

Ab

Cd

Ef

Gh

All values are capitalized.

Examples and results

Script syntax and chart functions - Qlik Sense, May 2024 153

3 Script statements and keywords

Example Result

This example shows how to force case
upper.

FORCE Case Upper;

CaseUpper:

LOAD * Inline [

ab

Cd

eF

GH

];

The CaseUpper table contains the following values:

AB

CD

EF

GH

All values are upper case.

This example shows how to force case
lower.

FORCE Case Lower;

CaseLower:

LOAD * Inline [

ab

Cd

eF

GH

];

The CaseLower table contains the following values:

ab

cd

ef

gh

All values are lower case.

This example shows how to force case
mixed.

FORCE Case Mixed;

CaseMixed:

LOAD * Inline [

ab

Cd

eF

GH

];

The CaseMixed table contains the following values:

ab

Cd

eF

GH

All values are as they appear in the script.

See also:

From
The From script keyword is used in Load statements to refer to a file, and in Select statements to
refer to a database table or view.

Load
The LOAD statement loads fields from a file, from data defined in the script, from a
previously loaded table, from a web page, from the result of a subsequent SELECT
statement or by generating data automatically. It is also possible to load data from
analytic connections.

Syntax:
LOAD [distinct] fieldlist

Script syntax and chart functions - Qlik Sense, May 2024 154

3 Script statements and keywords

[(from file [format-spec] |
from_field fieldassource [format-spec]|
inline data [format-spec] |
resident table-label |
autogenerate size) |extension pluginname.functionname([script]
tabledescription)]
[where criterion | while criterion]
[group by groupbyfieldlist]
[order by orderbyfieldlist]

Argument Description

distinct You can use distinct as a predicate if you only want to load unique
records. If there are duplicate records, the first instance will be loaded.

If you are using preceding loads, you need to place distinct in the first
load statement, as distinct only affects the destination table.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 155

3 Script statements and keywords

Argument Description

fieldlist fieldlist ::= (* | field{, * | field })
A list of the fields to be loaded. Using * as a field list indicates all fields in
the table.
field ::= (fieldref | expression) [as aliasname]

The field definition must always contain a literal, a reference to an
existing field, or an expression.

fieldref ::= (fieldname |@fieldnumber |@startpos:endpos [I | U | R | B | T])
fieldname is a text that is identical to a field name in the table. Note that
the field name must be enclosed by straight double quotation marks or
square brackets if it contains e.g. spaces. Sometimes field names are not
explicitly available. Then a different notation is used:

@fieldnumber represents the field number in a delimited table file. It must
be a positive integer preceded by "@". The numbering is always made
from 1 and up to the number of fields.

@startpos:endpos represents the start and end positions of a field in a file
with fixed length records. The positions must both be positive integers.
The two numbers must be preceded by "@" and separated by a colon. The
numbering is always made from 1 and up to the number of positions. In the
last field, n is used as end position.

l If @startpos:endpos is immediately followed by the characters I or
U, the bytes read will be interpreted as a binary signed (I) or
unsigned (U) integer (Intel byte order). The number of positions
read must be 1, 2 or 4.

l If @startpos:endpos is immediately followed by the character R, the
bytes read will be interpreted as a binary real number (IEEE 32-bit
or 64 bit floating point). The number of positions read must be 4 or
8.

l If @startpos:endpos is immediately followed by the character B, the
bytes read will be interpreted as a BCD (Binary Coded Decimal)
numbers according to the COMP-3 standard. Any number of bytes
may be specified.

expression can be a numeric function or a string function based on one or
several other fields in the same table. For further information, see the
syntax of expressions.

as is used for assigning a new name to the field.

Script syntax and chart functions - Qlik Sense, May 2024 156

3 Script statements and keywords

Argument Description

from from is used if data should be loaded from a file using a folder or a web file
data connection

file ::= [path] filename

Example: 'lib://Table Files/'

If the path is omitted, Qlik Sense searches for the file in the directory
specified by the Directory statement. If there is no Directory statement,
Qlik Sense searches in the working directory, C:\Users\
{user}\Documents\Qlik\Sense\Apps.

In a Qlik Sense server installation, the working directory is
specified in Qlik Sense Repository Service, by default it is
C:\ProgramData\Qlik\Sense\Apps.

The filename may contain the standard DOS wildcard characters (* and ?
). This will cause all the matching files in the specified directory to be
loaded.
format-spec ::= (fspec-item { , fspec-item })
The format specification consists of a list of several format specification
items, within brackets.

Legacy scripting mode

In legacy scripting mode, the following path formats are also supported:

l absolute

Example: c:\data\

l relative to the Qlik Sense app working directory.

Example: data\

l URL address (HTTP or FTP), pointing to a location on the Internet or
an intranet.

Example: http://www.qlik.com

Script syntax and chart functions - Qlik Sense, May 2024 157

3 Script statements and keywords

Argument Description

from_field from_field is used if data should be loaded from a previously loaded field.
fieldassource::=(tablename, fieldname)

The field is the name of the previously loaded tablename and fieldname.
format-spec ::= (fspec-item {, fspec-item })
The format specification consists of a list of several format specification
items, within brackets. For more information, see Format specification
items (page 165).

from_field only supports commas as the list delimiter in when
separating fields in tables.

inline inline is used if data should be typed within the script, and not loaded
from a file.
data ::= [text]

Data entered through an inline clause must be enclosed by specific
characters – square brackets, quotation marks, or back ticks. The text
between these is interpreted in the same way as the content of a file.
Hence, where you would insert a new line in a text file, you should also do
it in the text of an inline clause: by pressing the Enter key when typing the
script.

In a simple inline load, the number of columns are defined by the first line.
format-spec ::= (fspec-item {, fspec-item })
You can customize the inline load with many of the same format
specification items that are available for other loaded tables. These items
are listed in brackets. For more information, see Format specification
items (page 165).

For more information about inline loads, see Using inline loads to load
data.

resident resident is used if data should be loaded from a previously loaded table.
table label is a label preceding the LOAD or SELECT statement(s) that
created the original table. The label should be given with a colon at the
end.

Script syntax and chart functions - Qlik Sense, May 2024 158

/en-US/sense/Subsystems/Hub/Content/Sense_Hub/Scripting/inline-loads-qs.htm
/en-US/sense/Subsystems/Hub/Content/Sense_Hub/Scripting/inline-loads-qs.htm

3 Script statements and keywords

Argument Description

autogenerate autogenerate is used if data should be automatically generated by Qlik
Sense.
size ::= number

Number is an integer indicating the number of records to be generated.

The field list must not contain expressions which require data from an
external data source or a previously loaded table, unless you refer to a
single field value in a previously loaded table with the Peek function.

extension You can load data from analytic connections. You need to use the
extension clause to call a function defined in the server-side extension
(SSE) plugin, or evaluate a script.

You can send a single table to the SSE plugin, and a single data table is
returned. If the plugin does not specify the names of the fields that are
returned, the fields will be named Field1, Field2, and so on.

Extension pluginname.functionname(tabledescription);

l Loading data using a function in an SSE plugin
tabledescription ::= (table { ,tablefield})
If you do not state table fields, the fields will be used in load order.

l Loading data by evaluating a script in an SSE plugin
tabledescription ::= (script, table { ,tablefield})

Data type handling in the table field definition

Data types are automatically detected in analytic connections. If the data
has no numeric values and at least one non-NULL text string, the field is
considered as text. In any other case it is considered as numeric.

You can force the data type by wrapping a field name with String() or
Mixed().

l String() forces the field to be text. If the field is numeric, the text
part of the dual value is extracted, there is no conversion
performed.

l Mixed() forces the field to be dual.

String() or Mixed() cannot be used outside extension table field
definitions, and you cannot use other Qlik Sense functions in a table field
definition.

More about analytic connections

You need to configure analytic connections before you can use them.

Script syntax and chart functions - Qlik Sense, May 2024 159

3 Script statements and keywords

Argument Description

where where is a clause used for stating whether a record should be included in
the selection or not. The selection is included if criterion is True.
criterion is a logical expression.

while while is a clause used for stating whether a record should be repeatedly
read. The same record is read as long as criterion is True. In order to be
useful, a while clause must typically include the IterNo() function.

criterion is a logical expression.

group by group by is a clause used for defining over which fields the data should be
aggregated (grouped). The aggregation fields should be included in some
way in the expressions loaded. No other fields than the aggregation fields
may be used outside aggregation functions in the loaded expressions.

groupbyfieldlist ::= (fieldname { ,fieldname })

order by order by is a clause used for sorting the records of a resident table before
they are processed by the load statement. The resident table can be
sorted by one or more fields in ascending or descending order. The sorting
is made primarily by numeric value and secondarily by national collation
order. This clause may only be used when the data source is a resident
table.
The ordering fields specify which field the resident table is sorted by. The
field can be specified by its name or by its number in the resident table
(the first field is number 1).

orderbyfieldlist ::= fieldname [sortorder] { , fieldname [sortorder] }

sortorder is either asc for ascending or desc for descending. If no
sortorder is specified, asc is assumed.

fieldname, path, filename and aliasname are text strings representing
what the respective names imply. Any field in the source table can be used
as fieldname. However, fields created through the as clause (aliasname)
are out of scope and cannot be used inside the same load statement.

If no source of data is given by means of a from, inline, resident, from_field, extension or
autogenerate clause, data will be loaded from the result of the immediately succeeding SELECT or
LOAD statement. The succeeding statement should not have a prefix.

Examples:

Loading different file formats
Load a delimited data file with default options:

LOAD * from data1.csv;

Load a delimited data file from a library connection (DataFiles):

Script syntax and chart functions - Qlik Sense, May 2024 160

3 Script statements and keywords

LOAD * from 'lib://DataFiles/data1.csv';

Load all delimited data files from a library connection (DataFiles):

LOAD * from 'lib://DataFiles/*.csv';

Load a delimited file, specifying comma as delimiter and with embedded labels:

LOAD * from 'c:\userfiles\data1.csv' (ansi, txt, delimiter is ',', embedded labels);

Load a delimited file specifying tab as delimiter and with embedded labels:

LOAD * from 'c:\userfiles\data2.txt' (ansi, txt, delimiter is '\t', embedded labels);

Load a dif file with embedded headers:

LOAD * from file2.dif (ansi, dif, embedded labels);

Load three fields from a fixed record file without headers:

LOAD @1:2 as ID, @3:25 as Name, @57:80 as City from data4.fix (ansi, fix, no labels, header is

0, record is 80);

Load a QVX file, specifying an absolute path:

LOAD * from C:\qdssamples\xyz.qvx (qvx);

Loading web files
Load from the default URL set in the web file data connection:

LOAD * from [lib://MyWebFile];

Load from a specific URL, and override the URL set in the web file data connection:

LOAD * from [lib://MyWebFile] (URL is 'http://localhost:8000/foo.bar');

Load from a specific URL set in a variable using dollar-sign expansion:

SET dynamicURL = 'http://localhost/foo.bar';

LOAD * from [lib://MyWebFile] (URL is '$(dynamicURL)');

Selecting certain fields, renaming and calculating fields
Load only three specific fields from a delimited file:

LOAD FirstName, LastName, Number from data1.csv;

Rename first field as A and second field as B when loading a file without labels:

LOAD @1 as A, @2 as B from data3.txt (ansi, txt, delimiter is '\t', no labels);

Load Name as a concatenation of FirstName, a space character, and LastName:

LOAD FirstName&' '&LastName as Name from data1.csv;

Load Quantity, Price and Value (the product of Quantity and Price):

LOAD Quantity, Price, Quantity*Price as Value from data1.csv;

Script syntax and chart functions - Qlik Sense, May 2024 161

3 Script statements and keywords

Selecting certain records
Load only unique records, duplicate records will be discarded:

LOAD distinct FirstName, LastName, Number from data1.csv;

Load only records where the field Litres has a value above zero:

LOAD * from Consumption.csv where Litres>0;

Loading data not on file and auto-generated data
Load a table with inline data, two fields named CatID and Category:

LOAD * Inline

[CatID, Category

0,Regular

1,Occasional

2,Permanent];

Load a table with inline data, three fields named UserID, Password and Access:

LOAD * Inline [UserID, Password, Access

A, ABC456, User

B, VIP789, Admin];

Load a table with 10 000 rows. Field A will contain the number of the read record (1,2,3,4,5...) and
field B will contain a random number between 0 and 1:

LOAD RecNo() as A, rand() as B autogenerate(10000);

The parenthesis after autogenerate is allowed but not required.

Loading data from a previously loaded table
First we load a delimited table file and name it tab1:

tab1:

SELECT A,B,C,D from 'lib://DataFiles/data1.csv';

Load fields from the already loaded tab1 table as tab2:

tab2:

LOAD A,B,month(C),A*B+D as E resident tab1;

Load fields from already loaded table tab1 but only records where A is larger than B:

tab3:

LOAD A,A+B+C resident tab1 where A>B;

Load fields from already loaded table tab1 ordered by A:

LOAD A,B*C as E resident tab1 order by A;

Load fields from already loaded table tab1, ordered by the first field, then the second field:

LOAD A,B*C as E resident tab1 order by 1,2;

Script syntax and chart functions - Qlik Sense, May 2024 162

3 Script statements and keywords

Load fields from already loaded table tab1 ordered by C descending, then B in ascending order, and
then the first field in descending order:

LOAD A,B*C as E resident tab1 order by C desc, B asc, 1 desc;

Loading data from previously loaded fields
Load field Types from previously loaded table Characters as A:

LOAD A from_field (Characters, Types);

Loading data from a succeeding table (preceding load)
Load A, B and calculated fields X and Y from Table1 that is loaded in succeeding SELECT statement:

LOAD A, B, if(C>0,'positive','negative') as X, weekday(D) as Y;

SELECT A,B,C,D from Table1;

Grouping data
Load fields grouped (aggregated) by ArtNo:

LOAD ArtNo, round(Sum(TransAmount),0.05) as ArtNoTotal from table.csv group by ArtNo;

Load fields grouped (aggregated) by Week and ArtNo:

LOAD Week, ArtNo, round(Avg(TransAmount),0.05) as WeekArtNoAverages from table.csv group by

Week, ArtNo;

Reading one record repeatedly
In this example we have a input file Grades.csv containing the grades for each student condensed
in one field:

Student,Grades

Mike,5234

John,3345

Pete,1234

Paul,3352

The grades, in a 1-5 scale, represent subjects Math, English, Science and History. We can separate
the grades into separate values by reading each record several times with a while clause, using the
IterNo() function as a counter. In each read, the grade is extracted with the Mid function and
stored in Grade, and the subject is selected using the pick function and stored in Subject. The final
while clause contains the test to check if all grades have been read (four per student in this case),
which means next student record should be read.

MyTab:

LOAD Student,

mid(Grades,IterNo(),1) as Grade,

pick(IterNo(), 'Math', 'English', 'Science', 'History') as Subject from Grades.csv

while IsNum(mid(Grades,IterNo(),1));

The result is a table containing this data:

Script syntax and chart functions - Qlik Sense, May 2024 163

3 Script statements and keywords

Loading from analytic connections
The following sample data is used.

Values:

Load

Rand() as A,

Rand() as B,

Rand() as C

AutoGenerate(50);

Loading data using a function

In these examples, we assume that we have an analytic connection plugin named P that contains a
custom function Calculate(Parameter1, Parameter2). The function returns the table Results that
contains the fields Field1 and Field2.

Load * Extension P.Calculate(Values{A, C});

Load all fields that are returned when sending the fields A and C to the function.

Load Field1 Extension P.Calculate(Values{A, C});

Load only the Field1 field when sending the fields A and C to the function.

Load * Extension P.Calculate(Values);

Load all fields that are returned when sending the fields A and B to the function. As fields are not
specified, A and B are used as they are the first in order in the table.

Load * Extension P.Calculate(Values {C, C});

Load all fields that are returned when sending the field C to both parameters of the function.

Load * Extension P.Calculate(Values {String(A), Mixed(B)});

Load all fields that are returned when sending the field A forced as a string and B forced as a
numeric to the function.

Script syntax and chart functions - Qlik Sense, May 2024 164

3 Script statements and keywords

Loading data by evaluating a script

Load A as A_echo, B as B_echo Extension R.ScriptEval('q;', Values{A, B});

Load the table returned by the script q when sending the values of A and B.

Load * Extension R.ScriptEval('$(My_R_Script)', Values{A, B});

Load the table returned by the script stored in the My_R_Script variable when sending the values of
A and B.

Load * Extension R.ScriptEval('$(My_R_Script)', Values{B as D, *});

Load the table returned by the script stored in the My_R_Script variable when sending the values of
B renamed to D, A and C. Using * sends the remaining unreferenced fields.

The file extension of DataFiles connections is case sensitive. For example: .qvd.

Format specification items
Each format specification item defines a certain property of the table file:

fspec-item ::= [ansi | oem | mac | UTF-8 | Unicode | txt | fix | dif | biff | ooxml | html | xml |
kml | qvd | qvx | parquet | delimiter is char | no eof | embedded labels | explicit labels | no
labels | table is [tablename] | header is n | header is line | header is n lines | comment
is string | record is n | record is line | record is n lines | no quotes |msq | URL is string |
userAgent is string]

Character set
Character set is a file specifier for the LOAD statement that defines the character set
used in the file.

The ansi, oem and mac specifiers were used in QlikView and will still work. However, they will not
be generated when creating the LOAD statement with Qlik Sense.

Syntax:
utf8 | unicode | ansi | oem | mac | codepage is

Arguments:

Argument Description

utf8 UTF-8 character set

unicode Unicode character set

ansi Windows, codepage 1252

oem DOS, OS/2, AS400 and others

mac Codepage 10000

codepage is With the codepage specifier, it is possible to use any Windows codepage as N .

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 165

3 Script statements and keywords

Limitations:

Conversion from the oem character set is not implemented for macOS. If nothing is specified,
codepage 1252 is assumed under Windows.

Example:

LOAD * from a.txt (utf8, txt, delimiter is ',' , embedded labels)

LOAD * from a.txt (unicode, txt, delimiter is ',' , embedded labels)

LOAD * from a.txt (codepage is 10000, txt, delimiter is ',' , no labels)

See also:
p Load (page 154)

Table format
The table format is a file specifier for the LOAD statement that defines the file type. If
nothing is specified, a .txt file is assumed.

Type Description

txt In a delimited text file the columns in the table are separated by a delimiter
character.

fix In a fixed record file, each field is exactly a certain number of characters.

Typically, many fixed record length files contains records separated by a
linefeed, but there are more advanced options to specify record size in
bytes or to span over more than one line with Record is.

If the data contains multi-byte characters, field breaks can
become misaligned as the format is based on a fixed length in
bytes.

dif In a .dif file, (Data Interchange Format) a special format for defining the
table is used.

biff Qlik Sense can also interpret data in standard Excel files by means of the
biff format (Binary Interchange File Format).

ooxml Excel 2007 and later versions use the ooxml .xslx format.

The Table is specifier can be used to define the sheet name to be loaded as
a table.

Table is (page 170)

Table format types

Script syntax and chart functions - Qlik Sense, May 2024 166

3 Script statements and keywords

Type Description

html If the table is part of an html page or file, html should be used.

xml xml (Extensible Markup Language) is a common markup language that is
used to represent data structures in a textual format.

The Table is specifier can be used to define the path of the XML to be
loaded as a table.

Table is (page 170)

qvd The format qvd is the proprietary QVD files format, exported from a Qlik
Sense app.

qvx qvx is a file/stream format for high performance output to Qlik Sense.

parquet Apache Parquet is a columnar storage format, highly efficient for storing
and querying large datasets.

With Parquet files containing nested data, you can specify the table from
the Parquet file to load using Table is specifier. For example: LOAD * FROM

[lib://DataFiles/company.parquet] (parquet, table is

[company:salesrep.salesrep]);.

Table is (page 170)

Delimiter is
For delimited table files, an arbitrary delimiter can be specified through the delimiter is
specifier. This specifier is relevant only for delimited .txt files.

Syntax:
delimiter is char

Arguments:

Argument Description

char Specifies a single character from the 127 ASCII characters.

Arguments

Additionally, the following values can be used:

Value Description

'\t' representing a tab sign, with or without quotation marks.

'\\' representing a backslash (\) character.

Optional values

Script syntax and chart functions - Qlik Sense, May 2024 167

3 Script statements and keywords

Value Description

'spaces' representing all combinations of one or more spaces. Non-
printable characters with an ASCII-value below 32, with the
exception of CR and LF, will be interpreted as spaces.

If nothing is specified, delimiter is ',' is assumed.

Example:

LOAD * from a.txt (utf8, txt, delimiter is ',' , embedded labels);

See also:
p Load (page 154)

No eof
The no eof specifier is used to disregard end-of-file character when loading delimited .txt files.

Syntax:
no eof

If the no eof specifier is used, characters with code point 26, which otherwise denotes end-of-file,
are disregarded and can be part of a field value.

It is relevant only for delimited text files.

Example:

LOAD * from a.txt (txt, utf8, embedded labels, delimiter is ' ', no eof);

See also:
p Load (page 154)

Labels
Labels is a file specifier for the LOAD statement that defines where in a file the field names can be
found.

Syntax:
embedded labels|explicit labels|no labels

The field names can be found in different places of the file. If the first record contains the field
names, embedded labels should be used. If there are no field names to be found, no labels should
be used. In dif files, a separate header section with explicit field names is sometimes used. In such a
case, explicit labels should be used. If nothing is specified, embedded labels is assumed, also for
dif files.

Script syntax and chart functions - Qlik Sense, May 2024 168

3 Script statements and keywords

Example 1:

LOAD * from a.txt (unicode, txt, delimiter is ',' , embedded labels

Example 2:

LOAD * from a.txt (codePage is 1252, txt, delimiter is ',' , no labels)

See also:
p Load (page 154)

Header is
Specifies the header size in table files. An arbitrary header length can be specified through the
header is specifier. A header is a text section not used by Qlik Sense.

Syntax:
header is n
header is line
header is n lines

The header length can be given in bytes (header is n), or in lines (header is line or header is n
lines). n must be a positive integer, representing the header length. If not specified, header is 0 is
assumed. The header is specifier is only relevant for table files.

Example:

This is an example of a data source table containing a header text line that should not be
interpreted as data by Qlik Sense.

*Header line

Col1,Col2

a,B

c,D

Using the header is 1 lines specifier, the first line will not be loaded as data. In the example, the
embedded labels specifier tells Qlik Sense to interpret the first non-excluded line as containing
field labels.

LOAD Col1, Col2

FROM 'lib://files/header.txt'

(txt, embedded labels, delimiter is ',', msq, header is 1 lines);

The result is a table with two fields, Col1 and Col2.

See also:
p Load (page 154)

Script syntax and chart functions - Qlik Sense, May 2024 169

3 Script statements and keywords

Record is
For fixed record length files, the record length must be specified through the record is
specifier.

Syntax:
Record is n
Record is line
Record is n lines

Arguments:

Argument Description

n Specifies the record length in bytes.

line Specifies the record length as one line.

n lines Specifies the record length in lines where n is a positive integer representing the
record length.

Arguments

Limitations:

The record is specifier is only relevant for fix files.

See also:
p Load (page 154)

Table is
For Excel, XML, or Parquet files, you can specify the table you are loading data from in
the table format specifier.

Syntax:
Table is table name

Script syntax and chart functions - Qlik Sense, May 2024 170

3 Script statements and keywords

Arguments:

Argument Description

table name Specifies the name of the table. The value depends on the table format:

l Excel: The sheet name.
l XML: The path that specifies the part of the XML to be loaded.
l Parquet: The path that specifies the table, with the format

<node>.<node>.<node>.
Use Table is when specifying a table within a nested structure.
For example, you have Parquet data in the following schema:
Schema:

Field(name: "Name", datatype: String),

Field(name: "Age", datatype: Float),

Field(name: "Phone", datatype: List(

Field(name: "Item", datatype: Struct[

Field(name: "Number", datatype: String)

You could load Phone and its nested fields as a table with the argument
Table is [Schema:Phone.Item]. This will generate the key field %Key_Phone
with the table.

Arguments

Example: Excel

LOAD

"Item Number",

"Product Group",

"Product Line",

"Product Sub Group",

"Product Type"

FROM [lib://AttachedFiles/Item master.xlsx]

(ooxml, embedded labels, table is [Item master]);

Example: XML

LOAD

city%Table,

%Key_row_7FAC1F878EC01ECB

FROM [lib://AttachedFiles/cities.xml]

(XmlSimple, table is [root/row/country/city]);

Example: Parquet

The file company.parquet contains the following schema:

company (String)

contact (String)

company:salesrep (List)

salesrep (Group)

salesrep (String)

Script syntax and chart functions - Qlik Sense, May 2024 171

3 Script statements and keywords

company:headquarter (List)

headquarter (Group)

country (String)

city (String)

city:region (List)

region (Group)

region (String)

The following would load the contents from the file into tables. The first load statement loads the
root group. The second load statement loads the contents of the salesrep group as a table. The
third loads the headquarter group as a table. The fourth loads the region group in as a table.

LOAD * FROM […] (parquet);

LOAD * FROM […] (parquet, table is [company:salesrep.salesrep]);

LOAD * FROM […] (parquet, table is [company:headquarter.headquarter]

LOAD * FROM […] (parquet, table is [company:headquarter.headquarter.city:region.region]

Limitations:

The Table is specifier is only relevant for Excel, XML, or Parquet files.

Quotes
Quotes is a file specifier for the LOAD statement that defines whether quotes can be used and the
precedence between quotes and separators. For text files only.

Syntax:
no quotes
msq

If the specifier is omitted, standard quoting is used, that is, the quotes " " or ' ' can be used, but only
if they are the first and last non blank character of a field value.

Arguments:

Argument Description

no quotes Used if quotation marks are not to be accepted in a text file.

msq Used to specify modern style quoting, allowing multi-line content in fields. Fields
containing end-of-line characters must be enclosed within double quotes.

One limitation of the msq option is that single double-quote (") characters
appearing as first or last character in field content will be interpreted as start or
end of multi-line content, which may lead to unpredicted results in the data set
loaded. In this case you should use standard quoting instead, omitting the
specifier.

Arguments

XML
This script specifier is used when loading xml files. Valid options for the XML specifier
are listed in syntax.

Script syntax and chart functions - Qlik Sense, May 2024 172

3 Script statements and keywords

You cannot load DTD files in Qlik Sense.

Syntax:
xmlsimple

See also:
p Load (page 154)

KML
This script specifier is used when loading KML files to use in a map visualization.

Syntax:
kml

The KML file can represent either area data (for example, countries or regions) represented by
polygons, line data (for example tracks or roads), or point data (for example, cities or places)
represented by points in the form [long, lat].

URL is
This script specifier is used to set the URL of a web file data connection when loading a
web file.

Syntax:
URL is string

Arguments:

Argument Description

string Specifies the URL of the file to load. This will override the URL set in the web file
connection that is used.

Arguments

Limitations:

The URL is specifier is only relevant for web files. You need to use an existing web file data
connection.

See also:
p Load (page 154)

Script syntax and chart functions - Qlik Sense, May 2024 173

3 Script statements and keywords

userAgent is
This script specifier is used to set the browser user agent when loading a web file.

Syntax:
userAgent is string

Arguments:

Argument Description

string Specifies the browser user agent string. This will override the default browser
user agent "Mozilla/5.0".

Arguments

Limitations:

The userAgent is specifier is only relevant for web files.

See also:
p Load (page 154)

Let
The let statement is a complement to the set statement, used for defining script
variables. The let statement, in opposition to the set statement, evaluates the
expression on the right side of the ' =' at script run time before it is assigned to the
variable.

Syntax:
Let variablename=expression

Examples and results:

Example Result

Set x=3+4;

Let y=3+4;

z=$(y)+1;

$(x) will be evaluated as ' 3+4 '

$(y) will be evaluated as ' 7 '

$(z) will be evaluated as ' 8 '

Note the difference between the Set and Let statements. The Set
statement assigns the string '3+4' to the variable whereas the Let
statement evaluates the string and assigns 7 to the variable.

Let T=now(); $(T) will be given the value of the current time.

Script syntax and chart functions - Qlik Sense, May 2024 174

3 Script statements and keywords

Loosen Table
One or more Qlik Sense internal data tables can be explicitly declared loosely coupled during script
execution by using a Loosen Table statement. When a table is loosely coupled, all associations
between field values in the table are removed. A similar effect could be achieved by loading each
field of the loosely coupled table as independent, unconnected tables. Loosely coupled can be
useful during testing to temporarily isolate different parts of the data structure. A loosely coupled
table can be identified in the table viewer by the dotted lines. The use of one or more Loosen Table
statements in the script will make Qlik Sense disregard any setting of tables as loosely coupled
made before the script execution.

Syntax:
Loosen Tabletablename [, tablename2 ...]
Loosen Tablestablename [, tablename2 ...]

Either syntax: Loosen Table or Loosen Tables can be used.

Should Qlik Sense find circular references in the data structure which cannot be broken
by tables declared loosely coupled interactively or explicitly in the script, one or more
additional tables will be forced loosely coupled until no circular references remain. When
this happens, the Loop Warning dialog, gives a warning.

Example:

Tab1:

SELECT * from Trans;

Loosen Table Tab1;

Map
The map ... using statement is used for mapping a certain field value or expression to
the values of a specific mapping table. The mapping table is created through the
Mapping statement.

Syntax:
Map fieldlist Using mapname

The automatic mapping is done for fields loaded after the Map … Using statement until the end of
the script or until an Unmap statement is encountered.

The mapping is done last in the chain of events leading up to the field being stored in the internal
table in Qlik Sense. This means that mapping is not done every time a field name is encountered as
part of an expression, but rather when the value is stored under the field name in the internal table.
If mapping on the expression level is required, the Applymap() function has to be used instead.

Script syntax and chart functions - Qlik Sense, May 2024 175

3 Script statements and keywords

Arguments:

Argument Description

fieldlist A comma separated list of the fields that should be mapped from this point in the
script. Using * as field list indicates all fields. The wildcard characters * and ? are
allowed in field names. Quoting of field names may be necessary when wildcards
are used.

mapname The name of a mapping table previously read in a mapping load or mapping
select statement.

Arguments

Example Result

Map Country Using
Cmap;

Enables mapping of the field Country using the map Cmap.

Map A, B, C Using X; Enables mapping of the fields A, B and C using the map X.

Map * Using GenMap; Enables mapping of all fields using GenMap.

Examples and results:

NullAsNull
The NullAsNull statement turns off the conversion of NULL values to string values
previously set by a NullAsValue statement.

Syntax:
NullAsNull *fieldlist

The NullAsValue statement operates as a switch and can be turned on or off several times in the
script, using either a NullAsValue or a NullAsNull statement.

Arguments:

Argument Description

*fieldlist A comma separated list of the fields for which NullAsNull should be turned on.
Using * as field list indicates all fields. The wildcard characters * and ? are allowed
in field names. Quoting of field names may be necessary when wildcards are
used.

Arguments

Example:

NullAsNull A,B;

Script syntax and chart functions - Qlik Sense, May 2024 176

3 Script statements and keywords

LOAD A,B from x.csv;

NullAsValue
The NullAsValue statement specifies for which fields that NULL should be converted
to a value.

Syntax:
NullAsValue *fieldlist

By default, Qlik Sense considers NULL values to be missing or undefined entities. However, certain
database contexts imply that NULL values are to be considered as special values rather than simply
missing values. The fact that NULL values are normally not allowed to link to other NULL values can
be suspended by means of the NullAsValue statement.

The NullAsValue statement operates as a switch and will operate on subsequent loading
statements. It can be switched off again by means of the NullAsNull statement.

Arguments:

Argument Description

*fieldlist A comma separated list of the fields for which NullAsValue should be turned on.
Using * as field list indicates all fields. The wildcard characters * and ? are allowed
in field names. Quoting of field names may be necessary when wildcards are
used.

Arguments

Example:

NullAsValue A,B;

Set NullValue = 'NULL';

LOAD A,B from x.csv;

Qualify
The Qualify statement is used for switching on the qualification of field names, i.e. field
names will get the table name as a prefix.

Syntax:
Qualify *fieldlist

The automatic join between fields with the same name in different tables can be suspended by
means of the qualify statement, which qualifies the field name with its table name. If qualified, the
field name(s) will be renamed when found in a table. The new name will be in the form of
tablename.fieldname. Tablename is equivalent to the label of the current table, or, if no label exists,
to the name appearing after from in LOAD and SELECT statements.

The qualification will be made for all fields loaded after the qualify statement.

Script syntax and chart functions - Qlik Sense, May 2024 177

3 Script statements and keywords

Qualification is always turned off by default at the beginning of script execution. Qualification of a
field name can be activated at any time using a qualify statement. Qualification can be turned off at
any time using an Unqualify statement.

The qualify statement should not be used in conjunction with partial reload.

Arguments:

Argument Description

*fieldlist A comma separated list of the fields for which qualification should be turned on.
Using * as field list indicates all fields. The wildcard characters * and ? are allowed
in field names. Quoting of field names may be necessary when wildcards are
used.

Arguments

Example 1:

Qualify B;

LOAD A,B from x.csv;

LOAD A,B from y.csv;

The two tables x.csv and y.csv are associated only through A. Three fields will result: A, x.B, y.B.

Example 2:

In an unfamiliar database, it is often useful to start out by making sure that only one or a few fields
are associated, as illustrated in this example:

qualify *;

unqualify TransID;

SQL SELECT * from tab1;

SQL SELECT * from tab2;

SQL SELECT * from tab3;

Only TransID will be used for associations between the tables tab1, tab2 and tab3.

Rem
The rem statement is used for inserting remarks, or comments, into the script, or to
temporarily deactivate script statements without removing them.

Syntax:
Rem string

Everything between the rem and the next semicolon ; is considered to be a comment.

There are two alternative methods available for making comments in the script:

Script syntax and chart functions - Qlik Sense, May 2024 178

3 Script statements and keywords

1. It is possible to create a comment anywhere in the script - except between two quotes - by
placing the section in question between /* and */.

2. When typing // in the script, all text that follows to the right on the same row becomes a
comment. (Note the exception //: that may be used as part of an Internet address.)

Arguments:

Argument Description

string An arbitrary text.

Arguments

Example:

Rem ** This is a comment **;

/* This is also a comment */

// This is a comment as well

Rename
The Rename script keyword can be used to rename tables or fields that are already loaded.

Rename field
This script function renames one or more existing Qlik Sense field(s) after they have
been loaded.

It is not recommended to name a variable identically to a field or a function in Qlik Sense.

Either syntax: rename field or rename fields can be used.

Syntax:
Rename Field (using mapname | oldname to newname{ , oldname to newname })
Rename Fields (using mapname | oldname to newname{ , oldname to newname })

Arguments:

Argument Description

mapname The name of a previously loaded mapping table containing one or more pairs of
old and new field names.

oldname The old field name.

newname The new field name.

Limitations:

You cannot rename two fields to having the same name.

Script syntax and chart functions - Qlik Sense, May 2024 179

3 Script statements and keywords

Example 1:

Rename Field XAZ0007 to Sales;

Example 2:

FieldMap:

Mapping SQL SELECT oldnames, newnames from datadictionary;

Rename Fields using FieldMap;

Rename table
This script function renames one or more existing Qlik Sense internal table(s) after they
have been loaded.

Either syntax: rename table or rename tables can be used.

Syntax:
Rename Table (using mapname | oldname to newname{ , oldname to newname })
Rename Tables (using mapname | oldname to newname{ , oldname to newname })

Arguments:

Argument Description

mapname The name of a previously loaded mapping table containing one or more pairs of
old and new table names.

oldname The old table name.

newname The new table name.

Arguments

Limitations:

Two differently named tables cannot be renamed to having the same name. The script will generate
an error if you try to rename a table to the same name as an existing table.

Example 1:

Tab1:

SELECT * from Trans;

Rename Table Tab1 to Xyz;

Example 2:

TabMap:

Mapping LOAD oldnames, newnames from tabnames.csv;

Rename Tables using TabMap;

Script syntax and chart functions - Qlik Sense, May 2024 180

3 Script statements and keywords

Search

The Search statement is used for including or excluding fields in smart search.

Syntax:
Search Include *fieldlist
Search Exclude *fieldlist

You can use several Search statements to refine your selection of fields to include. The statements
are evaluated from top to bottom.

Arguments:

Argument Description

*fieldlist A comma separated list of the fields to include or exclude from searches in smart
search. Using * as field list indicates all fields. The wildcard characters * and ? are
allowed in field names. Quoting of field names may be necessary when wildcards
are used.

Arguments

Example:

Statement Description

Search Include *; Include all fields in searches in smart search.

Search Exclude [*ID]; Exclude all fields ending with ID from searches in smart search.

Search Exclude '*ID'; Exclude all fields ending with ID from searches in smart search.

Search Include ProductID; Include the field ProductID in searches in smart search.

Search examples

The combined result of these three statements, in this sequence, is that all fields ending with ID
except ProductID are excluded from searches in smart search.

Section
With the section statement, it is possible to define whether the subsequent LOAD and SELECT
statements should be considered as data or as a definition of the access rights.

Syntax:

Section (access | application)

If nothing is specified, section application is assumed. The section definition is valid until a new
section statement is made.

Script syntax and chart functions - Qlik Sense, May 2024 181

3 Script statements and keywords

Example:

Section access;

Section application;

Select
The selection of fields from an ODBC data source or OLE DB provider is made through
standard SQL SELECT statements. However, whether the SELECT statements are
accepted depends on the ODBC driver or OLE DB provider used. Use of the
SELECT statement requires an open data connection to the source.

Syntax:
Select [all | distinct | distinctrow | top n [percent]] fieldlist

From tablelist

[where criterion]

[group by fieldlist [having criterion]]

[order by fieldlist [asc | desc]]

[(Inner | Left | Right | Full) join tablename on fieldref = fieldref]

Furthermore, several SELECT statements can sometimes be concatenated into one through the
use of a union operator:

selectstatement Union selectstatement

The SELECT statement is interpreted by the ODBC driver or OLE DB provider, so deviations from
the general SQL syntax might occur depending on the capabilities of the ODBC drivers or OLE DB
provider, for example:.

l as is sometimes not allowed, i.e. aliasname must follow immediately after fieldname.
l as is sometimes compulsory if an aliasname is used.
l distinct, as, where, group by, order by, or union is sometimes not supported.
l The ODBC driver sometimes does not accept all the different quotation marks listed above.

This is not a complete description of the SQL SELECT statement! E.g. SELECT
statements can be nested, several joins can be made in one SELECT statement, the
number of functions allowed in expressions is sometimes very large, etc.

Script syntax and chart functions - Qlik Sense, May 2024 182

3 Script statements and keywords

Arguments:

Argument Description

distinct distinct is a predicate used if duplicate combinations of values in the selected
fields only should be loaded once.

distinctrow distinctrow is a predicate used if duplicate records in the source table only
should be loaded once.

fieldlist fieldlist ::= (*| field) {, field }
A list of the fields to be selected. Using * as field list indicates all fields in the
table.
fieldlist ::= field {, field }

A list of one or more fields, separated by commas.
field ::= (fieldref | expression) [as aliasname]
The expression can e.g. be a numeric or string function based on one or several
other fields. Some of the operators and functions usually accepted are: +, -, *, /,
& (string concatenation), sum(fieldname), count(fieldname), avg(fieldname)
(average), month(fieldname), etc. See the documentation of the ODBC driver for
more information.
fieldref ::= [tablename.] fieldname

The tablename and the fieldname are text strings identical to what they imply.
They must be enclosed by straight double quotation marks if they contain e.g.
spaces.
The as clause is used for assigning a new name to the field.

from tablelist ::= table {, table }

The list of tables that the fields are to be selected from.

table ::= tablename [[as] aliasname]

The tablename may or may not be put within quotes.

where where is a clause used for stating whether a record should be included in the
selection or not.
criterion is a logical expression that can sometimes be very complex. Some of
the operators accepted are: numeric operators and functions, =, <> or #(not
equal), >, >=, <, <=, and, or, not, exists, some, all, in and also new SELECT
statements. See the documentation of the ODBC driver or OLE DB providerfor
more information.

group by group by is a clause used for aggregating (group) several records into one.
Within one group, for a certain field, all the records must either have the same
value, or the field can only be used from within an expression, e.g. as a sum or an
average. The expression based on one or several fields is defined in the
expression of the field symbol.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 183

3 Script statements and keywords

Argument Description

having having is a clause used for qualifying groups in a similar manner to how the
where clause is used for qualifying records.

order by order by is a clause used for stating the sort order of the resulting table of the
SELECT statement.

join join is a qualifier stating if several tables are to be joined together into one. Field
names and table names must be put within quotes if they contain blank spaces
or letters from the national character sets. When the script is automatically
generated by Qlik Sense, the quotation mark used is the one preferred by the
ODBC driver or OLE DB provider specified in the data source definition of the
data source in the Connect statement.

Example 1:

SELECT * FROM `Categories`;

Example 2:

SELECT `Category ID`, `Category Name` FROM `Categories`;

Example 3:

SELECT `Order ID`, `Product ID`,

`Unit Price` * Quantity * (1-Discount) as NetSales

FROM `Order Details`;

Example 4:

SELECT `Order Details`.`Order ID`,

Sum(`Order Details`.`Unit Price` * `Order Details`.Quantity) as `Result`

FROM `Order Details`, Orders

where Orders.`Order ID` = `Order Details`.`Order ID`

group by `Order Details`.`Order ID`;

Set
The set statement is used for defining script variables. These can be used for substituting strings,
paths, drives, and so on.

Syntax:
Set variablename=string

Example 1:

Set FileToUse=Data1.csv;

Example 2:

Set Constant="My string";

Script syntax and chart functions - Qlik Sense, May 2024 184

3 Script statements and keywords

Example 3:

Set BudgetYear=2012;

Sleep
The sleep statement pauses script execution for a specified time.

Syntax:
Sleep n

Arguments:

Argument Description

n Stated in milliseconds, where n is a positive integer no larger than 3600000 (i.e. 1
hour). The value may be an expression.

Example 1:

Sleep 10000;

Example 2:

Sleep t*1000;

SQL
The SQL statement allows you to send an arbitrary SQL command through an ODBC or OLE DB
connection.

Syntax:
SQL sql_command

Sending SQL statements which update the database will return an error if Qlik Sense has opened
the ODBC connection in read-only mode.

The syntax:

SQL SELECT * from tab1;

is allowed, and is the preferred syntax for SELECT, for reasons of consistency. The SQL prefix will,
however, remain optional for SELECT statements.

Arguments:

Argument Description

sql_command A valid SQL command.

Script syntax and chart functions - Qlik Sense, May 2024 185

3 Script statements and keywords

Example 1:

SQL leave;

Example 2:

SQL Execute <storedProc>;

SQLColumns
The sqlcolumns statement returns a set of fields describing the columns of an ODBC or OLE DB
data source, to which a connect has been made.

Syntax:
SQLcolumns

The fields can be combined with the fields generated by the sqltables and sqltypes commands in
order to give a good overview of a given database. The twelve standard fields are:

TABLE_QUALIFIER

TABLE_OWNER

TABLE_NAME

COLUMN_NAME

DATA_TYPE

TYPE_NAME

PRECISION

LENGTH

SCALE

RADIX

NULLABLE

REMARKS

For a detailed description of these fields, see an ODBC reference handbook.

Example:

Connect to 'MS Access 7.0 Database; DBQ=C:\Course3\DataSrc\QWT.mbd';

SQLcolumns;

Script syntax and chart functions - Qlik Sense, May 2024 186

3 Script statements and keywords

Some ODBC drivers may not support this command. Some ODBC drivers may produce
additional fields.

SQLTables
The sqltables statement returns a set of fields describing the tables of an ODBC or OLE DB data
source, to which a connect has been made.

Syntax:
SQLTables

The fields can be combined with the fields generated by the sqlcolumns and sqltypes commands
in order to give a good overview of a given database. The five standard fields are:

TABLE_QUALIFIER

TABLE_OWNER

TABLE_NAME

TABLE_TYPE

REMARKS

For a detailed description of these fields, see an ODBC reference handbook.

Example:

Connect to 'MS Access 7.0 Database; DBQ=C:\Course3\DataSrc\QWT.mbd';

SQLTables;

Some ODBC drivers may not support this command. Some ODBC drivers may produce
additional fields.

SQLTypes
The sqltypes statement returns a set of fields describing the types of an ODBC or OLE DB data
source, to which a connect has been made.

Syntax:
SQLTypes

The fields can be combined with the fields generated by the sqlcolumns and sqltables commands
in order to give a good overview of a given database. The fifteen standard fields are:

TYPE_NAME

DATA_TYPE

Script syntax and chart functions - Qlik Sense, May 2024 187

3 Script statements and keywords

PRECISION

LITERAL_PREFIX

LITERAL_SUFFIX

CREATE_PARAMS

NULLABLE

CASE_SENSITIVE

SEARCHABLE

UNSIGNED_ATTRIBUTE

MONEY

AUTO_INCREMENT

LOCAL_TYPE_NAME

MINIMUM_SCALE

MAXIMUM_SCALE

For a detailed description of these fields, see an ODBC reference handbook.

Example:

Connect to 'MS Access 7.0 Database; DBQ=C:\Course3\DataSrc\QWT.mbd';

SQLTypes;

Some ODBC drivers may not support this command. Some ODBC drivers may produce
additional fields.

Star
The string used for representing the set of all the values of a field in the database can
be set through the star statement. It affects the subsequent LOAD and SELECT
statements.

Syntax:
Star is[string]

Script syntax and chart functions - Qlik Sense, May 2024 188

3 Script statements and keywords

Arguments:

Argument Description

string An arbitrary text. Note that the string must be enclosed by quotation marks if it
contains blanks.

If nothing is specified, star is; is assumed, i.e. there is no star symbol available
unless explicitly specified. This definition is valid until a new star statement is
made.

Arguments

The Star is statement is not recommended for use in the data part of the script (under Section
Application) if section access is used. The star character is however fully supported for the
protected fields in the Section Access part of the script. In this case you do not need to use the
explicit Star is statement since this is always implicit in section access.

Limitations
l You cannot use the star character with key fields; that is, fields that link tables.
l You cannot use the star character with any fields affected by the Unqualify statement as this

can affect fields that link tables.
l You cannot use the star character with non-logical tables, for example, info-load tables or

mapping-load tables.
l When the star character is used in a reducing field (a field that links to the data) in section

access , it represents the values listed in this field in section access. It does not represent
other values that may exist in the data but are not listed in section access.

l You cannot use the star character with fields affected by any form of data reduction outside
the Section Access area.

Example
The example below is an extract of a data load script featuring section access.

Star is *;

Section Access;

LOAD * INLINE [

ACCESS, USERID, OMIT

ADMIN, ADMIN,

USER, USER1, SALES

USER, USER2, WAREHOUSE

USER, USER3, EMPLOYEES

USER, USER4, SALES

USER, USER4, WAREHOUSE

USER, USER5, *

];

Section Application;

LOAD * INLINE [

SALES, WAREHOUSE, EMPLOYEES, ORDERS

1, 2, 3, 4

Script syntax and chart functions - Qlik Sense, May 2024 189

3 Script statements and keywords

];

The following applies:

l The Star sign is *.
l The user ADMIN sees all fields. Nothing is omitted.
l The user USER1 is not able to see the field SALES.
l The user USER2 is not able to see the field WAREHOUSE .
l The user USER3 cannot see the field EMPLOYEES.
l The user USER4 is added twice to the solution to OMIT two fields for this user, SALES and

WAREHOUSE.
l The USER5 has a “*” added which means that all listed fields in OMIT are unavailable, that is,

user USER5 cannot see the fields SALES, WAREHOUSE and EMPLOYEES but this user can
see the field ORDERS.

Store
The Store statement creates a QVD, Parquet, CSV, or TXT file.

Syntax:
Store [fieldlist from] table into filename [format-spec];

The statement will create an explicitly named QVD, Parquet, or text file.

The statement can only export fields from one data table, unless you are storing to Parquet. If fields
from several tables are to be exported into a QVD, CSV, or TXT file, an explicit join must be made
previously in the script to create the data table that should be exported. You can store multiple
tables in a single Parquet by nesting the data in the Parquet files.

The text values are exported to the CSV file in UTF-8 with BOM format. A delimiter can be specified,
see LOAD. The store statement to a CSV file does not support BIFF export.

In some cases with data that is not well-formed, fields will be surrounded by double
quotes to ensure that the data is interpreted correctly. This can happen, for example,
when the field contains characters such as quotes, comma, space or line breaks.

Script syntax and chart functions - Qlik Sense, May 2024 190

3 Script statements and keywords

Arguments:

Argument Description

fieldlist::= (* | field) { , field }) A list of the fields to be selected. Using * as field list
indicates all fields.

field::= fieldname [as aliasname]

fieldname is a text that is identical to a field name in
table. (Note that the field name must be enclosed b
straight double quotation marks or square brackets if it
contains spaces or other non-standard characters.)

aliasname is an alternate name for the field to be used in
the resulting QVD or CSV file.

table A script label representing an already loaded table to be
used as source for data.

filename The name of the target file including a valid path to an
existing folder data connection.

Example: 'lib://Table Files/target.qvd'

In legacy scripting mode, the following path formats are
also supported:

l absolute

Example: c:\data\sales.qvd

l relative to the Qlik Sense app working directory.

Example: data\sales.qvd

If the path is omitted, Qlik Sense stores the file in
the directory specified by the Directory
statement. If there is no Directory statement, Qlik
Sense stores the file in the working directory,
C:\Users\{user}\Documents\Qlik\Sense\Apps.

Store command arguments

Script syntax and chart functions - Qlik Sense, May 2024 191

3 Script statements and keywords

Argument Description

format-spec ::=((txt | qvd |
parquet), compression is codec)

You can set the format specification to either of these
file formats. If the format specification is omitted, qvd is
assumed.

l txt for CSV and TXT files.
l qvd for QVD files.
l parquet for Parquet files.

If you use parquet, you can also set which compression
codec to use with compression is. If you do not specify
the compression codec with compression is, snappy is
used. The following compression settings are available:

l uncompressed

l snappy

l gzip

l lz4

l brotli

l zstd

l lz4_hadoop

Example:

Store mytable into

[lib://AttachedFiles/myfile.parquet] (parquet,

compression is lz4);

Examples:

Store mytable into xyz.qvd (qvd);

Store * from mytable into 'lib://FolderConnection/myfile.qvd';

Store Name, RegNo from mytable into xyz.qvd;

Store Name as a, RegNo as b from mytable into 'lib://FolderConnection/myfile.qvd';

Store mytable into myfile.txt (txt);

Store mytable into [lib://FolderConnection/myfile.csv] (txt);

Store mytable into myfile.parquet (parquet);

Store * from mytable into 'lib://FolderConnection/myfile.qvd';

Storing in Parquet files
Parquet is a strongly typed file format, where each field contains a single specific type of data (such
as in32, double, timestamp, or text). Qlik Sense stores internal data as a loosely typed dual, where
data from difference sources can be mixed into the same fields. As only one part of the dual can be
stored in each field in Parquet, it is important to know what each field contains. By default, Qlik
Sense uses the field type to determine how the field should be stored. When storing data in Parquet
files in a specific format, you must specify what type of data your fields are when loading them. If
you try to store data into incompatible fields in a Parquet file, such as numbers in a text field or text
in a timestamp field, you will end up with null values.

Script syntax and chart functions - Qlik Sense, May 2024 192

3 Script statements and keywords

When loading data you intend to store in Parquet, it is possible to change the default behavior. You
can either format it to change your data type or tag it to force specific column types in Parquet.

Formatting data for storage in Parquet
You can use Qlik Sense formatting functions to classify your data. For example, Text(), Num(),
Interval(), or Timestamp() can enforce data formats when storing data in Parquet. Qlik Sense can
store data into almost 20 data types depending on field attributes and automatic field tags. For
more information, see Interpretation functions (page 1265)

Example: Formatting data with Num() and Text()

The following example demonstrates preparing data for storage in Parquet. Num() is applied to the
num field. Text() is applied to both text and mixed. In the case of mixed, Text() prevents it from
being treated like a number field in Parquet and having the text values changed to null values.

Data:

LOAD * INLINE [

num, text, mixed

123.321, abc, 123

456.654, def, xyz

789.987, ghi, 321

];

Format:

NoConcatenate

LOAD num, text, Text(mixed) as mixed RESIDENT Data;

STORE Format INTO [lib://AttachedFiles/Tmp.parquet] (parquet);

Tagging data for storage in Parquet
You tag your data with $parquet tags to force specific column types when storing data in Parquet.
Each data type can be enforced by adding the corresponding control tag. For example, to store a
field as INT32 in Parquet, tag it with $parquet-int32 in the load script. Depending on the data type,
either the string or the numerical representation of the dual data will be stored.

The following Parqeut control tags can be used to tag fields for storing in Parquet files.

Control tag Dual Physical type Logical type Converted type
$parquet-boolean Number BOOLEAN NONE NONE
$parquet-int32 Number INT32 NONE NONE
$parquet-int64 Number INT64 NONE NONE
$parquet-float Number FLOAT NONE NONE
$parquet-double Number DOUBLE NONE NONE
$parquet-bytearray String BYTE_ARRAY NONE UTF8
$parquet-

bytearrayfix
Number FIXED_LEN_BYTE_ NONE DECIMAL

Parquet control tags

Script syntax and chart functions - Qlik Sense, May 2024 193

3 Script statements and keywords

Control tag Dual Physical type Logical type Converted type

ARRAY
$parquet-decimal Number INT64 DECIMAL DECIMAL
$parquet-date Number INT32 DATE DATE
$parquet-time Number INT64 TIME TIME_MICROS
$parquet-timestamp Number INT64 TIMESTAMP TIMESTAMP_

MICROS
$parquet-string String BYTE_ARRAY STRING UTF8
$parquet-enum String BYTE_ARRAY ENUM ENUM
$parquet-interval Number FIXED_LEN_BYTE_

ARRAY
INTERVAL INTERVAL

$parquet-json String BYTE_ARRAY JSON JSON
$parquet-bson String BYTE_ARRAY BSON BSON
$parquet-uuid String FIXED_LEN_BYTE_

ARRAY
UUID NONE

Example: Tagging data for storage in Parquet

In this example, two tags are used to define the data for Parquet. The field num is tagged with
$parquet-int32 to define it as a number field that will be set as INT32 in Parquet.

Data:

LOAD * INLINE [

num, text,

123.321, abc

456.654, def

789.987, ghi

];

TAG num WITH '$parquet-int32';

STORE Format INTO [lib://AttachedFiles/Tmp.parquet] (parquet);

Storing nested data in Parquet files
You can store multiple tables in a Parquet files by nesting them into structured data. Store supports
structured nodes and list nodes in a star schema. Single tables can also be stored in nested mode
by using the Delimiter is specifier.

When storing tables, specify the tables you want to include separated by commas. For
example: STORE Table1, Table2, Table3 INTO [lib://<file location>/<file name>.parquet]

(parquet);. You can control which fields are stored by using a field list in the Store statement. For
example STORE Field1, Field2, FROM Table1, Table2 INTO [lib://<file location>/<file

name>.parquet] (parquet);. All fields in the field list must be in one or more of the listed tables. The
first table in the Store statement will be used as the fact table in the star schema.

Script syntax and chart functions - Qlik Sense, May 2024 194

3 Script statements and keywords

Field names are used to control how groups will be created and nested. By default, field names are
split into nodes with a period (.). The delimiter can be changed by setting the system variable
FieldNameDelimiter or by using the specifier Delimiter is. The specifier will override the system
variable..

Field names are split by the delimiter and the parts are used to create the schema with nested
groups. For example, STORE Field1, Field1.Field2, Field1.Field3, Field1.Field4 FROM Table1

INTO [nested.parquet] (parquet, delimiter is '.'); will create two groups (Group1 and Group2)
with Fields1, Field2 and Field3, Field4.

Groups and fields may not have the same name in a node in the schema. For example,
STORE Address, Address.Street INTO [nested.parquet] (parquet, delimiter is '.'');

will fail because Address is ambiguous and is both a data field and a group.

When storing nested data in Parquet, keys between tables are transformed into link nodes in the
schema. Tables are transformed into structured nodes in the schema. You can override the default
transformation using field names.

Example: Storing nested data in a Parquet file

company:

LOAD * INLINE [

company, contact

A&G, Amanda Honda

Cabro, Cary Frank

Fenwick, Dennis Fisher

Camros, Molly McKenzie

];

salesrep:

LOAD * INLINE [

company, salesrep

A&G, Bob Park

Cabro, Cezar Sandu

Fenwick, Ken Roberts

Camros, Max Smith

];

headquarter:

LOAD * INLINE [

company, country, city

A&G, USA, Los Angeles

Cabro, USA, Albuquerque

Fenwick, USA, Baltimore

Camros, USA, Omaha

];

region:

LOAD * INLINE [

region, city

West, Los Angeles

Southwest, Albuquerque

Script syntax and chart functions - Qlik Sense, May 2024 195

3 Script statements and keywords

East, Baltimore

Central, Omaha

];

STORE company, salesrep, headquarter, region INTO [lib://AttachedFiles/company.parquet]

(parquet)

DROP TABLES company, salesrep, headquarter, region;

The resulting Parquet file has the following schema:

company (String)

contact (String)

company:salesrep (List)

salesrep (Group)

salesrep (String)

company:headquarter (List)

headquarter (Group)

country (String)

city (String)

city:region (List)

region (Group)

region (String)

Limitations
Storing nested data in Parquet has the following limitations:

l Store does not support map nodes.
l Storing does not include key fields generated from loading nested parquet files.
l You cannot store data from tables together that are not linked with key fields.
l The nested file denormalizes the data model. Non-referenced values will not be saved and

values referenced multiple times will be copied.

Table/Tables
The Table and Tables script keywords are used in Drop, Comment and Rename
statements, as well as a format specifier in Load statements.

Tag
This script statement provides a way to assign tags to one or more fields or tables. If an
attempt to tag a field or table not present in the app is made, the tagging will be
ignored. If conflicting occurrences of a field or tag name are found, the last value is
used.

Syntax:
Tag [field|fields] fieldlist with tagname

Tag [field|fields] fieldlist using mapname

Tag table tablelist with tagname

Script syntax and chart functions - Qlik Sense, May 2024 196

3 Script statements and keywords

Argument Description

fieldlist One or several fields that should be tagged, in a comma separated list.

mapname The name of a mapping table previously loaded in a mapping Load or mapping
Select statement.

tablelist A comma separated list of the tables that should be tagged.

tagname The name of the tag that should be applied to the field.

Arguments

Example 1:

tagmap:

mapping LOAD * inline [

a,b

Alpha,MyTag

Num,MyTag

];

tag fields using tagmap;

Example 2:

tag field Alpha with 'MyTag2';

Trace
The trace statement writes a string to the Script Execution Progress window and to the script log
file, when used. It is very useful for debugging purposes. Using $-expansions of variables that are
calculated prior to the trace statement, you can customize the message.

Syntax:
Trace string

Example 1:

The following statement can be used right after the Load statement that loads the 'Main' table.

Trace Main table loaded;

This will display the text ‘Main table loaded’ in the script execution dialog and in the log file.

Example 2:

The following statements can be used right after the Load statement that loads the 'Main' table.

Let MyMessage = NoOfRows('Main') & ' rows in Main table';

Trace $(MyMessage);

This will display a text showing the number of rows in the script execution dialog and in the log file,
for example, ‘265,391 rows in Main table’ .

Script syntax and chart functions - Qlik Sense, May 2024 197

3 Script statements and keywords

Unmap
The Unmap statement disables field value mapping specified by a previous Map …
Using statement for subsequently loaded fields.

Syntax:
Unmap *fieldlist

Arguments:

Argument Description

*fieldlist a comma separated list of the fields that should no longer be mapped from this
point in the script. Using * as field list indicates all fields. The wildcard characters
* and ? are allowed in field names. Quoting of field names may be necessary when
wildcards are used.

Arguments

Examples and results:

Example Result

Unmap Country; Disables mapping of field Country.

Unmap A, B, C; Disables mapping of fields A, B and C.

Unmap * ; Disables mapping of all fields.

Unqualify
The Unqualify statement is used for switching off the qualification of field names that
has been previously switched on by the Qualify statement.

Syntax:
Unqualify *fieldlist

Arguments:

Argument Description

*fieldlist A comma separated list of the fields for which qualification should be turned on.
Using * as field list indicates all fields. The wildcard characters * and ? are allowed
in field names. Quoting of field names may be necessary when wildcards are
used.

Refer to the documentation for the Qualify statement for further information.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 198

3 Script statements and keywords

Example 1:

In an unfamiliar database, it is often useful to start out by making sure that only one or a few fields
are associated, as illustrated in this example:

qualify *;

unqualify TransID;

SQL SELECT * from tab1;

SQL SELECT * from tab2;

SQL SELECT * from tab3;

First, qualification is turned on for all fields.
Then qualification is turned off for TransID.
Only TransID will be used for associations between the tables tab1, tab2 and tab3. All other fields
will be qualified with the table name.

Untag
This script statement provides a way to remove tags from fields or tables. If an attempt
to untag a field or table not present in the app is made, the untagging will be ignored.

Syntax:
Untag [field|fields] fieldlist with tagname

Untag [field|fields] fieldlist using mapname

Untag table tablelist with tagname

Arguments:

Argument Description

fieldlist One or several fields which tags should be removed, in a comma separated list.

mapname The name of a mapping table previously loaded in a mapping LOAD or mapping
SELECT statement.

tablelist A comma separated list of the tables that should be untagged.

tagname The name of the tag that should be removed from the field.

Arguments

Example 1:

tagmap:

mapping LOAD * inline [

a,b

Alpha,MyTag

Num,MyTag

];

Untag fields using tagmap;

Script syntax and chart functions - Qlik Sense, May 2024 199

3 Script statements and keywords

Example 2:

Untag field Alpha with MyTag2;

3.4 Working directory
If you are referencing a file in a script statement and the path is omitted, Qlik Sense
searches for the file in the following order:

1. The directory specified by a Directory statement (only supported in legacy scripting mode).
2. If there is no Directory statement, Qlik Sense searches in the working directory.

Qlik Sense Desktop working directory
In Qlik Sense Desktop, the working directory is C:\Users\{user}\Documents\Qlik\Sense\Apps.

Qlik Sense working directory
In a Qlik Sense server installation, the working directory is specified in Qlik Sense Repository
Service, by default it is C:\ProgramData\Qlik\Sense\Apps. See the Qlik Management Console help
for more information.

Script syntax and chart functions - Qlik Sense, May 2024 200

4 Working with variables in the data load editor

4 Working with variables in the data load
editor

A variable in Qlik Sense is a container storing a static value or a calculation, for example
a numeric or alphanumeric value. When you use the variable in the app, any change
made to the variable is applied everywhere the variable is used. You can define
variables in the variables overview, or in the script using the Data load editor. You set
the value of a variable using Let or Set statements in the data load script.

You can also work with the Qlik Sense variables from the variables overview when
editing a sheet.

4.1 Overview
If the first character of a variable value is an equals sign ' = ' Qlik Sense will try to evaluate the value
as a formula (Qlik Sense expression) and then display or return the result rather than the actual
formula text.

When used, the variable is substituted by its value. Variables can be used in the script for dollar sign
expansion and in various control statements. This is very useful if the same string is repeated many
times in the script, for example, a path.

Some special system variables will be set by Qlik Sense at the start of the script execution
regardless of their previous values.

4.2 Defining a variable
Variables provide the ability to store static values or the result of a calculation. When defining a
variable, use the following syntax:

set variablename = string

or

let variable = expression

The Set statement is used for string assignment. It assigns the text to the right of the equal sign to
the variable. The Let statement evaluates an expression to the right of the equal sign at script run
time and assigns the result of the expression to the variable.

Variables are case sensitive.

It is not recommended to name a variable identically to a field or a function in Qlik Sense.

Script syntax and chart functions - Qlik Sense, May 2024 201

4 Working with variables in the data load editor

Examples:

set x = 3 + 4; // the variable will get the string '3 + 4' as the value.

let x = 3 + 4; // returns 7 as the value.

set x = Today(); // returns 'Today()' as the value.

let x = Today(); // returns today's date as the value, for example, ‘9/27/2021’.

4.3 Deleting a variable
If you remove a variable from the script and reload the data, the variable stays in the app. If you
want to fully remove the variable from the app, you must also delete the variable from the variables
dialog.

4.4 Loading a variable value as a field value
If you want to load a variable value as a field value in a LOAD statement and the result of the dollar
expansion is text rather than numeric or an expression then you need to enclose the expanded
variable in single quotes.

Example:

This example loads the system variable containing the list of script errors to a table. You can note
that the expansion of ScriptErrorCount in the If clause does not require quotes, while the expansion
of ScriptErrorList requires quotes.

IF $(ScriptErrorCount) >= 1 THEN

LOAD '$(ScriptErrorList)' AS Error AutoGenerate 1;

END IF

4.5 Variable calculation
There are several ways to use variables with calculated values in Qlik Sense, and the result
depends on how you define it and how you call it in an expression.

In this example, we load some inline data:

LOAD * INLINE [

Dim, Sales

A, 150

A, 200

B, 240

B, 230

C, 410

C, 330

];

Let's define two variables:

Let vSales = 'Sum(Sales)' ;

Script syntax and chart functions - Qlik Sense, May 2024 202

4 Working with variables in the data load editor

Let vSales2 = '=Sum(Sales)' ;

In the second variable, we add an equal sign before the expression. This will cause the variable to
be calculated before it is expanded and the expression is evaluated.

If you use the vSales variable as it is, for example in a measure, the result will be the string Sum
(Sales), that is, no calculation is performed.

If you add a dollar-sign expansion and call $(vSales) in the expression, the variable is expanded,
and the sum of Sales is displayed.

Finally, if you call $(vSales2), the variable will be calculated before it is expanded. This means that
the result displayed is the total sum of Sales. The difference between using =$(vSales) and
=$(vSales2) as measure expressions is seen in this chart showing the results:

Dim $(vSales) $(vSales2)

A 350 1560

B 470 1560

C 740 1560

Results

As you can see, $(vSales) results in the partial sum for a dimension value, while $(vSales2) results in
the total sum.

The following script variables are available:

l Error variables (page 275)
l Number interpretation variables (page 211)
l System variables (page 203)
l Value handling variables (page 209)

4.6 System variables
System variables, some of which are system-defined, provide information about the
system and the Qlik Sense app.

System variables overview
Some of the functions are described further after the overview. For those functions, you can click
the function name in the syntax to immediately access the details for that specific function.

CreateSearchIndexOnReload
This variable defines if search index files should be created during data reload.

CreateSearchIndexOnReload

Floppy
Returns the drive letter of the first floppy drive found, normally a:. This is a system-defined variable.

Script syntax and chart functions - Qlik Sense, May 2024 203

4 Working with variables in the data load editor

Floppy

This variable is not supported in standard mode.

CD
Returns the drive letter of the first CD-ROM drive found. If no CD-ROM is found, then c: is returned.
This is a system-defined variable.

CD

This variable is not supported in standard mode.

HidePrefix
All field names beginning with this text string will be hidden in the same manner as the system
fields. This is a user-defined variable.

HidePrefix

HideSuffix
All field names ending with this text string will be hidden in the same manner as the system fields.
This is a user-defined variable.

HideSuffix

Include
The Include/Must_Include variable specifies a file that contains text that should be included in the
script and evaluated as script code. It is not used to add data. You can store parts of your script
code in a separate text file and reuse it in several apps. This is a user-defined variable.

$(Include=filename)
$(Must_Include=filename)

OpenUrlTimeout
This variable defines the timeout in seconds that Qlik Sense should respect when getting data from
URL sources (e.g. HTML pages). If omitted, the timeout is about 20 minutes.

OpenUrlTimeout

QvPath
Returns the browse string to the Qlik Sense executable. This is a system-defined variable.

QvPath

This variable is not supported in standard mode.

QvRoot
Returns the root directory of the Qlik Sense executable. This is a system-defined variable.

Script syntax and chart functions - Qlik Sense, May 2024 204

4 Working with variables in the data load editor

QvRoot

This variable is not supported in standard mode.

QvWorkPath
Returns the browse string to the current Qlik Sense app. This is a system-defined variable.

QvWorkPath

This variable is not supported in standard mode.

QvWorkRoot
Returns the root directory of the current Qlik Sense app. This is a system-defined variable.

QvWorkRoot

This variable is not supported in standard mode.

StripComments
If this variable is set to 0, stripping of /*..*/ and // comments in the script will be inhibited. If this
variable is not defined, stripping of comments will always be performed.

StripComments

Verbatim
Normally all field values are automatically stripped of leading and trailing blanks (ASCII 32) before
being loaded into the Qlik Sense database. Setting this variable to 1 suspends the stripping of
blanks. Tab (ASCII 9) and hard space (ANSI 160) characters are never stripped.

Verbatim

WinPath
Returns the browse string to Windows. This is a system-defined variable.

WinPath

This variable is not supported in standard mode.

WinRoot
Returns the root directory of Windows. This is a system-defined variable.

WinRoot

This variable is not supported in standard mode.

Script syntax and chart functions - Qlik Sense, May 2024 205

4 Working with variables in the data load editor

CollationLocale
Specifies which locale to use for sort order and search matching. The value is the culture name of a
locale, for example 'en-US'.This is a system-defined variable.

CollationLocale

CreateSearchIndexOnReload
This variable defines if search index files should be created during data reload.

Syntax:
CreateSearchIndexOnReload

You can define if search index files should be created during data reload, or if they should be
created after the first search request of the user. The benefit of creating search index files during
data reload is that you avoid the waiting time experienced by the first user making a search. This
needs to be weighed against the longer data reload time required by search index creation.

If this variable is omitted, search index files will not be created during data reload.

For session apps, search index files will not be created during data reload, regardless of
the setting of this variable.

Example 1: Create search index fields during data reload

set CreateSearchIndexOnReload=1;

Example 2: Create search index fields after first search request

set CreateSearchIndexOnReload=0;

HidePrefix
All field names beginning with this text string will be hidden in the same manner as the
system fields. This is a user-defined variable.

Syntax:
HidePrefix

Example:

set HidePrefix='_' ;

If this statement is used, the field names beginning with an underscore will not be shown in the field
name lists when the system fields are hidden.

Script syntax and chart functions - Qlik Sense, May 2024 206

4 Working with variables in the data load editor

HideSuffix
All field names ending with this text string will be hidden in the same manner as the
system fields. This is a user-defined variable.

Syntax:
HideSuffix

Example:

set HideSuffix='%';

If this statement is used, the field names ending with a percentage sign will not be shown in the field
name lists when the system fields are hidden.

Include
The Include/Must_Include variable specifies a file that contains text that should be
included in the script and evaluated as script code. It is not used to add data. You can
store parts of your script code in a separate text file and reuse it in several apps. This is
a user-defined variable.

This variable supports only folder data connections in standard mode.

Syntax:
$(Include=filename)

$(Must_Include=filename)

There are two versions of the variable:

l Include does not generate an error if the file cannot be found, it will fail silently.
l Must_Include generates an error if the file cannot be found.

If you don't specify a path, the filename will be relative to the Qlik Sense app working directory. You
can also specify an absolute file path, or a path to a lib:// folder connection. Do not put a space
character before or after the equal sign.

The construction set Include =filename is not applicable.

Examples:

$(Include=abc.txt);

$(Must_Include=lib://DataFiles/abc.txt);

Script syntax and chart functions - Qlik Sense, May 2024 207

4 Working with variables in the data load editor

Limitations

Limited cross-compatibility between UTF-8 encoded files under Windows versus
Linux.
It is optional to use UTF-8 with BOM (Byte Order Mark). BOM can interfere with the use of UTF-8 in
software that does not expect non-ASCII bytes at the start of a file, but that could otherwise handle
the text stream.

l Windows systems use BOM in UTF-8 to identify that a file is UTF-8 encoded, despite the fact
that there is no ambiguity in the byte storage.

l Unix/Linux use UTF-8 for Unicode, but does not use the BOM as this interferes with the
syntax for command files.

This has some implications for Qlik Sense.

l In Windows any file that begins with an UTF-8 BOM is considered a UTF-8 script file.
Otherwise ANSI encoding is assumed.

l In Linux, the system default 8 bit code page is UTF-8. This is why the UTF-8 works although
it does not contain a BOM.

As a result, portability cannot be guaranteed. It is not always possible to create a file on Windows
that can be interpreted by Linux and vice versa. There is no cross compatibility between the two
systems regarding UTF-8 encoded files due to different handling of the BOM.

OpenUrlTimeout
This variable defines the timeout in seconds that Qlik Sense should respect when
getting data from URL sources (e.g. HTML pages). If omitted, the timeout is about 20
minutes.

Syntax:
OpenUrlTimeout

Example:

set OpenUrlTimeout=10;

StripComments
If this variable is set to 0, stripping of /*..*/ and // comments in the script will be
inhibited. If this variable is not defined, stripping of comments will always be
performed.

Syntax:
StripComments

Script syntax and chart functions - Qlik Sense, May 2024 208

4 Working with variables in the data load editor

Certain database drivers use /*..*/ as optimization hints in SELECT statements. If this is the case,
the comments should not be stripped before sending the SELECT statement to the database driver.

It is recommended that this variable be reset to 1 immediately after the statement(s)
where it is needed.

Example:

set StripComments=0;

SQL SELECT * /* <optimization directive> */ FROM Table ;

set StripComments=1;

Verbatim
Normally all field values are automatically stripped of leading and trailing blanks (ASCII
32) before being loaded into the Qlik Sense database. Setting this variable to 1
suspends the stripping of blanks. Tab (ASCII 9) and hard space (ANSI 160) characters
are never stripped.

Syntax:
Verbatim

Example:

set Verbatim = 1;

4.7 Value handling variables
This section describes variables that are used for handling NULL and other values.

Value handling variables overview
Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

NullDisplay
The defined symbol will substitute all NULL values from ODBC, and connectors, on the lowest level
of data. This is a user-defined variable.

NullDisplay

NullInterpret
The defined symbol will be interpreted as NULL when it occurs in a text file, Excel file or an inline
statement. This is a user-defined variable.

NullInterpret

Script syntax and chart functions - Qlik Sense, May 2024 209

4 Working with variables in the data load editor

NullValue
If the NullAsValue statement is used, the defined symbol will substitute all NULL values in the
NullAsValue specified fields with the specified string.

NullValue

OtherSymbol
Defines a symbol to be treated as 'all other values' before a LOAD/SELECT statement. This is a
user-defined variable.

OtherSymbol

NullDisplay
The defined symbol will substitute all NULL values from ODBC, and connectors, on the
lowest level of data. This is a user-defined variable.

Syntax:
NullDisplay

Example:

set NullDisplay='<NULL>';

NullInterpret
The defined symbol will be interpreted as NULL when it occurs in a text file, Excel file or
an inline statement. This is a user-defined variable.

Syntax:
NullInterpret

Examples:

set NullInterpret=' ';

set NullInterpret =;

will not return NULL values for blank values in Excel, but it will for a CSV text file.

set NullInterpret ='';

will return NULL values for blank values in Excel.

NullValue
If the NullAsValue statement is used, the defined symbol will substitute all NULL
values in the NullAsValue specified fields with the specified string.

Syntax:
NullValue

Script syntax and chart functions - Qlik Sense, May 2024 210

4 Working with variables in the data load editor

Example:

NullAsValue Field1, Field2;

set NullValue='<NULL>';

OtherSymbol
Defines a symbol to be treated as 'all other values' before a LOAD/SELECT statement.
This is a user-defined variable.

Syntax:
OtherSymbol

Example:

set OtherSymbol='+';

LOAD * inline

[X, Y

a, a

b, b];

LOAD * inline

[X, Z

a, a

+, c];

The field value Y='b' will now link to Z='c' through the other symbol.

4.8 Number interpretation variables
Number interpretation variables are system defined. The variables are included at the
top of the load script and apply number formatting settings at the time of the script
execution. They can be deleted, edited, or duplicated.

Number interpretation variables are automatically generated according to the current regional
settings of the operating system when a new app is created. In Qlik Sense Desktop, this is
according to the settings of the computer operating system. In Qlik Sense, it is according to the
operating system of the server where Qlik Sense is installed. If the Qlik Sense server you are
accessing is set to Sweden, the Data load editor will use Swedish regional settings for dates, time,
and currency. These regional format settings are not related to the language displayed in the Qlik
Sense user interface. Qlik Sense will be displayed in the same language as the browser you are
using.

Currency formatting
MoneyDecimalSep
The decimal separator defined replaces the decimal symbol for currency set by your regional
settings.

MoneyDecimalSep

Script syntax and chart functions - Qlik Sense, May 2024 211

4 Working with variables in the data load editor

MoneyFormat
The symbol defined replaces the currency symbol set by your regional settings.

MoneyFormat

MoneyThousandSep
The thousands separator defined replaces the digit grouping symbol for currency set by your
regional settings.

MoneyThousandSep

Number formatting
DecimalSep
The decimal separator defined replaces the decimal symbol set by your regional settings.

DecimalSep

ThousandSep
The thousands separator defined replaces the digit grouping symbol of the operating system
(regional settings).

ThousandSep

NumericalAbbreviation
The numerical abbreviation sets which abbreviation to use for scale prefixes of numerals, for
example M for mega or a million (106), and µ for micro (10-6).

NumericalAbbreviation

Time formatting
DateFormat
This environment variable defines the date format used as the default in the app. The format is used
both to interpret and format dates. If the variable is not defined, the date format of the regional
settings of the operating system will be fetched when the script runs.

DateFormat

TimeFormat
The format defined replaces the time format of the operating system (regional settings).

TimeFormat

TimestampFormat
The format defined replaces the date and time formats of the operating system (regional settings).

TimestampFormat

MonthNames
The format defined replaces the month names convention of the regional settings.

Script syntax and chart functions - Qlik Sense, May 2024 212

4 Working with variables in the data load editor

MonthNames

LongMonthNames
The format defined replaces the long month names convention in the regional settings.

LongMonthNames

DayNames
The format defined replaces the weekday names convention set by your regional settings.

DayNames

LongDayNames
The format defined replaces the long weekday names convention in the regional settings.

LongDayNames

FirstWeekDay
Integer that defines which day to use as the first day of the week.

FirstWeekDay

BrokenWeeks
This setting defines if weeks are broken or not.

BrokenWeeks

ReferenceDay
The setting defines which day in January to set as reference day to define week 1.

ReferenceDay

FirstMonthOfYear
The setting defines which month to use as first month of the year, which can be used to define
financial years that use a monthly offset, for example starting April 1.

This setting is currently unused but reserved for future use.

Valid settings are 1 (January) to 12 (December). Default setting is 1.

Syntax:
FirstMonthOfYear

Example:

Set FirstMonthOfYear=4; //Sets the year to start in April

BrokenWeeks
This setting defines if weeks are broken or not.

Script syntax and chart functions - Qlik Sense, May 2024 213

4 Working with variables in the data load editor

Syntax:
BrokenWeeks

 In Qlik Sense, the regional settings are fetched when the app is created, and the corresponding
settings are stored in the script as environment variables.

A North American app developer often gets Set BrokenWeeks=1; in the script, corresponding to
broken weeks. A European app developer often gets Set BrokenWeeks=0; in the script,
corresponding to unbroken weeks.

Unbroken weeks means that:

l In some years, week 1 starts in December, and in other years, the last week of previous year
continues into January.

l According to ISO 8601, week 1 always has at least 4 days in January. In Qlik Sense, this can
be configured using the ReferenceDay variable.

Broken weeks means that:

l The last week of the year never continues into January.
l Week 1 starts on January 1 and is, in most cases, not a full week.

The following values can be used:

l 0 (=use unbroken weeks)
l 1 (= use broken weeks)

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Examples:

If you want ISO settings for weeks and week numbers, make sure to have the following in the script:

Set FirstWeekDay=0;

Set BrokenWeeks=0; //(use unbroken weeks)

Set ReferenceDay=4;

If you want US settings, make sure to have the following in the script:

Script syntax and chart functions - Qlik Sense, May 2024 214

4 Working with variables in the data load editor

Set FirstWeekDay=6;

Set BrokenWeeks=1; //(use broken weeks)

Set ReferenceDay=1;

DateFormat
This environment variable defines the date format used as the default in the app and
by date returning functions like date() and date#(). The format is used to interpret and
format dates. If the variable is not defined, the date format set by your regional settings
is fetched when the script runs.

Syntax:
DateFormat

Example Result
Set DateFormat='M/D/YY'; //(US

format)
This use of the DateFormat function defines the date as the
US format, month/day/year.

Set DateFormat='DD/MM/YY'; //(UK

date format)
This use of the DateFormat function defines the date as the
UK format, day/month/year.

Set DateFormat='YYYY/MM/DD'; //

(ISO date format)
This use of the DateFormat function defines the date as the
ISO format, year/month/day.

DateFormat Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – System variables default
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2024 215

4 Working with variables in the data load editor

l A dataset of dates.
l The DateFormat function, which will use the US date format.

In this example, a dataset is loaded into a table named 'Transactions'. It includes a date field. The US
DateFormat definition is used. This pattern will be used for implicit text to date conversion when the
text dates are loaded.

Load script

Set DateFormat='MM/DD/YYYY';

Transactions:

LOAD

date,

month(date) as month,

id,

amount

INLINE

[

date,id,amount

01/01/2022,1,1000

02/01/2022,2,2123

03/01/2022,3,4124

04/01/2022,4,2431

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l month

Create this measure:

=sum(amount)

date month =sum(amount)

01/01/2022 Jan 1000

02/01/2022 Feb 2123

03/01/2022 Mar 4124

04/01/2022 Apr 2431

Results table

The DateFormat definition MM/DD/YYYY is used for implicit conversion of text to dates, which is why
the date field is properly interpreted as a date. The same format is used to display the date, as
shown in the results table.

Script syntax and chart functions - Qlik Sense, May 2024 216

4 Working with variables in the data load editor

Example 2 – Change system variable
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset from the previous example.
l The DateFormat function, which will use the ‘DD/MM/YYYY’ format.

Load script

SET DateFormat='DD/MM/YYYY';

Transactions:

LOAD

date,

month(date) as month,

id,

amount

INLINE

[

date,id,amount

01/01/2022,1,1000

02/01/2022,2,2123

03/01/2022,3,4124

04/01/2022,4,2431

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l month

Create this measure:

=sum(amount)

date month =sum(amount)

01/01/2022 Jan 1000

02/01/2022 Jan 2123

03/01/2022 Jan 4124

04/01/2022 Jan 2431

Results table

Script syntax and chart functions - Qlik Sense, May 2024 217

4 Working with variables in the data load editor

Because the DateFormat definition was set to ‘DD/MM/YYYY’, you can see that the two digits after
the first “/” symbol have been interpreted as the month, resulting in all records being from the
month of January.

Example 3 – Date interpretation
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset with dates in numerical format.
l The DateFormat variable, which will use the ‘DD/MM/YYYY’ format.
l The date() variable.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

date(numerical_date),

month(date(numerical_date)) as month,

id,

amount

Inline

[

numerical_date,id,amount

43254,1,1000

43255,2,2123

43256,3,4124

43258,4,2431

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l month

Create this measure:

=sum(amount)

Script syntax and chart functions - Qlik Sense, May 2024 218

4 Working with variables in the data load editor

date month =sum(amount)

06/03/2022 Jun 1000

06/04/2022 Jun 2123

06/05/2022 Jun 4124

06/07/2022 Jun 2431

Results table

In the load script, you use the date() function to convert the numerical date into a date format.
Because you do not provide a specified format as a second argument in the function, the DateFormat

is used. This results in the date field using the format ‘MM/DD/YYYY’.

Example 4 – Foreign date formatting
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates.
l The DateFormat variable, which uses the ‘DD/MM/YYYY' format but is uncommented by

forward slashes.

Load script

// SET DateFormat='DD/MM/YYYY';

Transactions:

Load

date,

month(date) as month,

id,

amount

Inline

[

date,id,amount

22-05-2022,1,1000

23-05-2022,2,2123

24-05-2022,3,4124

25-05-2022,4,2431

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 219

4 Working with variables in the data load editor

l date

l month

Create this measure:

=sum(amount)

date month =sum(amount)

22-05-2022 - 1000

23-05-2022 - 2123

24-05-2022 - 4124

25-05-2022 - 2431

Results table

In the initial load script, the DateFormat being used is the default ‘MM/DD/YYYY’. Because the date

field in the transactions dataset is not in this format, the field is not interpreted as a date. This is
shown in the results table where the month field values are null.

You can verify the interpreted data types in the Data model viewer by inspecting the date field’s
“Tags” properties.

Preview of the Transactions table. Note the “Tags” for the date field indicating that the textual input data
has not been implicitly converted to a date/timestamp.

This can be solved by enabling the DateFormat system variable:

// SET DateFormat='DD/MM/YYYY';

Remove the double forward slashes and reload the data.

Script syntax and chart functions - Qlik Sense, May 2024 220

4 Working with variables in the data load editor

Preview of the Transactions table. Note the “Tags” for the date field indicating that the textual input data
has been implicitly converted to a date/timestamp.

DayNames
The format defined replaces the weekday names convention set by your regional
settings.

Syntax:
DayNames

When modifying the variable, a semicolon ; is required to separate the individual values.

Function example Result definition
Set

DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';
This use of the DayNames function defines day
names in their abbreviated form.

Set DayNames='M;Tu;W;Th;F;Sa;Su'; This use of the DayNames function defines day
names by their first letters.

DayName Function examples

The DayNames function is often used in combination with the following functions:

Function Interaction

weekday (page 1074) Script function to return DayNames as field values .

Date (page 1233) Script function to return DayNames as field values.

LongDayNames (page 232) Long form values of DayNames.

Related functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default

Script syntax and chart functions - Qlik Sense, May 2024 221

4 Working with variables in the data load editor

date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 - System variables default
Load script and results

Overview

In this example, the dates in the dataset are set in the MM/DD/YYYY format.

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset with dates, which will be loaded into a table named, Transactions.
l A date field.
l The default DayNames definition.

Load script

SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';

Transactions:

LOAD

date,

WeekDay(date) as dayname,

id,

amount

INLINE

[

date,id,amount

01/01/2022,1,1000

02/01/2022,2,2123

03/01/2022,3,4124

04/01/2022,4,2431

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l dayname

Script syntax and chart functions - Qlik Sense, May 2024 222

4 Working with variables in the data load editor

Create this measure:

sum(amount)

date dayname sum(amount)

01/01/2022 Sat 1000

02/01/2022 Tue 2123

03/01/2022 Tue 4124

04/01/2022 Fri 2431

Results table

In the load script, the WeekDay function is used with the date field as the provided argument. In the
results table, the output of this WeekDay function displays the days of the week in the format of the
DayNames definition.

Example 2 - Change system variable
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab. The same dataset and
scenario from the first example are used.

However, at the start of the script, the DayNames definition is modified to use the abbreviated days of
the week in Afrikaans.

Load script

SET DayNames='Ma;Di;Wo;Do;Vr;Sa;So';

Transactions:

Load

date,

WeekDay(date) as dayname,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,1000

02/01/2022,2,2123

03/01/2022,3,4124

04/01/2022,4,2431

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 223

4 Working with variables in the data load editor

l date

l dayname

Create this measure:

sum(amount)

date dayname sum(amount)

01/01/2022 Sa 1000

02/01/2022 Di 2123

03/01/2022 Di 4124

04/01/2022 Vr 2431

Results table

In the results table, the output of this WeekDay function displays the days of the week in the format of
the DayNames definition.

It is important to remember that if the language for the DayNames is modified like it has been in this
example, the LongDayNames would still contain the days of the week in English. This would need to be
modified as well if both variables are used in the application.

Example 3 – Date function
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset with dates, which will be loaded into a table named, Transactions.
l A date field.
l The default DayNames definition.

Load script

SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';

Transactions:

Load

date,

Date(date,'WWW') as dayname,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,1000

Script syntax and chart functions - Qlik Sense, May 2024 224

4 Working with variables in the data load editor

02/01/2022,2,2123

03/01/2022,3,4124

04/01/2022,4,2431

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l dayname

Create this measure:

sum(amount)

date dayname sum(amount)

01/01/2022 Sat 1000

02/01/2022 Tue 2123

03/01/2022 Tue 4124

04/01/2022 Fri 2431

Results table

The default DayNamesdefinition is used. In the load script, the Date function is used with the date field
as the first argument. The second argument is WWW. This formatting converts the result into the
values stored in the DayNames definition. This is displayed in the output of the results table.

DecimalSep
The decimal separator defined replaces the decimal symbol set by your regional
settings.

Qlik Sense automatically interprets text as numbers whenever a recognizable number pattern is
encountered. The ThousandSep and DecimalSep system variables determine the makeup of the
patterns applied when parsing text as numbers. The ThousandSep and DecimalSep variables set the
default number format pattern when visualizing numeric content in front-end charts and tables.
That is, it directly impacts the Number formatting options for any front end expression.

Assuming a thousand separator of comma ‘,’ and a decimal separator of ‘.’, these are examples of
patterns that would be implicitly converted to numeric equivalent values:

0,000.00

0000.00

0,000

These are examples of patterns that would remain unchanged as text; that is, not converted to
numeric:

0.000,00

Script syntax and chart functions - Qlik Sense, May 2024 225

4 Working with variables in the data load editor

0,00

Syntax:
DecimalSep

Example Result
Set DecimalSep='.'; Sets ‘.’ as the decimal separator.

Set DecimalSep=','; Sets ‘,’ as the decimal separator.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example – Effect of setting number separator variables on different input
data
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of sums and dates with the sums set in different format patterns.
l A table named Transactions.
l The DecimalSep variable which is set to ‘.’.
l The ThousandSep variable which is set to ','.
l The delimiter variable that is set as the '|' character to separate the different fields in a line.

Load script

Set ThousandSep=',';

Set DecimalSep='.';

Transactions:

Script syntax and chart functions - Qlik Sense, May 2024 226

4 Working with variables in the data load editor

Load date,

id,

amount as amount

Inline

[

date|id|amount

01/01/2022|1|1.000-45

01/02/2022|2|23.344

01/03/2022|3|4124,35

01/04/2022|4|2431.36

01/05/2022|5|4,787

01/06/2022|6|2431.84

01/07/2022|7|4132.5246

01/08/2022|8|3554.284

01/09/2022|9|3.756,178

01/10/2022|10|3,454.356

] (delimiter is '|');

Results

Load the data and open a sheet. Create a new table and add this field as a dimension amount.

Create this measure:

=sum(amount)

Amount =Sum(amount)

Totals 20814.7086

1.000-45

3.756,178

4124,35

23.344 23.344

2431.36 2431.36

2431.84 2431.84

3,454.356 3454.356

3554.284 3554.284

4132.5246 4132.5246

4,787 4787

Results table

Any value not interpreted as number remains as text and is aligned to the left by default. Any
successfully converted values are aligned to the right, retaining the original input format.

The expression column shows the numeric equivalent, which is by default formatted with only a
decimal separator ‘.’. This can be overridden with the Number formatting drop down setting in the
expression configuration.

Script syntax and chart functions - Qlik Sense, May 2024 227

4 Working with variables in the data load editor

FirstWeekDay
Integer that defines which day to use as the first day of the week.

Syntax:
FirstWeekDay

Monday is the first day of the week according to ISO 8601, the international standard for the
representation of dates and times. Monday is also used as the first day of the week in a number of
countries, for example on the UK, France, Germany and Sweden.

But in other countries, like in the United States and Canada, Sunday is considered to be the start of
the week.

In Qlik Sense, the regional settings are fetched when the app is created, and the corresponding
settings are stored in the script as environment variables.

A North American app developer often gets Set FirstWeekDay=6; in the script, corresponding to
Sunday. A European app developer often gets Set FirstWeekDay=0; in the script, corresponding to
Monday.

Value Day

0 Monday

1 Tuesday

2 Wednesday

3 Thursday

4 Friday

5 Saturday

6 Sunday

Values that can be set for
FirstWeekDay

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Script syntax and chart functions - Qlik Sense, May 2024 228

4 Working with variables in the data load editor

Examples:

If you want ISO settings for weeks and week numbers, make sure to have the following in the script:

Set FirstWeekDay=0; // Monday as first week day

Set BrokenWeeks=0;

Set ReferenceDay=4;

If you want US settings, make sure to have the following in the script:

Set FirstWeekDay=6; // Sunday as first week day

Set BrokenWeeks=1;

Set ReferenceDay=1;

Example 1 – Using default value (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

In this example, the load script uses the default Qlik Sense system variable value, FirstWeekDay=6.
This data contains data for the first 14 days in 2020.

Load script

// Example 1: Load Script using the default value of FirstWeekDay=6, i.e. Sunday

SET FirstWeekDay = 6;

Sales:

LOAD

date,

sales,

week(date) as week,

weekday(date) as weekday

Inline [

date,sales

01/01/2021,6000

01/02/2021,3000

01/03/2021,6000

01/04/2021,8000

01/05/2021,5000

01/06/2020,7000

01/07/2020,3000

01/08/2020,5000

01/09/2020,9000

01/10/2020,5000

01/11/2020,7000

01/12/2020,7000

01/13/2020,7000

01/14/2020,7000

];

Script syntax and chart functions - Qlik Sense, May 2024 229

4 Working with variables in the data load editor

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l week

l weekday

Date week weekday

01/01/2021 1 Wed

01/02/2021 1 Thu

01/03/2021 1 Fri

01/04/2021 1 Sat

01/05/2021 2 Sun

01/06/2020 2 Mon

01/07/2020 2 Tue

01/08/2020 2 Wed

01/09/2020 2 Thu

01/10/2020 2 Fri

01/11/2020 2 Sat

01/12/2020 3 Sun

01/13/2020 3 Mon

01/14/2020 3 Tue

Results table

Because the default settings are being used, the FirstWeekDay system variable is set to 6. In the
results table, each new week can be seen beginning on Sunday (the 5th and 12th of January).

Example 2 – Changing the FirstWeekDay variable (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

In this example, the data contains the first 14 days in 2020. At the start of the script, we set the
FirstWeekDay variable to 3.

Script syntax and chart functions - Qlik Sense, May 2024 230

4 Working with variables in the data load editor

Load script

// Example 2: Load Script setting the value of FirstWeekDay=3, i.e. Thursday

SET FirstWeekDay = 3;

Sales:

LOAD

date,

sales,

week(date) as week,

weekday(date) as weekday

Inline [

date,sales

01/01/2021,6000

01/02/2021,3000

01/03/2021,6000

01/04/2021,8000

01/05/2021,5000

01/06/2020,7000

01/07/2020,3000

01/08/2020,5000

01/09/2020,9000

01/10/2020,5000

01/11/2020,7000

01/12/2020,7000

01/13/2020,7000

01/14/2020,7000

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l week

l weekday

Date week weekday

01/01/2021 52 Wed

01/02/2021 1 Thu

01/03/2021 1 Fri

01/04/2021 1 Sat

01/05/2021 1 Sun

01/06/2020 1 Mon

Results table

Script syntax and chart functions - Qlik Sense, May 2024 231

4 Working with variables in the data load editor

Date week weekday

01/07/2020 1 Tue

01/08/2020 1 Wed

01/09/2020 2 Thu

01/10/2020 2 Fri

01/11/2020 2 Sat

01/12/2020 2 Sun

01/13/2020 2 Mon

01/14/2020 2 Tue

Because the FirstWeekDay system variable is set to 3, the first day of each week will be a Thursday.
In the results table, each new week can be seen beginning on Thursday (the 2nd and 9th of
January).

LongDayNames
The format defined replaces the long weekday names convention in the regional
settings.

Syntax:
LongDayNames

The following example of the LongDayNames function defines day names in full:

Set LongDayNames='Monday;Tuesday;Wednesday;Thursday;Friday;Saturday;Sunday';

When modifying the variable, a semicolon ; is required to separate the individual values.

The LongDayNames function can be used in combination with the Date (page 1233) function which
returns DayNames as field values.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 - System variable default
Load script and results

Script syntax and chart functions - Qlik Sense, May 2024 232

4 Working with variables in the data load editor

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset with dates, which will be loaded into a table named, Transactions.
l A date field.
l The default LongDayNames definition.

Load script

SET LongDayNames='Monday;Tuesday;Wednesday;Thursday;Friday;Saturday;Sunday';

Transactions:

LOAD

date,

Date(date,'WWWW') as dayname,

id,

amount

INLINE

[

date,id,amount

01/01/2022,1,1000

02/01/2022,2,2123

03/01/2022,3,4124

04/01/2022,4,2431

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l dayname

Create this measure:

=sum(amount)

date dayname =sum(amount)

01/01/2022 Saturday 1000

02/01/2022 Tuesday 2123

03/01/2022 Tuesday 4124

04/01/2022 Friday 2431

Results table

In the load script, to create a field called, dayname, the Date function is used with the date field as the
first argument. The second argument in the function is the formatting WWWW.

Script syntax and chart functions - Qlik Sense, May 2024 233

4 Working with variables in the data load editor

Using this formatting converts the values from the first argument into the corresponding full day
name that is set in the variable LongDayNames. In the results table, the field values of our created field
dayname display this.

Example 2 – Change system variable
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The same dataset and scenario from the first example are used. However, at the start of the script,
the LongDayNames definition is modified to use the days of the week in Spanish.

Load Script

SET LongDayNames='Lunes;Martes;Miércoles;Jueves;Viernes;Sábado;Domingo';

Transactions:

LOAD

date,

Date(date,'WWWW') as dayname,

id,

amount

INLINE

[

date,id,amount

01/01/2022,1,1000

02/01/2022,2,2123

03/01/2022,3,4124

04/01/2022,4,2431

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l dayname

Create this measure:

=sum(amount)

date dayname =sum(amount)

01/01/2022 Sábado 1000

02/01/2022 Martes 2123

Results table

Script syntax and chart functions - Qlik Sense, May 2024 234

4 Working with variables in the data load editor

date dayname =sum(amount)

03/01/2022 Martes 4124

04/01/2022 Viernes 2431

In the load script, the LongDayNames variable is modified to list the days of the week in Spanish.

Then, you create a field called, dayname, which is the Date function used with the date field as the first
argument.

The second argument in the function is the formatting WWWW. By using this formatting Qlik Sense
converts the values from the first argument into the corresponding full day name set in the variable
LongDayNames.

In the results table, the field values of our created field dayname displays the days of the week
written in Spanish and in full.

LongMonthNames
The format defined replaces the long month names convention in the regional settings.

Syntax:
LongMonthNames

When modifying the variable, the ; needs to be used to separate the individual values.

The following example of the LongMonthNames function defines month names in full:

Set

LongMonthNames='January;February;March;April;May;June;July;August;September;October;November;D

ecember';

The LongMonthNames function is often used in combination with the following functions:

Function Interaction

Date (page 1233) Script function to return DayNamesas field values.

LongDayNames (page 232) Long form values of DayNames.

Related functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the

Script syntax and chart functions - Qlik Sense, May 2024 235

4 Working with variables in the data load editor

Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 - System variables default
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A datasetof dates that is loaded into a table named Transactions.
l A date field.
l The default LongMonthNames definition.

Load script

SET

LongMonthNames='January;February;March;April;May;June;July;August;September;October;November;D

ecember';

Transactions:

Load

date,

Date(date,’MMMM’) as monthname,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,1000.45

01/02/2022,2,2123.34

01/03/2022,3,4124.35

01/04/2022,4,2431.36

01/05/2022,5,4787.78

01/06/2022,6,2431.84

01/07/2022,7,2854.83

01/08/2022,8,3554.28

01/09/2022,9,3756.17

01/10/2022,10,3454.35

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions.

l date

l monthname

Create this measure

Script syntax and chart functions - Qlik Sense, May 2024 236

4 Working with variables in the data load editor

=sum(amount)

date monthname sum(amount)

01/01/2022 January 1000.45

01/02/2022 January 2123.34

01/03/2022 January 4124.35

01/04/2022 January 2431.36

01/05/2022 January 4787.78

01/06/2022 January 2431.84

01/07/2022 January 2854.83

01/08/2022 January 3554.28

01/09/2022 January 3756.17

01/10/2022 January 3454.35

Results table

The default LongMonthNames definition is used. In the load script, to create a field called, month, the
Date function is used with the date field as the first argument. The second argument in the function
is the formatting MMMM.

Using this formatting Qlik Sense converts the values from the first argument into the corresponding
full month name set in the variable LongMonthNames. In the results table, the field values of our
created field month display this.

Example 2 - Change system variable
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates that is loaded into a table named Transactions.
l A date field.
l The LongMonthNames variable that is modified to use the abbreviated days of the week in

Spanish.

Load script

SET

LongMonthNames='Enero;Febrero;Marzo;Abril;Mayo;Junio;Julio;Agosto;Septiembre;OctubreNoviembre;

Diciembre';

Transactions:

LOAD

Script syntax and chart functions - Qlik Sense, May 2024 237

4 Working with variables in the data load editor

date,

Date(date,'MMMM') as monthname,

id,

amount

INLINE

[

date,id,amount

01/01/2022,1,1000

02/01/2022,2,2123

03/01/2022,3,4124

04/01/2022,4,2431

];

Results

Load the data and open a sheet. Create a new table and add sum(amount) as a measure and these
fields as dimensions:

l date

l monthname

Create this measure:

=sum(amount)

date monthname sum(amount)

01/01/2022 Enero 1000.45

01/02/2022 Enero 2123.34

01/03/2022 Enero 4124.35

01/04/2022 Enero 2431.36

01/05/2022 Enero 4787.78

01/06/2022 Enero 2431.84

01/07/2022 Enero 2854.83

01/08/2022 Enero 3554.28

01/09/2022 Enero 3756.17

01/10/2022 Enero 3454.35

Results table

In the load script, the LongMonthNames variable is modified to list the months of the year in Spanish.
Then, to create a field called, monthname, theDate function is used with the date field as the first
argument. The second argument in the function is the formatting MMMM.

Using this formatting Qlik Sense converts the values from the first argument into the corresponding
full month name set in the variable LongMonthNames. In the results table, the field values of our
created field monthname display the month name written in Spanish.

Script syntax and chart functions - Qlik Sense, May 2024 238

4 Working with variables in the data load editor

MoneyDecimalSep
The decimal separator defined replaces the decimal symbol for currency set by your
regional settings.

By default, Qlik Sense displays numbers and text differently in table charts. Numbers are
right-aligned, and text is left-aligned. This makes it easy to find text-to-number
conversion issues. Any tables on this page that show Qlik Sense results will use this
formatting.

Syntax:
MoneyDecimalSep

Qlik Sense applications will interpret text fields that conform to this formatting as monetary values.
The text field must contain the currency symbol that is defined in the MoneyFormat system variable.
MoneyDecimalSep is particularly helpful when handling data sources received from multiple different
regional settings.

The following example shows a possible use of the MoneyDecimalSep system variable:

Set MoneyDecimalSep='.';

This function is often used together with the following functions:

Function Interaction

MoneyFormat In instances of text field interpretation, the MoneyFormat symbol will be used
as part of the interpretation. For Number Formatting, the MoneyFormat

formatting will be used by Qlik Sense in Chart Objects.

MoneyThousandSep In instances of text field interpretation, the MoneyThousandSep function must
also be adhered to.

Related functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Script syntax and chart functions - Qlik Sense, May 2024 239

4 Working with variables in the data load editor

Example 1 - MoneyDecimalSep dot (.) notation
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset that is loaded into a table named Transactions.
l Provided data that has its monetary field in text format with a dot ‘.’ used as the decimal

separator. Each record is also prefixed by a ‘$’ symbol, except for the last record, which is
prefixed by a ‘£’ symbol.

Keep in mind that the MoneyFormat system variable defines dollar ‘$’ as the default currency.

Load script

SET MoneyThousandSep=',';

SET MoneyDecimalSep='.';

SET MoneyFormat='$###0.00;-$###0.00';

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,'$14.41'

01/02/2022,2,'$2,814.32'

01/03/2022,3,'$249.36'

01/04/2022,4,'$24.37'

01/05/2022,5,'$7.54'

01/06/2022,6,'$243.63'

01/07/2022,7,'$545.36'

01/08/2022,8,'$3.55'

01/09/2022,9,'$3.436'

01/10/2022,10,'£345.66'

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:amount.

Add the following measures:

l isNum(amount)

l sum(amount)

Script syntax and chart functions - Qlik Sense, May 2024 240

4 Working with variables in the data load editor

Review the results below, demonstrating the correct interpretation of all dollar ‘$’ values only.

amount =isNum(amount) =Sum(amount)

Totals 0 $3905.98

£345.66 0 $0.00

$3.436 -1 $3.44

$3.55 -1 $3.55

$7.54 -1 $7.54

$14.41 -1 $14.41

$24.37 -1 $24.37

243.63 -1 $243.63

$249.36 -1 $249.36

$545.36 -1 $545.36

$2,814.32 -1 $2814.32

Results table

The results table above shows how the amount field has been interpreted correctly for all dollar ($)
prefixed values, whilst the pound (£) prefixed amount has not been converted to a monetary value.

Example 2 - MoneyDecimalSep comma (,) notation
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table named Transactions.
l Provided data that has its monetary field in text format with a comma ‘,’ used as the decimal

separator. Each record is also prefixed by a ‘$’ symbol, except for the last record, which
erroneously uses the dot decimal separator '.'.

Keep in mind that the MoneyFormat system variable defines dollar ‘$’ as the default currency.

Load script

SET MoneyThousandSep='.';

SET MoneyDecimalSep=',';

SET MoneyFormat='$###0.00;-$###0.00';

Transactions:

Load

Script syntax and chart functions - Qlik Sense, May 2024 241

4 Working with variables in the data load editor

date,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,'$14,41'

01/02/2022,2,'$2.814,32'

01/03/2022,3,'$249,36'

01/04/2022,4,'$24,37'

01/05/2022,5,'$7,54'

01/06/2022,6,'$243,63'

01/07/2022,7,'$545,36'

01/08/2022,8,'$3,55'

01/09/2022,9,'$3,436'

01/10/2022,10,'$345.66'

];

Results

Paragraph text for Results.

Load the data and open a sheet. Create a new table and add this field as a dimension:amount.

Add the following measures:

l isNum(amount)

l sum(amount)

Review the results below, demonstrating the correct interpretation of all values, except for the
amount in which the decimal separator uses dot '.' notation. In that case, a comma should have
been used instead.

amount =isNum(amount) =Sum(amount)

Totals 0 $3905.98

$345.66 0 $0.00

$3,436 -1 $3.44

$3,55 -1 $3.55

$7,54 -1 $7.54

$14,41 -1 $14.41

$24,37 -1 $24.37

$243,63 -1 $243.63

$249,36 -1 $249.36

$545,36 -1 $545.36

$2.814,32 -1 $2814.32

Results table

Script syntax and chart functions - Qlik Sense, May 2024 242

4 Working with variables in the data load editor

MoneyFormat
This system variable defines the format pattern used by Qlik for automatic translation
of text to number where the number is prefixed by a monetary symbol. It also defines
how measures whose Number Formatting properties are set to ‘Money’ will be
displayed in chart objects.

The symbol defined as part of the format pattern in the MoneyFormat system variable replaces the
currency symbol set by your regional settings.

By default, Qlik Sense displays numbers and text differently in table charts. Numbers are
right-aligned, and text is left-aligned. This makes it easy to find text-to-number
conversion issues. Any tables on this page that show Qlik Sense results will use this
formatting.

Syntax:
MoneyFormat

Set MoneyFormat='$ #,##0.00; ($ #,##0.00)';

This formatting will be displayed in chart objects when a numerical field's Number Formatting

property is set to Money. Further, when numerical text fields are interpreted by Qlik Sense, if the
currency symbol of the text field matches that of the symbol defined in the MoneyFormat variable,
Qlik Sense will interpret this field as a monetary value.

This function is often used together with the following functions:

Function Interaction

MoneyDecimalSep (page
239)

For Number Formatting, MoneyDecimalSep will be used in field
formatting of objects.

MoneyThousandSep
(page 247)

For Number Formatting, MoneyThousandSep will be used in field
formatting of objects.

Related functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Script syntax and chart functions - Qlik Sense, May 2024 243

4 Working with variables in the data load editor

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 - MoneyFormat
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains a dataset which is loaded into a table named Transactions. The default
MoneyFormat variable definition is used.

Load script

SET MoneyThousandSep=',';

SET MoneyDecimalSep='.';

SET MoneyFormat='$###0.00;-$###0.00';

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,$10000000441

01/02/2022,2,$21237492432

01/03/2022,3,$249475336

01/04/2022,4,$24313369837

01/05/2022,5,$7873578754

01/06/2022,6,$24313884663

01/07/2022,7,$545883436

01/08/2022,8,$35545828255

01/09/2022,9,$37565817436

01/10/2022,10,$3454343566

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l amount

Add this measure:

=Sum(amount)

Script syntax and chart functions - Qlik Sense, May 2024 244

4 Working with variables in the data load editor

Under Number formatting, select Money to configure Sum(amount) as a monetary value.

date Amount =Sum(amount)

Totals $165099674156.00

01/01/2022 $10000000441 $10000000441.00

01/02/2022 $21237492432 $21237492432.00

01/03/2022 $249475336 $249475336.00

01/04/2022 $24313369837 $24313369837.00

01/05/2022 $7873578754 $7873578754.00

01/06/2022 $24313884663 $24313884663.00

01/07/2022 $545883436 $545883436.00

01/08/2022 $35545828255 $35545828255.00

01/09/2022 $37565817436 $37565817436.00

01/10/2022 $3454343566 $3454343566.00

Results table

The default MoneyFormat definition is used. This looks as follows: $###0.00;-$###0.00. In the results
table, the format of the amount field displays the currency symbol and the decimal point and decimal
places have been included.

Example 2 - MoneyFormat with thousands separator and mixed input
formats
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A mixed-input format dataset, which is loaded into a table named Transactions with
thousands separators and decimal separators interspersed.

l A modification of the MoneyFormat definition is modified to include a comma as the thousands
separator.

l One of the rows of data erroneously delimited with thousands separator commas in the
wrong places. Note how this amount is left as text and not interpretable as a number.

Load script

SET MoneyThousandSep=',';

SET MoneyDecimalSep='.';

SET MoneyFormat = '$#,##0.00;-$#,##0.00';

Script syntax and chart functions - Qlik Sense, May 2024 245

4 Working with variables in the data load editor

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,'$10,000,000,441.45'

01/02/2022,2,'$212,3749,24,32.23'

01/03/2022,3,$249475336.45

01/04/2022,4,$24,313,369,837

01/05/2022,5,$7873578754

01/06/2022,6,$24313884663

01/07/2022,7,$545883436

01/08/2022,8,$35545828255

01/09/2022,9,$37565817436

01/10/2022,10,$3454343566

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l amount

Add this measure:

=Sum(amount)

Under Number formatting, select Money to configure Sum(amount) as a monetary value.

date Amount =Sum(amount)

Totals $119,548,811,911.90

01/01/2022 $10,000,000,441.45 $10,000,000,441.45

01/02/2022 $212,3749,24,32.23 $0.00

01/03/2022 $249475336.45 $249,475,336.45

01/04/2022 $24 $24.00

01/05/2022 $7873578754 $7,873,578,754.00

01/06/2022 $24313884663 $24,313,884,663.00

01/07/2022 $545883436 $545,883,436.00

01/08/2022 $35545828255 $35,545,828,255.00

Results table

Script syntax and chart functions - Qlik Sense, May 2024 246

4 Working with variables in the data load editor

date Amount =Sum(amount)

01/09/2022 $37565817436 $37,565,817,436.00

01/10/2022 $3454343566 $3,454,343,566.00

At the start of the script, the MoneyFormat system variable is modified to include a comma as a
thousands separator. In the Qlik Sense table, the formatting can be seen to include this separator.
Furthermore, the row with the erroneous separator has not been interpreted correctly and remains
as text. This is why it does not contribute towards the summation of the amount.

MoneyThousandSep
The thousands separator defined replaces the digit grouping symbol for currency set
by your regional settings.

By default, Qlik Sense displays numbers and text differently in table charts. Numbers are
right-aligned, and text is left-aligned. This makes it easy to find text-to-number
conversion issues. Any tables on this page that show Qlik Sense results will use this
formatting.

Syntax:
MoneyThousandSep

Qlik Sense applications will interpret text fields that conform to this formatting as monetary values.
The text field must contain the currency symbol that is defined in the MoneyFormat system variable.
MoneyThousandSep is particularly helpful when handling data sources received from multiple different
regional settings.

The following example shows a possible use of the MoneyThousandSep system variable:

Set MoneyDecimalSep=',';

This function is often used together with the following functions:

Function Interaction

MoneyFormat In instances of text field interpretation, the MoneyFormat symbol will be used
as part of the interpretation. For Number Formatting, the MoneyFormat

formatting will be used by Qlik Sense in chart objects.

MoneyDecimalSep In instances of text field interpretation, the MoneyDecimalSep function must
also be adhered to.

Related functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.

Script syntax and chart functions - Qlik Sense, May 2024 247

4 Working with variables in the data load editor

You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 - MoneyThousandSep comma (,) notation
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table named Transactions.
l Provided data that has its monetary field in text format with a comma used as the thousands

separator. Each record is also prefixed by a ‘$’ symbol.

Keep in mind that the MoneyFormat system variable defines dollar ‘$’ as the default currency.

Load script

SET MoneyThousandSep=',';

SET MoneyDecimalSep='.';

SET MoneyFormat='$###0.00;-$###0.00';

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,'$10,000,000,441'

01/02/2022,2,'$21,237,492,432'

01/03/2022,3,'$249,475,336'

01/04/2022,4,'$24,313,369,837'

01/05/2022,5,'$7,873,578,754'

01/06/2022,6,'$24,313,884,663'

01/07/2022,7,'$545,883,436'

01/08/2022,8,'$35,545,828,255'

01/09/2022,9,'$37,565,817,436'

01/10/2022,10,'$3.454.343.566'

];

Script syntax and chart functions - Qlik Sense, May 2024 248

4 Working with variables in the data load editor

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:amount.

Add the following measures:

l isNum(amount)

l sum(amount)

Review the results below. The table demonstrates the correct interpretation of all values using
comma ‘,’ notation as the thousands separator.

The amount field has been interpreted correctly for all values, with the exception of one value which
used a dot '.' as the thousands separator.

amount =isNum(amount) =Sum(amount)

Totals 0 $161645330590.00

$3.454.343.566 0 $0.00

$249,475,336 -1 $249475336.00

$545,883,436 -1 $545883436.00

$7,873,578,754 -1 $7873578754.00

$10,000,000,441 -1 $10000000441.00

$21,237,492,432 -1 $21237492432.00

$24,313,369,837 -1 $24313369837.00

$24,33,884,663 -1 $24313884663.00

$35,545,828,255 -1 $35545828255.00

$37,565,817,436 -1 $37565817436.00

Results table

Example 2 - MoneyThousandSep dot (.) notation
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table named Transactions.
l Provided data that has its monetary field in text format with a dot '.' used as the thousands

separator. Each record is also prefixed by a ‘$’ symbol.

Script syntax and chart functions - Qlik Sense, May 2024 249

4 Working with variables in the data load editor

Keep in mind that the MoneyFormat system variable defines dollar ‘$’ as the default currency.

Load script

SET MoneyThousandSep='.';

SET MoneyDecimalSep=',';

SET MoneyFormat='$###0.00;-$###0.00';

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,'$10.000.000.441'

01/02/2022,2,'$21.237.492.432'

01/03/2022,3,'$249.475.336'

01/04/2022,4,'$24.313.369.837'

01/05/2022,5,'$7.873.578.754'

01/06/2022,6,'$24.313.884.663'

01/07/2022,7,'$545.883.436'

01/08/2022,8,'$35.545.828.255'

01/09/2022,9,'$37.565.817.436'

01/10/2022,10,'$3,454,343,566'

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:amount.

Add the following measures:

l isNum(amount)

l sum(amount)

Review the results below, demonstrating the correct interpretation of all values using dot ‘.’ notation
as the thousand separator.

The amount field has been interpreted correctly for all values, with the exception of one value which
used a comma ',' as the thousands separator.

amount =isNum(amount) =Sum(amount)

Totals 0 $161645330590.00

$3,545,343,566 0 $0.00

$249.475.336 -1 $249475336.00

Results table

Script syntax and chart functions - Qlik Sense, May 2024 250

4 Working with variables in the data load editor

amount =isNum(amount) =Sum(amount)

$545.883.436 -1 545883436.00

$7.873.578.754 -1 $7873578754.00

$10.000.000.441 -1 $10000000441.00

$21.237.492.432 -1 $21237492432.00

$24.313.884.663 -1 $24313884663.00

$24.313.884.663 -1 $24313884663.00

$35.545.828.255 -1 $35545828255.00

$37.565.817.436 -1 $37565817436.00

MonthNames
The format defined replaces the month names convention of the regional settings.

Syntax:
MonthNames

When modifying the variable, the ; needs to be used to separate the individual values.

Example Results

Set MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec'; This use of the
MonthNames

function defines
month names in
English and their
abbreviated form.

Set

MonthNames='Enero;Feb;Marzo;Abr;Mayo;Jun;Jul;Agosto;Set;Oct;Nov;Dic';

This use of the
MonthNames

function defines
month names in
Spanish and their
abbreviated form.

Function examples

The MonthNames function can be used in combination with the following functions:

Function Interaction

month (page 917) Script function to return values defined in MonthNames as field values

Date (page 1233) Script function to return values defined in MonthNames as field values
based on a formatting argument provided

LongMonthNames
(page 235)

Long form values of MonthNames

Related functions

Script syntax and chart functions - Qlik Sense, May 2024 251

4 Working with variables in the data load editor

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – System variables default
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates that is loaded into a table named Transactions.
l A date field.
l The default MonthNames definition.

Load script

SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec';

Transactions:

LOAD

date,

Month(date) as monthname,

id,

amount

INLINE

[

date,id,amount

01/01/2022,1,1000.45

01/02/2022,2,2123.34

01/03/2022,3,4124.35

01/04/2022,4,2431.36

01/05/2022,5,4787.78

01/06/2022,6,2431.84

01/07/2022,7,2854.83

01/08/2022,8,3554.28

01/09/2022,9,3756.17

01/10/2022,10,3454.35

];

Script syntax and chart functions - Qlik Sense, May 2024 252

4 Working with variables in the data load editor

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l monthname

Create this measure:

=sum(amount)

date monthname sum(amount)

01/01/2022 Jan 1000.45

01/02/2022 Jan 2123.34

01/03/2022 Jan 4124.35

01/04/2022 Jan 2431.36

01/05/2022 Jan 4787.78

01/06/2022 Jan 2431.84

01/07/2022 Jan 2854.83

01/08/2022 Jan 3554.28

01/09/2022 Jan 3756.17

01/10/2022 Jan 3454.35

Results table

The default MonthNames definition is used. In the load script, the Month function is used with the date

field as the provided argument.

In the results table, the output of this Month function displays the months of the year in the format of
the MonthNames definition.

Example 2 - Change system variable
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates that is loaded into a table named Transactions.
l A date field.
l The MonthNames variable that is modified to use the abbreviated months in Spanish.

Script syntax and chart functions - Qlik Sense, May 2024 253

4 Working with variables in the data load editor

Load script

Set MonthNames='Enero;Feb;Marzo;Abr;Mayo;Jun;Jul;Agosto;Set;Oct;Nov;Dic';

Transactions:

LOAD

date,

month(date) as month,

id,

amount

INLINE

[

date,id,amount

01/01/2022,1,1000

02/01/2022,2,2123

03/01/2022,3,4124

04/01/2022,4,2431

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l monthname

Create this measure:

=sum(amount)

date monthname sum(amount)

01/01/2022 Enero 1000.45

01/02/2022 Enero 2123.34

01/03/2022 Enero 4124.35

01/04/2022 Enero 2431.36

01/05/2022 Enero 4787.78

01/06/2022 Enero 2431.84

01/07/2022 Enero 2854.83

01/08/2022 Enero 3554.28

01/09/2022 Enero 3756.17

01/10/2022 Enero 3454.35

Results table

In the load script, first the MonthNames variable is modified to list the months of the year abbreviated
in Spanish. The Month function is used with the date field as the provided argument.

Script syntax and chart functions - Qlik Sense, May 2024 254

4 Working with variables in the data load editor

In the results table, the output of this Month function displays the months of the year in the format of
the MonthNames definition.

It is important to remember that if the language for the MonthNames variable is modified like it has
been in this example, the LongMonthNames variable would still contain the months of the year in
English. The LongMonthNames variable would have to be modified if both variables are used in the
application.

Example 3 – Date function
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates that is loaded into a table named Transactions.
l A date field.
l The default MonthNames definition.

Load script

SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec';

Transactions:

LOAD

date,

Month(date, ’MMM’) as monthname,

id,

amount

INLINE

[

date,id,amount

01/01/2022,1,1000.45

01/02/2022,2,2123.34

01/03/2022,3,4124.35

01/04/2022,4,2431.36

01/05/2022,5,4787.78

01/06/2022,6,2431.84

01/07/2022,7,2854.83

01/08/2022,8,3554.28

01/09/2022,9,3756.17

01/10/2022,10,3454.35

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 255

4 Working with variables in the data load editor

l date

l monthname

Create this measure:

=sum(amount)

date monthname sum(amount)

01/01/2022 Jan 1000.45

01/02/2022 Jan 2123.34

01/03/2022 Jan 4124.35

01/04/2022 Jan 2431.36

01/05/2022 Jan 4787.78

01/06/2022 Jan 2431.84

01/07/2022 Jan 2854.83

01/08/2022 Jan 3554.28

01/09/2022 Jan 3756.17

01/10/2022 Jan 3454.35

Results table

The default MonthNames definition is used. In the load script, the Date function is used with the date

field as the first argument. The second argument is MMM.

Using this formatting Qlik Sense converts the values from the first argument into the corresponding
month name set in the variable MonthNames. In the results table, the field values of our created field
month display this.

NumericalAbbreviation
The numerical abbreviation sets which abbreviation to use for scale prefixes of numerals, for
example M for mega or a million (106), and µ for micro (10-6).

Syntax:
NumericalAbbreviation

You set the NumericalAbbreviation variable to a string containing a list of abbreviation definition
pairs, delimited by semi colon. Each abbreviation definition pair should contain the scale (the
exponent in decimal base) and the abbreviation separated by a colon, for example, 6:M for a million.

The default setting is '3:k;6:M;9:G;12:T;15:P;18:E;21:Z;24:Y;-3:m;-6:µ;-9:n;-12:p;-15:f;-18:a;-

21:z;-24:y'.

Examples:

This setting will change the prefix for a thousand to t and the prefix for a billion to B. This would be
useful for financial applications where you would expect abbreviations like t$, M$, and B$.

Script syntax and chart functions - Qlik Sense, May 2024 256

4 Working with variables in the data load editor

Set NumericalAbbreviation='3:t;6:M;9:B;12:T;15:P;18:E;21:Z;24:Y;-3:m;-6:µ;-9:n;-12:p;-15:f;-

18:a;-21:z;-24:y';

ReferenceDay
The setting defines which day in January to set as reference day to define week 1. In
other words, this setting prescribes how many days in week 1 must be dates within
January.

Syntax:
ReferenceDay

ReferenceDay sets how many days are included in the first week of the year. ReferenceDay can be set
to any value between 1 and 7. Any value outside of the 1-7 range is interpreted as the midpoint of
the week (4), which is equivalent to ReferenceDay being set to 4.

If you do not select a value for the ReferenceDay setting, then the default value will show
ReferenceDay=0 which will be interpreted as the midpoint of the week (4), as seen in the ReferenceDay

values table below.

The ReferenceDay function is often used in combination with the following functions:

Variable Interaction

BrokenWeeks
(page 213)

If the Qlik Sense app is operating with unbroken weeks, the ReferenceDay

variable setting will be enforced. However, if broken weeks are being used,
week 1 will begin on January 1 and terminate in conjunction with the
FirstWeekDay variable setting and ignore the ReferenceDay flag.

FirstWeekDay
(page 228)

Integer that defines which day to use as the first day of the week.

Related functions

Qlik Sense allows the following values to be set for ReferenceDay:

Value Reference day

0 (default) January 4

1 January 1

2 January 2

3 January 3

4 January 4

5 January 5

6 January 6

7 January 7

ReferenceDay values

In the following example the ReferenceDay = 3 defines January 3 as the reference day:

Script syntax and chart functions - Qlik Sense, May 2024 257

4 Working with variables in the data load editor

SET ReferenceDay=3; //(set January 3 as the reference day)

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Examples:

If you want ISO settings for weeks and week numbers, make sure to have the following in the script:

Set FirstWeekDay=0;

Set BrokenWeeks=0;

Set ReferenceDay=4; // Jan 4th is always in week 1

If you want US settings, make sure to have the following in the script:

Set FirstWeekDay=6;

Set BrokenWeeks=1;

Set ReferenceDay=1; // Jan 1st is always in week 1

Example 1 - Load script using the default value; ReferenceDay=0
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The ReferenceDay variable that is set to 0.
l The BrokenWeeks variable that is set to 0 which forces the app to use unbroken weeks.
l A dataset of dates from the end of 2019 to the start of 2020.

Load script

SET BrokenWeeks = 0;

SET ReferenceDay = 0;

Sales:

LOAD

date,

sales,

week(date) as week,

Script syntax and chart functions - Qlik Sense, May 2024 258

4 Working with variables in the data load editor

weekday(date) as weekday

Inline [

date,sales

12/27/2019,5000

12/28/2019,6000

12/29/2019,7000

12/30/2019,4000

12/31/2019,3000

01/01/2020,6000

01/02/2020,3000

01/03/2020,6000

01/04/2020,8000

01/05/2020,5000

01/06/2020,7000

01/07/2020,3000

01/08/2020,5000

01/09/2020,9000

01/10/2020,5000

01/11/2020,7000

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l week

l weekday

date week weekday

12/27/2019 52 Fri

12/28/2019 52 Sat

12/29/2019 1 Sun

12/30/2019 1 Mon

12/31/2019 1 Tue

01/01/2020 1 Wed

01/02/2020 1 Thu

01/03/2020 1 Fri

01/04/2020 1 Sat

01/05/2020 2 Sun

01/06/2020 2 Mon

01/07/2020 2 Tue

01/08/2020 2 Wed

Results table

Script syntax and chart functions - Qlik Sense, May 2024 259

4 Working with variables in the data load editor

date week weekday

01/09/2020 2 Thu

01/10/2020 2 Fri

01/11/2020 2 Sat

Week 52 concludes on Saturday, December 28. Because ReferenceDay requires January 4 to be
included in week 1, week 1 therefore begins on December 29 and concludes on Saturday, January
4.

Example - ReferenceDay variable set to 5
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The ReferenceDay variable that is set to 5.
l The BrokenWeeks variable that is set to 0 which forces the app to use unbroken weeks.
l A dataset of dates from the end of 2019 to the start of 2020.

Load script

SET BrokenWeeks = 0;

SET ReferenceDay = 5;

Sales:

LOAD

date,

sales,

week(date) as week,

weekday(date) as weekday

Inline [

date,sales

12/27/2019,5000

12/28/2019,6000

12/29/2019,7000

12/30/2019,4000

12/31/2019,3000

01/01/2020,6000

01/02/2020,3000

01/03/2020,6000

01/04/2020,8000

01/05/2020,5000

01/06/2020,7000

01/07/2020,3000

01/08/2020,5000

01/09/2020,9000

Script syntax and chart functions - Qlik Sense, May 2024 260

4 Working with variables in the data load editor

01/10/2020,5000

01/11/2020,7000

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l week

l weekday

date week weekday

12/27/2019 52 Fri

12/28/2019 52 Sat

12/29/2019 53 Sun

12/30/2019 53 Mon

12/31/2019 53 Tue

01/01/2020 53 Wed

01/02/2020 53 Thu

01/03/2020 53 Fri

01/04/2020 53 Sat

01/05/2020 1 Sun

01/06/2020 1 Mon

01/07/2020 1 Tue

01/08/2020 1 Wed

01/09/2020 1 Thu

01/10/2020 1 Fri

01/11/2020 1 Sat

Results table

Week 52 concludes on Saturday, December 28. The BrokenWeeks variable forces the app to use
unbroken weeks. The reference day value of 5 requires January 5 to be included in week 1.

However, this is eight days after the conclusion of week 52 of the previous year. Therefore, week
53 begins on December 29 and concludes on January 4. Week 1 begins on Sunday, January 5.

ThousandSep
The thousands separator defined replaces the digit grouping symbol of the operating
system (regional settings).

Script syntax and chart functions - Qlik Sense, May 2024 261

4 Working with variables in the data load editor

Syntax:
ThousandSep
Qlik Sense object using the ThousandSep variable (with thousands separator)

Qlik Sense apps interpret text fields that conform to this formatting as numbers. This formatting will
be displayed in chart objects when a numerical field’s Number formatting property is set to
Number.

ThousandSep is helpful when handling data sources received from multiple regional settings.

If the ThousandSep variable is modified after objects have already been created and
formatted in the application, the user will need to re-format each relevant field by de-
selecting and then re-selecting the Number formatting property Number.

The following examples show possible uses of the ThousandSep system variable:

Set ThousandSep=','; //(for example, seven billion will be displayed as: 7,000,000,000)

Set ThousandSep=' '; //(for example, seven billion will be displayed as: 7 000 000 000)

These topics may help you work with this function:

Topic Description

DecimalSep
(page 225)

In instances of text field interpretation, the decimal separator settings, as
provided by this function, must also be respected. For number formatting,
DecimalSep will be used by Qlik Sense where necessary.

Related topics

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Script syntax and chart functions - Qlik Sense, May 2024 262

4 Working with variables in the data load editor

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 - Default system variables
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table named Transactions.
l Use of the default ThousandSep variable definition.

Load script

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,10000000441

01/02/2022,2,21237492432

01/03/2022,3,41249475336

01/04/2022,4,24313369837

01/05/2022,5,47873578754

01/06/2022,6,24313884663

01/07/2022,7,28545883436

01/08/2022,8,35545828255

01/09/2022,9,37565817436

01/10/2022,10,3454343566

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add this field as a dimension:date.
2. Add the following measure:

=sum(amount)

3. In the properties panel, under Data, select the measure.
4. Under Number formatting, select Number.

Script syntax and chart functions - Qlik Sense, May 2024 263

4 Working with variables in the data load editor

Adjusting number formatting for a chart measure

date =sum(amount)

01/01/2022 10,000,000,441.00

01/02/2022 21,237,492,432.00

01/03/2022 41,249,475,336.00

01/04/2022 24,313,369,837.00

01/05/2022 47,873,578,754.00

01/06/2022 24,313,884,663.00

01/07/2022 28,545,883,436.00

01/08/2022 35,545,828,255.00

01/09/2022 37,565,817,436.00

01/10/2022 3,454,343,566.00

Results table

In this example, the default ThousandSep definition, which is set to comma format (‘,’), is used. In the
results table, the format of the amount field displays a comma between thousand groupings.

Example 2 - Changing system variable
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, May 2024 264

4 Working with variables in the data load editor

The load script contains:

l The same dataset from the first example, which is loaded into a table named Transactions.
l Modification of the ThousandSep definition, at the start of the script, to display a '*' character

as the thousands separator. This is an extreme example, and is used solely to demonstrate
the functionality of the variable.

The modification used in this example is extreme and not commonly used, but is shown here to
demonstrate the functionality of the variable.

Load script

SET ThousandSep='*';

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,10000000441

01/02/2022,2,21237492432

01/03/2022,3,41249475336

01/04/2022,4,24313369837

01/05/2022,5,47873578754

01/06/2022,6,24313884663

01/07/2022,7,28545883436

01/08/2022,8,35545828255

01/09/2022,9,37565817436

01/10/2022,10,3454343566

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add this field as a dimension:date.
2. Add the following measure:

=sum(amount)

3. In the properties panel, under Data, select the measure.
4. Under Number formatting, select Custom.

date =sum(amount)

01/01/2022 10*000*000*441.00

01/02/2022 21*237*492*432.00

Results table

Script syntax and chart functions - Qlik Sense, May 2024 265

4 Working with variables in the data load editor

date =sum(amount)

01/03/2022 41*249*475*336.00

01/04/2022 24*313*369*837.00

01/05/2022 47*873*578*754.00

01/06/2022 24*313*884*663.00

01/07/2022 28*545*883*436.00

01/08/2022 35*545*828*255.00

01/09/2022 37*565*817*436.00

01/10/2022 3*454*343*566.00

At the start of the script, the ThousandSep system variable is modified to a '*'. In the results table, the
format of the amount field can be seen to display a ‘*’ between thousand grouping.

Example 3 - Text interpretation
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table named Transactions.
l Data which has its numerical field in text format, with a comma used as the thousands

separator.
l Use of the default ThousandSep system variable.

Load script

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount

01/01/2022,1,'10,000,000,441'

01/02/2022,2,'21,492,432'

01/03/2022,3,'4,249,475,336'

01/04/2022,4,'24,313,369,837'

01/05/2022,5,'4,873,578,754'

01/06/2022,6,'313,884,663'

01/07/2022,7,'2,545,883,436'

01/08/2022,8,'545,828,255'

Script syntax and chart functions - Qlik Sense, May 2024 266

4 Working with variables in the data load editor

01/09/2022,9,'37,565,817,436'

01/10/2022,10,'3,454,343,566'

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add this field as a dimension:date.
2. Add the following measure:

=sum(amount)

3. In the properties panel, under Data, select the measure.
4. Under Number formatting, select Number.
5. Add the following measure to evaluate whether or not the amount field is a numerical value:

=isnum(amount)

date =sum(amount) =isnum(amount)

01/01/2022 10,000,000,441.00 -1

01/02/2022 21,492,432.00 -1

01/03/2022 4,249,475,336.00 -1

01/04/2022 24,313,369,837.00 -1

01/05/2022 4,873,578,754.00 -1

01/06/2022 313,884,663.00 -1

01/07/2022 2,545,883,436.00 -1

01/08/2022 545,828,255.00 -1

01/09/2022 37,565,817,436.00 -1

01/10/2022 3*454*343*566.00 -1

Results table

Once the data is loaded, we can see that Qlik Sense has interpreted the amount field as a numerical
value, due to the data conforming to the ThousandSep variable. This is demonstrated by the isnum()

function, which evaluates each entry to -1, or TRUE.

In Qlik Sense, the Boolean true value is represented by -1, and the false value is
represented by 0.

TimeFormat
The format defined replaces the time format of the operating system (regional settings).

Syntax:
TimeFormat

Script syntax and chart functions - Qlik Sense, May 2024 267

4 Working with variables in the data load editor

Example:

Set TimeFormat='hh:mm:ss';

TimestampFormat
The format defined replaces the date and time formats of the operating system
(regional settings).

Syntax:
TimestampFormat

Example:

The following examples use 1983-12-14T13:15:30Z as timestamp data to show the results of
different SET TimestampFormat statements. The date format used is YYYYMMDD and the time
format is h:mm:ss TT. The date format is specified in the SET DateFormat statement and the time
format is specified in the SET TimeFormat statement, at the top of the data load script.

Example Result

SET TimestampFormat='YYYYMMDD'; 19831214

SET TimestampFormat='M/D/YY hh:mm:ss[.fff]'; 12/14/83 13:15:30

SET TimestampFormat='DD/MM/YYYY hh:mm:ss[.fff]'; 14/12/1983 13:15:30

SET TimestampFormat='DD/MM/YYYY hh:mm:ss[.fff] TT'; 14/12/1983 1:15:30 PM

SET TimestampFormat='YYYY-MM-DD hh:mm:ss[.fff] TT'; 1983-12-14 01:15:30

Results

Examples: Load script
Example: Load script
In the first load script SET TimestampFormat='DD/MM/YYYY h:mm:ss[.fff] TT' is used. In the
second load script the timestamp format is changed to SET TimestampFormat='MM/DD/YYYY
hh:mm:ss[.fff]'. The different results show how the SET TimeFormat statement works with
different time data formats.

The table below shows the data set that is used in the load scripts that follow. The second column
of the table shows the format of each timestamp in the data set. The first five timestamps follow
ISO 8601 rules but the sixth does not.

Script syntax and chart functions - Qlik Sense, May 2024 268

4 Working with variables in the data load editor

Data set

transaction_timestamp time data format

2018-08-30 YYYY-MM-DD

20180830T193614.857 YYYYMMDDhhmmss.sss

20180830T193614.857+0200 YYYYMMDDhhmmss.sss±hhmm

2018-09-16T12:30-02:00 YYYY-MM-DDhh:mm±hh:mm

2018-09-16T13:15:30Z YYYY-MM-DDhh:mmZ

9/30/18 19:36:14 M/D/YY hh:mm:ss

Table showing the time data used and the format for each timestamp in
the data set.

In the Data load editor, create a new section, and then add the example script and run it. Then add,
at least, the fields listed in the results column to a sheet in your app to see the result.

Load script

SET FirstWeekDay=0;

SET BrokenWeeks=1;

SET ReferenceDay=0;

SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';

SET LongDayNames='Monday;Tuesday;Wednesday;Thursday;Friday;Saturday;Sunday';

SET DateFormat='YYYYMMDD';

SET TimestampFormat='DD/MM/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*,

Timestamp(transaction_timestamp, 'YYYY-MM-DD hh:mm:ss[.fff]') as LogTimestamp

;

Load * Inline [

transaction_id, transaction_timestamp, transaction_amount, transaction_quantity, discount,

customer_id, size, color_code

3750, 2018-08-30, 12423.56, 23, 0,2038593, L, Red

3751, 20180830T193614.857, 5356.31, 6, 0.1, 203521, m, orange

3752, 20180830T193614.857+0200, 15.75, 1, 0.22, 5646471, S, blue

3753, 2018-09-16T12:30-02:00, 1251, 7, 0, 3036491, l, Black

3754, 2018-09-16T13:15:30Z, 21484.21, 1356, 75, 049681, xs, Red

3755, 9/30/18 19:36:14, -59.18, 2, 0.333333333333333, 2038593, M, Blue

];

Script syntax and chart functions - Qlik Sense, May 2024 269

4 Working with variables in the data load editor

Results

transaction_id transaction_timestamp LogTimeStamp

3750 2018-08-30 2018-08-30 00:00:00

3751 20180830T193614.857 2018-08-30 19:36:14

3752 20180830T193614.857+0200 2018-08-30 17:36:14

3753 2018-09-16T12:30-02:00 2018-09-16 14:30:00

3754 2018-09-16T13:15:30Z 2018-09-16 13:15:30

3755 9/30/18 19:36:14 -

Qlik Sense table showing results of the TimestampFormat interpretation
variable being used in the load script. The last timestamp in the data set does

not return a correct date.

The next load script uses the same data set. However, it uses SET
TimestampFormat='MM/DD/YYYY hh:mm:ss[.fff]' to match the non-ISO 8601 format of the sixth
timestamp.

In the Data load editor, replace the previous example script with the one below and run it. Then
add, at least, the fields listed in the results column to a sheet in your app to see the result.

Load script

SET FirstWeekDay=0;

SET BrokenWeeks=1;

SET ReferenceDay=0;

SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';

SET LongDayNames='Monday;Tuesday;Wednesday;Thursday;Friday;Saturday;Sunday';

SET DateFormat='YYYYMMDD';

SET TimestampFormat='MM/DD/YYYY hh:mm:ss[.fff]';

Transactions:

Load

*,

Timestamp(transaction_timestamp, 'YYYY-MM-DD hh:mm:ss[.fff]') as LogTimestamp

;

Load * Inline [

transaction_id, transaction_timestamp, transaction_amount, transaction_quantity, discount,

customer_id, size, color_code

3750, 2018-08-30, 12423.56, 23, 0,2038593, L, Red

3751, 20180830T193614.857, 5356.31, 6, 0.1, 203521, m, orange

3752, 20180830T193614.857+0200, 15.75, 1, 0.22, 5646471, S, blue

3753, 2018-09-16T12:30-02:00, 1251, 7, 0, 3036491, l, Black

3754, 2018-09-16T13:15:30Z, 21484.21, 1356, 75, 049681, xs, Red

3755, 9/30/18 19:36:14, -59.18, 2, 0.333333333333333, 2038593, M, Blue

];

Script syntax and chart functions - Qlik Sense, May 2024 270

4 Working with variables in the data load editor

Results

transaction_id transaction_timestamp LogTimeStamp

3750 2018-08-30 2018-08-30 00:00:00

3751 20180830T193614.857 2018-08-30 19:36:14

3752 20180830T193614.857+0200 2018-08-30 17:36:14

3753 2018-09-16T12:30-02:00 2018-09-16 14:30:00

3754 2018-09-16T13:15:30Z 2018-09-16 13:15:30

3755 9/30/18 19:36:14 2018-09-16 19:36:14

Qlik Sense table showing results of the TimestampFormat interpretation
variable being used in the load script.

4.9 Direct Discovery variables

Direct Discovery system variables
DirectCacheSeconds
You can set a caching limit to the Direct Discovery query results for visualizations. Once this time
limit is reached, Qlik Sense clears the cache when new Direct Discovery queries are made. Qlik
Sense queries the source data for the selections and creates the cache again for the designated
time limit. The result for each combination of selections is cached independently. That is, the cache
is refreshed for each selection independently, so one selection refreshes the cache only for the
fields selected, and a second selection refreshes cache for its relevant fields. If the second
selection includes fields that were refreshed in the first selection, they are not updated in cache
again if the caching limit has not been reached.

The Direct Discovery cache does not apply to Table visualizations. Table selections query the data
source every time.

The limit value must be set in seconds. The default cache limit is 1800 seconds (30 minutes).

The value used for DirectCacheSeconds is the value set at the time the DIRECT QUERY statement
is executed. The value cannot be changed at runtime.

Example:

SET DirectCacheSeconds=1800;

DirectConnectionMax
You can do asynchronous, parallel calls to the database by using the connection pooling capability.
The load script syntax to set up the pooling capability is as follows:

SET DirectConnectionMax=10;

Script syntax and chart functions - Qlik Sense, May 2024 271

4 Working with variables in the data load editor

The numeric setting specifies the maximum number of database connections the Direct Discovery
code should use while updating a sheet. The default setting is 1.

This variable should be used with caution. Setting it to greater than 1 is known to cause
problems when connecting to Microsoft SQL Server.

DirectUnicodeStrings
Direct Discovery can support the selection of extended Unicode data by using the SQL standard
format for extended character string literals (N’<extended string>’) as required by some databases
(notably SQL Server). The use of this syntax can be enabled for Direct Discovery with the script
variable DirectUnicodeStrings.

Setting this variable to 'true' will enable the use of the ANSI standard wide character marker “N” in
front of the string literals. Not all databases support this standard. The default setting is 'false'.

DirectDistinctSupport
When a DIMENSION field value is selected in a Qlik Sense object, a query is generated for the
source database. When the query requires grouping, Direct Discovery uses the DISTINCT keyword
to select only unique values. Some databases, however, require the GROUP BY keyword. Set
DirectDistinctSupport to 'false' to generate GROUP BY instead of DISTINCT in queries for unique
values.

SET DirectDistinctSupport='false';

If DirectDistinctSupport is set to true, then DISTINCT is used. If it is not set, the default behavior is
to use DISTINCT.

DirectEnableSubquery
In high cardinality multi-table scenarios, it is possible to generate sub queries in the SQL query
instead of generating a large IN clause. This is activated by setting DirectEnableSubquery to 'true'.
The default value is 'false'.

When DirectEnableSubquery is enabled, you cannot load tables that are not in Direct
Discovery mode.

SET DirectEnableSubquery='true';

Teradata query banding variables
Teradata query banding is a function that enables enterprise applications to collaborate with the
underlying Teradata database in order to provide for better accounting, prioritization, and workload
management. Using query banding you can wrap metadata, such as user credentials, around a
query.

Two variables are available, both are strings that are evaluated and sent to the database.

SQLSessionPrefix
This string is sent when a connection to the database is created.

Script syntax and chart functions - Qlik Sense, May 2024 272

4 Working with variables in the data load editor

SET SQLSessionPrefix = 'SET QUERY_BAND = ' & Chr(39) & 'Who=' & OSuser() & ';' & Chr(39) & '

FOR SESSION;';

If OSuser() for example returns WA\sbt, this will be evaluated to SET QUERY_BAND = 'Who=WA\sbt;'

FOR SESSION; , which is sent to the database when the connection is created.

SQLQueryPrefix
This string is sent for each single query.

SET SQLSessionPrefix = 'SET QUERY_BAND = ' & Chr(39) & 'Who=' & OSuser() & ';' & Chr(39) & '

FOR TRANSACTION;';

Direct Discovery character variables
DirectFieldColumnDelimiter
You can set the character used as the field delimiter in Direct Query statements for databases that
require a character other than comma as the field delimiter. The specified character must be
surrounded by single quotation marks in the SET statement.

SET DirectFieldColumnDelimiter= '|'

DirectStringQuoteChar
You can specify a character to use to quote strings in a generated query. The default is a single
quotation mark. The specified character must be surrounded by single quotation marks in the SET
statement.

SET DirectStringQuoteChar= '"';

DirectIdentifierQuoteStyle
You can specify that non-ANSI quoting of identifiers be used in generated queries. At this time, the
only non-ANSI quoting available is GoogleBQ. The default is ANSI. Uppercase, lowercase, and
mixed case can be used (ANSI, ansi, Ansi).

SET DirectIdentifierQuoteStyle="GoogleBQ";

For example, ANSI quoting is used in the following SELECT statement:

SELECT [Quarter] FROM [qvTest].[sales] GROUP BY [Quarter]

When DirectIdentifierQuoteStyle is set to "GoogleBQ", the SELECT statement would use quoting
as follows:

SELECT [Quarter] FROM [qvTest.sales] GROUP BY [Quarter]

DirectIdentifierQuoteChar
You can specify a character to control the quoting of identifiers in a generated query. This can be
set to either one character (such as a double quotation mark) or two (such as a pair of square
brackets). The default is a double quotation mark.

SET DirectIdentifierQuoteChar='[]';

SET DirectIdentifierQuoteChar='``';

SET DirectIdentifierQuoteChar=' ';

SET DirectIdentifierQuoteChar='""';

Script syntax and chart functions - Qlik Sense, May 2024 273

4 Working with variables in the data load editor

DirectTableBoxListThreshold
When Direct Discovery fields are used in a Table visualization, a threshold is set to limit the number
of rows displayed. The default threshold is 1000 records. The default threshold setting can be
changed by setting the DirectTableBoxListThreshold variable in the load script. For example:

SET DirectTableBoxListThreshold=5000;

The threshold setting applies only to Table visualizations that contain Direct Discovery fields. Table
visualizations that contain only in-memory fields are not limited by the
DirectTableBoxListThreshold setting.

No fields are displayed in the Table visualization until the selection has fewer records than the
threshold limit.

Direct Discovery number interpretation variables
DirectMoneyDecimalSep
The decimal separator defined replaces the decimal symbol for currency in the SQL statement
generated to load data using Direct Discovery. This character must match the character used in
DirectMoneyFormat.

Default value is '.'

Example:

Set DirectMoneyDecimalSep='.';

DirectMoneyFormat
The symbol defined replaces the currency format in the SQL statement generated to load data
using Direct Discovery. The currency symbol for the thousands separator should not be included.

Default value is '#.0000'

Example:

Set DirectMoneyFormat='#.0000';

DirectTimeFormat
The time format defined replaces the time format in the SQL statement generated to load data
using Direct Discovery.

Example:

Set DirectTimeFormat='hh:mm:ss';

DirectDateFormat
The date format defined replaces the date format in the SQL statement generated to load data
using Direct Discovery.

Example:

Set DirectDateFormat='MM/DD/YYYY';

Script syntax and chart functions - Qlik Sense, May 2024 274

4 Working with variables in the data load editor

DirectTimeStampFormat
The format defined replaces the date and time format in the SQL statement generated in the SQL
statement generated to load data using Direct Discovery.

Example:

Set DirectTimestampFormat='M/D/YY hh:mm:ss[.fff]';

4.10 Error variables
The values of all error variables will exist after the script execution. The first variable, ErrorMode, is
input from the user, and the last three are output from Qlik Sense with information on errors in the
script.

Error variables overview
Each variable is described further after the overview. You can also click the variable name in the
syntax to immediately access the details for that specific variable.

Refer to the Qlik Sense online help for further details about the variable.

ErrorMode
This error variable determines what action is to be taken by Qlik Sense when an error is
encountered during script execution.

ErrorMode

ScriptError
This error variable returns the error code of the last executed script statement.

ScriptError

ScriptErrorCount
This error variable returns the total number of statements that have caused errors during the
current script execution. This variable is always reset to 0 at the start of script execution.

ScriptErrorCount

ScriptErrorList
This error variable will contain a concatenated list of all script errors that have occurred during the
last script execution. Each error is separated by a line feed.

ScriptErrorList

ErrorMode
This error variable determines what action is to be taken by Qlik Sense when an error is
encountered during script execution.

Syntax:
ErrorMode

Script syntax and chart functions - Qlik Sense, May 2024 275

4 Working with variables in the data load editor

Arguments:

Argument Description

ErrorMode=1 The default setting. The script execution will halt and the user will be
prompted for action (non-batch mode).

ErrorMode =0 Qlik Sense will simply ignore the failure and continue script execution at the
next script statement.

ErrorMode =2 Qlik Sense will trigger an "Execution of script failed..." error message
immediately on failure, without prompting the user for action beforehand.

Arguments

Example:

set ErrorMode=0;

ScriptError
This error variable returns the error code of the last executed script statement.

Syntax:
ScriptError

This variable will be reset to 0 after each successfully executed script statement. If an error occurs
it will be set to an internal Qlik Sense error code. Error codes are dual values with a numeric and a
text component. The following error codes exist:

Error code Description

0 No error. Dual value
text is empty.

1 General error.

2 Syntax error.

3 General ODBC error.

4 General OLE DB error.

5 General custom
database error.

6 General XML error.

7 General HTML error.

8 File not found.

Script error codes

Script syntax and chart functions - Qlik Sense, May 2024 276

4 Working with variables in the data load editor

Error code Description

9 Database not found.

10 Table not found.

11 Field not found.

12 File has wrong format.

16 Semantic error.

Example:

set ErrorMode=0;

LOAD * from abc.qvf;

if ScriptError=8 then

exit script;

//no file;

end if

ScriptErrorCount
This error variable returns the total number of statements that have caused errors during the
current script execution. This variable is always reset to 0 at the start of script execution.

Syntax:
ScriptErrorCount

ScriptErrorList
This error variable will contain a concatenated list of all script errors that have occurred during the
last script execution. Each error is separated by a line feed.

Syntax:
ScriptErrorList

Script syntax and chart functions - Qlik Sense, May 2024 277

5 Script expressions

5 Script expressions
Expressions can be used in both LOAD statements and SELECT statements. The
syntax and functions described here apply to the LOAD statement, and not to the
SELECT statement, since the latter is interpreted by the ODBC driver and not by Qlik
Sense. However, most ODBC drivers are often capable of interpreting a number of the
functions described below.

Expressions consist of functions, fields and operators, combined in a syntax.

All expressions in a Qlik Sense script return a number and/or a string, whichever is appropriate.
Logical functions and operators return 0 for False and -1 for True. Number to string conversions and
vice versa are implicit. Logical operators and functions interpret 0 as False and all else as True.

The general syntax for an expression is:

Expression Fields Operator

expression ::= (constant constant |

expression ::= (constant fieldref |

expression ::= (constant operator1 expression |

expression ::= (constant expression operator2 expression |

expression ::= (constant function |

expression ::= (constant (expression))

General syntax

where:

l constant is a string (a text, a date or a time) enclosed by single straight quotation marks, or a
number. Constants are written with no thousands separator and with a decimal point as the
decimal separator.

l fieldref is a field name of the loaded table.
l operator1 is a unary operator (working on one expression, the one to the right).
l operator2 is a binary operator (working on two expressions, one on each side).
l function ::= functionname(parameters)
l parameters ::= expression { , expression }

The number and types of parameters are not arbitrary. They depend on the function used.

Expressions and functions can thus be nested freely, and as long as the expression returns an
interpretable value, Qlik Sense will not give any error messages.

Script syntax and chart functions - Qlik Sense, May 2024 278

6 Chart expressions

6 Chart expressions
A chart (visualization) expression is a combination of functions, fields, and
mathematical operators (+ * / =), and other measures. Expressions are used to process
data in the app in order to produce a result that can be seen in a visualization. They are
not limited to use in measures. You can build visualizations that are more dynamic and
powerful, with expressions for titles, subtitles, footnotes, and even dimensions.

This means, for example, that instead of the title of a visualization being static text, it
can be made from an expression whose result changes depending on the selections
made.

For detailed reference regarding script functions and chart functions, see the Script
syntax and chart functions.

6.1 Defining the aggregation scope
There are usually two factors that together determine which records are used to define
the value of aggregation in an expression. When working in visualizations these factors
are:

l Dimensional value (of the aggregation in a chart expression)
l Selections

Together, these factors define the scope of the aggregation. You may come across situations
where you want your calculation to disregard the selection, the dimension or both. In chart
functions, you can achieve this by using the TOTAL qualifier, set analysis or a combination of the
two.

Script syntax and chart functions - Qlik Sense, May 2024 279

6 Chart expressions

Method Description

TOTAL
qualifier

Using the total qualifier inside your aggregation function disregards the dimensional
value.

The aggregation will be performed on all possible field values.

The TOTAL qualifier may be followed by a list of one or more field names within
angle brackets. These field names should be a subset of the chart dimension
variables. In this case, the calculation is made disregarding all chart dimension
variables except those listed, that is, one value is returned for each combination of
field values in the listed dimension fields. Also, fields that are not currently a
dimension in a chart may be included in the list. This may be useful in the case of
group dimensions, where the dimension fields are not fixed. Listing all of the
variables in the group causes the function to work when the drill-down level
changes.

Set
analysis

Using set analysis inside your aggregation overrides the selection. The aggregation
will be performed on all values split across the dimensions.

TOTAL
qualifier
and set
analysis

Using the TOTAL qualifier and set analysis inside your aggregation overrides the
selection and disregards the dimensions.

ALL
qualifier

Using the ALL qualifier inside your aggregation disregards the selection and the
dimensions. The equivalent can be achieved with the {1} set analysis statement and
the TOTAL qualifier:

=sum(All Sales)

=sum({1} Total Sales)

Aggregation: Method and description

Example: TOTAL qualifier

The following example shows how TOTAL can be used to calculate a relative share. Assuming that
Q2 has been selected, using TOTAL calculates the sum of all values disregarding the dimensions.

Year Quarter
Sum
(Amount)

Sum(TOTAL
Amount)

Sum(Amount)/Sum(TOTAL
Amount)

3000 3000 100%

2012 Q2 1700 3000 56,7%

2013 Q2 1300 3000 43,3%

Example: Total qualifier

Script syntax and chart functions - Qlik Sense, May 2024 280

6 Chart expressions

To show the numbers as a percentage, in the properties panel, for the measure you want
to show as a percentage value, under Number formatting, select Number, and from
Formatting, choose Simple and one of the % formats.

Example: Set analysis

The following example shows how set analysis can be used to make a comparison between data
sets before any selection was made. Assuming that Q2 has been selected, using set analysis with
the set definition {1} calculates the sum of all values disregarding any selections but split by the
dimensions.

Year Quarter Sum(Amount) Sum({1} Amount) Sum(Amount)/Sum({1} Amount)

3000 10800 27,8%

2012 Q1 0 1100 0%

2012 Q3 0 1400 0%

2012 Q4 0 1800 0%

2012 Q2 1700 1700 100%

2013 Q1 0 1000 0%

2013 Q3 0 1100 0%

2013 Q4 0 1400 0%

2013 Q2 1300 1300 100%

Example: Set analysis

Example: TOTAL qualifier and set analysis

The following example shows how set analysis and the TOTAL qualifier can be combined to make a
comparison between data sets before any selection was made and across all dimensions. Assuming
that Q2 has been selected, using set analysis with the set definition {1} and the TOTAL qualifier
calculates the sum of all values disregarding any selections and disregarding the dimensions.

Year Quarter
Sum
(Amount)

Sum({1} TOTAL
Amount)

Sum(Amount)/Sum({1} TOTAL
Amount)

3000 10800 27,8%

2012 Q2 1700 10800 15,7%

2013 Q2 1300 10800 12%

Example: TOTAL qualifier and set analysis

Data used in examples:

AggregationScope:

LOAD * inline [

Script syntax and chart functions - Qlik Sense, May 2024 281

6 Chart expressions

Year Quarter Amount

2012 Q1 1100

2012 Q2 1700

2012 Q3 1400

2012 Q4 1800

2013 Q1 1000

2013 Q2 1300

2013 Q3 1100

2013 Q4 1400] (delimiter is ' ');

6.2 Set analysis
When you make a selection in an app, you define a subset of records in the data.
Aggregation functions, such as Sum(), Max(), Min(), Avg(), and Count() are calculated based
on this subset.

In other words, your selection defines the scope of the aggregation, it defines the set of records on
which calculations are made.

Set analysis offers a way of defining a scope that is different from the set of records defined by the
current selection. This new scope can also be regarded as an alternative selection.

This can be useful if you want to compare the current selection with a particular value, for example
last year’s value or the global market share.

Set expressions
Set expressions can be used inside and outside aggregation functions, and are enclosed in curly
brackets.

Example: Inner set expression

Sum({$<Year={2021}>} Sales)

Example: Outer set expression

{<Year={2021}>} Sum(Sales) / Count(distinct Customer)

A set expression consists of a combination of the following elements:

l Identifiers. A set identifier represents a selection, defined elsewhere. It also represents a
specific set of records in the data. It could be the current selection, a selection from a
bookmark, or a selection from an alternate state. A simple set expression consists of a single
identifier, such as the dollar sign, {$}, which means all records in the current selection.
Examples: $, 1, BookMark1, State2

l Operators. A set operator can be used to create unions, differences or intersections
between different set identifiers. This way, you can create a subset or a superset of the
selections defined by the set identifiers.
Examples: +, -, *, /

Script syntax and chart functions - Qlik Sense, May 2024 282

6 Chart expressions

l Modifiers. A set modifier can be added to the set identifier to change its selection. A modifier
can also be used on its own and will then modify the default identifier. A modifier must be
enclosed in angle brackets <…>.
Examples: <Year={2020}>, <Supplier={ACME}>

The elements are combined to form set expressions.

Elements in a set expression

The set expression above, for example, is built from the aggregation Sum(Sales).

The first operand returns sales for the year 2021 for the current selection, which is indicated by the $

set identifier and the modifier containing the selection of year 2021. The second operand returns
Sales for Sweden, and ignores the current selection, which is indicated by the 1 set identifier.

Finally, the expression returns a set consisting of the records that belongs to any of the two set
operands, as indicated by the + set operator.

Examples
Examples that combine the set expression elements above are available in the following topics:

Natural sets
Usually, a set expression represents both a set of records in the data model, and a selection that
defines this subset of data. In this case, the set is called a natural set.

Set identifiers, with or without set modifiers, always represent natural sets.

However, a set expression using set operators also represents a subset of the records, but can
generally still not be described using a selection of field values. Such an expression is a non-natural
set.

For example, the set given by {1-$} cannot always be defined by a selection. It is therefore not a
natural set. This can be shown by loading the following data, adding it to a table, and then making
selections using filter panes.

Load * Inline

[Dim1, Dim2, Number

A, X, 1

A, Y, 1

B, X, 1

Script syntax and chart functions - Qlik Sense, May 2024 283

6 Chart expressions

B, Y, 1];

By making selections for Dim1 and Dim2, you get the view shown in the following table.

Table with natural and non-natural sets

The set expression in the first measure uses a natural set: it corresponds to the selection that is
made {$}.

The second measure is different. It uses {1-$}. It is not possible to make a selection that
corresponds to this set, so it is a non-natural set.

This distinction has a number of consequences:

l Set modifiers can only be applied to set identifiers. They cannot be applied to an arbitrary set
expression. For example, it is not possible to use a set expression such as:
{ (BM01 * BM02) <Field={x,y}> }

Here, the normal (round) brackets imply that the intersection between BM01 and BM02 should
be evaluated before the set modifier is applied. The reason is that there is no element set
that can be modified.

l You cannot use non-natural sets inside the P() and E() element functions. These functions
return an element set, but it is not possible to deduce the element set from a non-natural set.

l A measure using a non-natural set cannot always be attributed to the right dimensional value
if the data model has many tables. For example, in the following chart, some excluded sales
numbers are attributed to the correct Country, whereas others have NULL as Country.

Script syntax and chart functions - Qlik Sense, May 2024 284

6 Chart expressions

Chart with non-natural set

Whether or not the assignment is made correctly depends on the data model. In this case,
the number cannot be assigned if it pertains to a country that is excluded by the selection.

Identifier Description

1 Represents the full set of all the records in the application, irrespective of any
selections made.

$ Represents the records of the current selection. The set expression {$} is thus
the equivalent to not stating a set expression.

$1 Represents the previous selection. $2 represents the previous selection-but-
one, and so on.

$_1 Represents the next (forward) selection. $_2 represents the next selection-but-
one, and so on.

BM01 You can use any bookmark ID or bookmark name.

MyAltState You can reference the selections made in an alternate state by its state name.

Example Result

sum ({1} Sales) Returns total sales for the app, disregarding selections but not the
dimension.

sum ({$} Sales) Returns the sales for the current selection, that is, the same as sum(Sales).

sum ({$1} Sales) Returns the sales for the previous selection.

sum ({BM01}
Sales)

Returns the sales for the bookmark named BM01.

Script syntax and chart functions - Qlik Sense, May 2024 285

6 Chart expressions

Example Result

sum({$<OrderDate =
DeliveryDate>} Sales)

Returns the sales for the current selection where OrderDate =
DeliveryDate.

sum({1<Region = {US}>}
Sales)

Returns the sales for region US, disregarding the current
selection.

sum({$<Region = >} Sales) Returns the sales for the selection, but with the selection in
Region removed.

sum({<Region = >} Sales) Returns the same as the example above. When the set to
modify is omitted, $ is assumed.

sum({$<Year={2000},
Region={“U*”}>} Sales)

Returns the sales for the current selection, but with new
selections both in Year and in Region.

Set identifiers
A set identifier represents a set of records in the data; either all the data or a subset of
the data. It is the set of records defined by a selection. It could be the current selection,
all data (no selection), a selection from a bookmark, or a selection from an alternate
state.

In the example Sum({$<Year = {2009}>} Sales), the identifier is the dollar sign: $. This represents
the current selection. It also represents all the possible records. This set can then altered by the
modifier part of the set expression: the selection 2009 in Year is added.

The $ set identifier is the same as not stating a set identifier. For instance, with the example above,
the expression Sum({$<Year = {2009}>} Sales) is equivalent to Sum({<Year = {2009}>} Sales).

In a more complex set expression, two identifiers can be used together with an operator to form a
union, a difference, or an intersection of the two record sets.

The following table shows some common identifiers.

Identifier Description

1 Represents the full set of all the records in the application, irrespective of any
selections made.

$ (or no set
identifier)

Represents the records of the current selection in the default state. The set
expression {$} is thus usually the equivalent to not stating a set expression.

$1 Represents the previous selection in the default state. $2 represents the
previous selection-but-one, and so on.

$_1 Represents the next (forward) selection. $_2 represents the next selection-
but-one, and so on.

Examples with common identifiers

Script syntax and chart functions - Qlik Sense, May 2024 286

6 Chart expressions

Identifier Description

BM01 You can use any bookmark ID or bookmark name.

AltState You can reference an alternate state by its state name.

AltState::BM01 A bookmark contains the selections of all states, and you can reference a
specific bookmark by qualifying the bookmark name.

The following table shows examples with different identifiers.

Example Result

Sum ({1} Sales) Returns total sales for the app disregarding selections
but not the dimension.

Sum ({$} Sales) Returns the sales for the current selection, that is, the
same as Sum(Sales).

Sum ({$1} Sales) Returns the sales for the previous selection.

Sum ({BM01}

Sales)
Returns the sales for the bookmark named BM01.

Examples with different identifiers

Set operators
Set operators are used to include, exclude, or intersect data sets. All operators use sets as
operands and return a set as result.

You can use set operators in two different situations:

l To perform a set operation on set identifiers, representing sets of records in data.
l To perform a set operation on the element sets, on the field values, or inside a set modifier.

The following table shows the operators that can be used in set expressions.

Operator Description

+ Union. This binary operation returns a set consisting of the records or elements
that belong to any of the two set operands.

- Exclusion. This binary operation returns a set consisting of the records or elements
that belong to the first but not the other of the two set operands. Also, when used
as a unary operator, it returns the complement set.

* Intersection. This binary operation returns a set consisting of the records or
elements that belong to both set operands.

/ Symmetric difference (XOR). This binary operation returns a set consisting of the
records or elements that belong to either, but not both set operands.

Operators

The following table shows examples with operators.

Script syntax and chart functions - Qlik Sense, May 2024 287

6 Chart expressions

Example Result
Sum ({1-$} Sales) Returns sales for everything excluded by current selection.
Sum ({$*BM01} Sales) Returns sales for the intersection between the selection and

bookmark #160;BM01.
Sum ({-($+BM01)}

Sales)
Returns sales excluded by the selection and bookmark BM01.

Sum ({$<Year=

{2009}>+1<Country=

{'Sweden'}>} Sales)

Returns sales for the year 2009 associated with the current selections
and add the full set of data associated with the country Sweden across
all years.

Sum ({$<Country=

{"S*"}+{"*land"}>}

Sales)

Returns the sales for countries that begin with S or end with land.

Examples with operators

Set modifiers
Set expressions are used to define the scope of a calculation. The central part of the
set expression is the set modifier that specifies a selection. This is used to modify the
user selection, or the selection in the set identifier, and the result defines a new scope
for the calculation.

The set modifier consists of one or more field names, each followed by a selection that should be
made on the field. The modifier is enclosed by angled brackets: < >

For example:

l Sum ({$<Year = {2015}>} Sales)

l Count ({1<Country = {Germany}>} distinct OrderID)

l Sum ({$<Year = {2015}, Country = {Germany}>} Sales)

Element sets
An element set can be defined using the following:

l A list of values
l A search
l A reference to another field
l A set function

If the element set definition is omitted, the set modifier will clear any selection in this field. For
example:

Sum({$<Year = >} Sales)

Script syntax and chart functions - Qlik Sense, May 2024 288

6 Chart expressions

Examples: Chart expressions for set modifiers based on element sets
Examples - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression
examples below.

MyTable:

Load * Inline [

Country, Year, Sales

Argentina, 2014, 66295.03

Argentina, 2015, 140037.89

Austria, 2014, 54166.09

Austria, 2015, 182739.87

Belgium, 2014, 182766.87

Belgium, 2015, 178042.33

Brazil, 2014, 174492.67

Brazil, 2015, 2104.22

Canada, 2014, 101801.33

Canada, 2015, 40288.25

Denmark, 2014, 45273.25

Denmark, 2015, 106938.41

Finland, 2014, 107565.55

Finland, 2015, 30583.44

France, 2014, 115644.26

France, 2015, 30696.98

Germany, 2014, 8775.18

Germany, 2015, 77185.68

];

Chart expressions

Create a table in a Qlik Sense sheet with the following chart expressions.

Country Sum(Sales)

Sum
({1<Country=
{Belgium}>}
Sales)

Sum
({1<Country=
{"*A*"}>}
Sales)

Sum
({1<Country=
{"A*"}>} Sales)

Sum
({1<Year=
{$(=Max
(Year))}>}
Sales)

Totals 1645397.3 360809.2 1284588.1 443238.88 788617.07

Argentina 206332.92 0 206332.92 206332.92 140037.89

Austria 236905.96 0 236905.96 236905.96 182739.87

Belgium 360809.2 360809.2 0 0 178042.33

Table - Set modifiers based on element sets

Script syntax and chart functions - Qlik Sense, May 2024 289

6 Chart expressions

Country Sum(Sales)

Sum
({1<Country=
{Belgium}>}
Sales)

Sum
({1<Country=
{"*A*"}>}
Sales)

Sum
({1<Country=
{"A*"}>} Sales)

Sum
({1<Year=
{$(=Max
(Year))}>}
Sales)

Brazil 176596.89 0 176596.89 0 2104.22

Canada 142089.58 0 142089.58 0 40288.25

Denmark 152211.66 0 152211.66 0 106938.41

Finland 138148.99 0 138148.99 0 30583.44

France 146341.24 0 146341.24 0 30696.98

Germany 85960.86 0 85960.86 0 77185.68

Explanation

l Dimensions:
o Country

l Measures:
o Sum(Sales)

Sum Sales with no set expression.
o Sum({1<Country={Belgium}>}Sales)

Select Belgium, and then sum corresponding Sales.
o Sum({1<Country={"*A*"}>}Sales)

Select all countries that have an A, and then sum corresponding Sales.
o Sum({1<Country={"A*"}>}Sales)

Select all countries that begin with an A, and then sum corresponding Sales.
o Sum({1<Year={$(=Max(Year))}>}Sales)

Calculate the Max(Year), which is 2015, and then sum corresponding Sales.

Script syntax and chart functions - Qlik Sense, May 2024 290

6 Chart expressions

Set modifiers based on element sets

Listed values
The most common example of an element set is one that is based on a list of field values enclosed
in curly brackets. For example:

l {$<Country = {Canada, Germany, Singapore}>}

l {$<Year = {2015, 2016}>}

The inner curly brackets define the element set. The individual values are separated by commas.

Quotes and case sensitivity
If the values contain blanks or special characters, the values need to be quoted. Single quotes will
be a literal, case-sensitive match with a single field value. Double quotes imply a case-insensitive
match with one or several field values. For example:

l <Country = {'New Zealand'}>

Matches New Zealand only.
l <Country = {"New Zealand"}>

Matches New Zealand, NEW ZEALAND, and new zealand.

Dates must be enclosed in quotes and use the date format of the field in question. For example:

l <ISO_Date = {'2021-12-31'}>

l <US_Date = {'12/31/2021'}>

l <UK_Date = {'31/12/2021'}>

Double quotes can be substituted by square brackets or by grave accents.

Searches
Element sets can also be created through searches. For example:

Script syntax and chart functions - Qlik Sense, May 2024 291

6 Chart expressions

l <Country = {"C*"}>

l <Ingredient = {"*garlic*"}>

l <Year = {">2015"}>

l <Date = {">12/31/2015"}>

Wildcards can be used in text searches: An asterisk (*) represents any number of characters, and a
question mark (?) represents a single character. Relational operators can be used to define numeric
searches.

You should always use double quotes for searches. Searches are case-insensitive.

Dollar expansions
Dollar expansions are needed if you want to use a calculation inside your element set. For example,
if you want to look at the last possible year only, you can use:

<Year = {$(=Max(Year))}>

Selected values in other fields
Modifiers can be based on the selected values of another field. For example:

<OrderDate = DeliveryDate>

This modifier will take the selected values from DeliveryDate and apply those as a selection on
OrderDate. If there are many distinct values – more than a couple of hundred – then this operation is
CPU intensive and should be avoided.

Element set functions
The element set can also be based on the set functions P() (possible values) and E() (excluded
values).

For example, if you want to select countries where the product Cap has been sold, you can use:

<Country = P({1<Product={Cap}>} Country)>

Similarly, if you want to pick out the countries where the product Cap has not been sold, you can
use:

<Country = E({1<Product={Cap}>} Country)>

Set modifiers with searches
You can create element sets through searches with set modifiers.

For example:

l <Country = {"C*"}>

l <Year = {">2015"}>

l <Ingredient = {"*garlic*"}>

Script syntax and chart functions - Qlik Sense, May 2024 292

6 Chart expressions

Searches should always be enclosed in double quotes, square brackets or grave accents. You can
use a list with a mixture of literal strings (single quotes) and searches (double quotes). For example:

<Product = {'Nut', "*Bolt", Washer}>

Text searches
Wildcards and other symbols can be used in text searches:

l An asterisk (*) will represent any number of characters.
l A question mark (?) will represent a single character.
l A circumflex accent (^) will mark the beginning of a word.

For example:

l <Country = {"C*", "*land"}>

Match all countries beginning with a C or ending with land.
l <Country = {"*^z*"}>

This will match all countries that have a word beginning with z, such as New Zealand.

Numeric searches
You can make numeric searches using these relational operators: >, >=, <, <=

A numeric search always begins with one of these operators. For example:

l <Year = {">2015"}>

Match 2016 and subsequent years.
l <Date = {">=1/1/2015<1/1/2016"}>

Match all dates during 2015. Note the syntax for describing a time range between two dates.
The date format needs to match the date format of the field in question.

Expression searches
You can use expression searches to make more advanced searches. An aggregation is then
evaluated for each field value in the search field. All values for which the search expression returns
true are selected.

An expression search always begins with an equals sign: =

For example:

<Customer = {"=Sum(Sales)>1000"}>

This will return all customers with a sales value greater than 1000. Sum(Sales) is calculated on the
current selection. This means that if you have a selection in another field, such as the Product field,
you will get the customers that fulfilled the sales condition for the selected products only.

If you want the condition to be independent of the selection, you need to use set analysis inside the
search string. For example:

<Customer = {"=Sum({1} Sales)>1000"}>

Script syntax and chart functions - Qlik Sense, May 2024 293

6 Chart expressions

The expressions after the equals sign will be interpreted as a boolean value. This means that if it
evaluates to something else, any non-zero number will be interpreted as true, while zero and
strings are interpreted as false.

Quotes
Use quotation marks when the search strings contain blanks or special characters. Single quotes
imply a literal, case-sensitive match with a single field value. Double quotes imply a case insensitive
search that potentially matches multiple field values.

For example:

l <Country = {'New Zealand'}>

Match New Zealand only.
l <Country = {"New Zealand"}>

Match New Zealand, NEW ZEALAND, and new zealand

Double quotes can be substituted by square brackets or by grave accents.

In previous versions of Qlik Sense, there was no distinction between single quotes and
double quotes, and all quoted strings were treated as searches. To maintain backward
compatibility, apps created with older versions of Qlik Sense will continue to work as
they did in previous versions. Apps created with Qlik Sense November 2017 or later will
respect the difference between the two types of quotes.

Examples: Chart expressions for set modifiers with searches
Examples - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression
examples below.

MyTable:

Load

Year(Date) as Year,

Date#(Date,'YYYY-MM-DD') as ISO_Date,

Date(Date#(Date,'YYYY-MM-DD'),'M/D/YYYY') as US_Date,

Country, Product, Amount

Inline

[Date, Country, Product, Amount

2018-02-20, Canada, Washer, 6

2018-07-08, Germany, Anchor bolt, 10

2018-07-14, Germany, Anchor bolt, 3

2018-08-31, France, Nut, 2

2018-09-02, Czech Republic, Bolt, 1

2019-02-11, Czech Republic, Bolt, 3

2019-07-31, Czech Republic, Washer, 6

Script syntax and chart functions - Qlik Sense, May 2024 294

6 Chart expressions

2020-03-13, France, Anchor bolt, 1

2020-07-12, Canada, Anchor bolt, 8

2020-09-16, France, Washer, 1];

Example 1: Chart expressions with text searches

Create a table in a Qlik Sense sheet with the following chart expressions.

Country
Sum
(Amount)

Sum({<Country=
{"C*"}>} Amount)

Sum({<Country=
{"*^R*"}>} Amount)

Sum({<Product=
{"*bolt*"}>}
Amount)

Totals 41 24 10 26

Canada 14 14 0 8

Czech
Republic

10 10 10 4

France 4 0 0 1

Germany 13 0 0 13

Table - Set modifiers with text searches

Explanation

l Dimensions:
o Country

l Measures:
o Sum(Amount)

Sum Amount with no set expression.
o Sum({<Country={"C*"}>}Amount)

Sum Amount for all countries that start with C, such as Canada and Czech Republic.
o Sum({<Country={"*^R*"}>}Amount)

Sum Amount for all countries that have a word that starts with R, such as Czech Republic.
o Sum({<Product={"*bolt*"}>}Amount)

Sum Amount for all products that contain the string bolt, such as Bolt and Anchor bolt.

Script syntax and chart functions - Qlik Sense, May 2024 295

6 Chart expressions

Set modifiers with text searches

Example 2: Chart expressions with numeric searches

Create a table in a Qlik Sense sheet with the following chart expressions.

Country
Sum
(Amount)

Sum({<Year=
{">2019"}>}
Amount)

Sum({<ISO_
Date=
{">=2019-
07-01"}>}
Amount)

Sum({<US_Date=
{">=4/1/2018<=12/31/2018"}>}
Amount)

Totals 41 10 16 16

Canada 14 8 8 0

Czech
Republic

10 0 6 1

France 4 2 2 2

Germany 13 0 0 13

Table - Set modifiers with numeric searches

Explanation

l Dimensions:
o Country

l Measures:
o Sum(Amount)

Sum Amount with no set expression.
o Sum({<Year={">2019"}>}Amount)

Sum Amount for all years after 2019.
o Sum({<ISO_Date={">=2019-07-01"}>}Amount)

Sum Amount for all dates on or after 2019-07-01. The format of the date in the search
must match the format of the field.

o Sum({<US_Date={">=4/1/2018<=12/31/2018"}>}Amount)

Script syntax and chart functions - Qlik Sense, May 2024 296

6 Chart expressions

Sum Amount for all dates from 4/1/2018 to 12/31/2018, including the start and end dates.
The format of the dates in the search must match the format of the field.

Set modifiers with numeric searches

Example 3: Chart expressions with expression searches

Create a table in a Qlik Sense sheet with the following chart expressions.

Country
Sum
(Amount)

Sum({<Country=
{"=Sum
(Amount)>10"}>}
Amount)

Sum({<Country=
{"=Count(distinct
Product)=1"}>}
Amount)

Sum({<Product=
{"=Count
(Amount)>3"}>}
Amount)

Totals 41 27 13 22

Canada 14 14 0 8

Czech
Republic

10 0 0 0

France 4 0 0 1

Germany 13 13 13 13

Table - Set modifiers with expression searches

Explanation

l Dimensions:
o Country

l Measures:
o Sum(Amount)

Sum Amount with no set expression.
o Sum({<Country={"=Sum(Amount)>10"}>}Amount)

Sum Amount for all countries that have an aggregated sum of Amount greater than 10.
o Sum({<Country={"=Count(distinct Product)=1"}>}Amount)

Sum Amount for all countries that are associated with exactly one distinct product.

Script syntax and chart functions - Qlik Sense, May 2024 297

6 Chart expressions

o Sum({<Product={"=Count(Amount)>3"}>}Amount)

Sum Amount for all countries that have more than three transactions in the data.

Set modifiers with expression searches

Examples Results

sum({$–1<Product =
{“*Internal*”, “*Domestic*”}>}
Sales)

Returns the sales for current selection, excluding transactions
pertaining to products with the string 'Internal' or 'Domestic' in
the product name.

sum({$<Customer = {“=Sum
({1<Year = {2007}>} Sales) >
1000000”}>} Sales)

Returns the sales for current selection, but with a new selection
in the 'Customer' field: only customers who during 2007 had a
total sales of more than 1000000.

Set modifiers with dollar-sign expansions
Dollar-sign expansions are constructs that are calculated before the expression is
parsed and evaluated. The result is then injected into the expression instead of the
$(…). The calculation of the expression is then made using the result of the dollar
expansion.

The expression editor shows a dollar expansion preview so that you can verify what your dollar-
sign expansion evaluates to.

Script syntax and chart functions - Qlik Sense, May 2024 298

6 Chart expressions

Dollar-sign expansion preview in expression editor

Use dollar-sign expansions when you want to use a calculation inside your element set.

For example, if you want to look at the last possible year only, you can use the following
construction:

<Year = {$(=Max(Year))}>

Max(Year) is calculated first, and the result would be injected in the expression instead of the $(…).

The result after the dollar expansion will be an expression such as the following:

<Year = {2021}>

The expression inside the dollar expansion is calculated based on the current selection. This means
that if you have a selection in another field, the result of the expression will be affected.

If you want the calculation to be independent of the selection, use set analysis inside the dollar
expansion. For example:

<Year = {$(=Max({1} Year))}>

Strings
When you want the dollar expansion to result in a string, normal quoting rules apply. For example:

<Country = {'$(=FirstSortedValue(Country,Date)'}>

The result after the dollar expansion will be an expression such as the following:

<Country = {'New Zealand'}>

You will get a syntax error if you do not use the quotation marks.

Numbers
When you want the dollar expansion to result in a number, ensure that the expansion gets the same
formatting as the field. This means that you sometimes need to wrap the expression in a formatting
function.

For example:

<Amount = {$(=Num(Max(Amount), '###0.00'))}>

Script syntax and chart functions - Qlik Sense, May 2024 299

6 Chart expressions

The result after the dollar expansion will be an expression such as the following:

<Amount = {12362.00}>

Use a hash to force the expansion to always use decimal point and no thousand separator . For
example:

<Amount = {$(#=Max(Amount))}>

Dates
When you want the dollar expansion to result in a date, ensure that the expansion has the correct
formatting. This means that you sometimes need to wrap the expression in a formatting function.

For example:

<Date = {'$(=Date(Max(Date)))'}>

The result after the dollar expansion will be an expression such as the following:

<Date = {'12/31/2015'}>

Just as with strings, you need to use the correct quotes.

A common use case is that you want your calculation to be limited to the last month (or year). Then
you can use a numeric search in combination with the AddMonths() function.

For example:

<Date = {">=$(=AddMonths(Today(),-1))"}>

The result after the dollar expansion will be an expression such as the following:

<Date = {">=9/31/2021"}>

This will pick out all events that have occurred the last month.

Example: Chart expressions for set modifiers with dollar-sign expansions
Example - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression
examples below.

Let vToday = Today();

MyTable:

Load

Year(Date) as Year,

Date#(Date,'YYYY-MM-DD') as ISO_Date,

Date(Date#(Date,'YYYY-MM-DD'),'M/D/YYYY') as US_Date,

Country, Product, Amount

Inline

[Date, Country, Product, Amount

2018-02-20, Canada, Washer, 6

Script syntax and chart functions - Qlik Sense, May 2024 300

6 Chart expressions

2018-07-08, Germany, Anchor bolt, 10

2018-07-14, Germany, Anchor bolt, 3

2018-08-31, France, Nut, 2

2018-09-02, Czech Republic, Bolt, 1

2019-02-11, Czech Republic, Bolt, 3

2019-07-31, Czech Republic, Washer, 6

2020-03-13, France, Anchor bolt, 1

2020-07-12, Canada, Anchor bolt, 8

2021-10-15, France, Washer, 1];

Chart expressions with dollar-sign expansions

Create a table in a Qlik Sense sheet with the following chart expressions.

Country
Sum
(Amount)

Sum({<US_Date=
{'$(vToday)'}>}
Amount)

Sum({<ISO_Date=
{"$(=Date(Min(ISO_
Date),'YYYY-MM-
DD'))"}>} Amount)

Sum({<US_Date=
{">=$(=AddYears
(Max(US_Date),-
1))"}>} Amount)

Totals 41 1 6 1

Canada 14 0 6 0

Czech
Republic

10 0 0 0

France 4 1 0 1

Germany 13 0 0 0

Table - Set modifiers with dollar-sign expansions

Explanation

l Dimensions:
o Country

l Measures:
o Sum(Amount)

Sum Amount with no set expression.
o Sum({<US_Date={'$(vToday)'}>}Amount)

Sum Amount for all records where the US_Date is the same as in the variablevToday.
o Sum({<ISO_Date={"$(=Date(Min(ISO_Date),'YYYY-MM-DD'))"}>}Amount)

Sum Amount for all records where the ISO_Date is the same as the first (smallest)
possible ISO_Date. The Date() function is needed to ensure that the format of the date
matches that of the field.

o Sum({<US_Date={">=$(=AddYears(Max(US_Date),-1))"}>}Amount)

Sum Amount for all records that have a US_Date after or on the date a year before the
latest (largest) possible US_Date. The AddYears() function will return a date in the
format specified by the variable DateFormat, and this needs to match the format of the
field US_Date.

Script syntax and chart functions - Qlik Sense, May 2024 301

6 Chart expressions

Set modifiers with dollar-sign expansions

Examples Results

sum({$<Year =
{$(#vLastYear)}>}
Sales)

Returns the sales for the previous year in relation to current selection.
Here, a variable vLastYear containing the relevant year is used in a dollar-
sign expansion.

sum({$<Year =
{$(#=Only(Year)-
1)}>} Sales)

Returns the sales for the previous year in relation to current selection.
Here, a dollar-sign expansion is used to calculate previous year.

Set modifiers with set operators
Set operators are used to include, exclude, or intersect different element sets. They
combine the different methods to define element sets.

The operators are the same as those used for set identifiers.

Operator Description

+ Union. This binary operation returns a set consisting of the records or elements
that belong to any of the two set operands.

- Exclusion. This binary operation returns a set consisting of the records or elements
that belong to the first but not the other of the two set operands. Also, when used
as a unary operator, it returns the complement set.

* Intersection. This binary operation returns a set consisting of the records or
elements that belong to both set operands.

/ Symmetric difference (XOR). This binary operation returns a set consisting of the
records or elements that belong to either, but not both set operands.

Operators

For example, the following two modifiers define the same set of field values:

l <Year = {1997, "20*"}>

l <Year = {1997} + {"20*"}>

Script syntax and chart functions - Qlik Sense, May 2024 302

6 Chart expressions

Both expressions select 1997 and the years that begin with 20. In other words, this is the union of the
two conditions.

Set operators also allow for more complex definitions. For example:

<Year = {1997, "20*"} - {2000}>

This expression will select the same years as those above, but in addition exclude year 2000.

.

Examples: Chart expressions for set modifiers with set operators
Examples - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression
examples below.

MyTable:

Load

Year(Date) as Year,

Date#(Date,'YYYY-MM-DD') as ISO_Date,

Date(Date#(Date,'YYYY-MM-DD'),'M/D/YYYY') as US_Date,

Country, Product, Amount

Inline

[Date, Country, Product, Amount

2018-02-20, Canada, Washer, 6

2018-07-08, Germany, Anchor bolt, 10

2018-07-14, Germany, Anchor bolt, 3

2018-08-31, France, Nut, 2

2018-09-02, Czech Republic, Bolt, 1

2019-02-11, Czech Republic, Bolt, 3

2019-07-31, Czech Republic, Washer, 6

2020-03-13, France, Anchor bolt, 1

2020-07-12, Canada, Anchor bolt, 8

2020-09-16, France, Washer, 1];

Chart expressions

Create a table in a Qlik Sense sheet with the following chart expressions.

Script syntax and chart functions - Qlik Sense, May 2024 303

6 Chart expressions

Country
Sum
(Amount)

Sum({<Year=
{">2018"}-
{2020}>}
Amount)

Sum
({<Country=-
{Germany}>}
Amount)

Sum({<Country=
{Germany}+P({<Product=
{Nut}>}Country)>}
Amount)

Totals 41 9 28 17

Canada 14 0 14 0

Czech
Republic

10 9 10 0

France 4 0 4 4

Germany 13 0 0 13

Table - Set modifiers with set operators

Explanation

l Dimensions:
o Country

l Measures:
o Sum(Amount)

Sum Amount with no set expression.
o Sum({<Year={">2018"}-{2020}>}Amount)

Sum Amount for all years after 2018, except 2020.
o Sum({<Country=-{Germany}>}Amount)

Sum Amount for all countries except Germany. Note the unary exclusion operator.
o Sum({<Country={Germany}+P({<Product={Nut}>}Country)>}Amount)

Sum Amount for Germany and all countries associated with the product Nut.

Set modifiers with set operators

Script syntax and chart functions - Qlik Sense, May 2024 304

6 Chart expressions

Examples Results

sum({$<Product =
Product +
{OurProduct1} –
{OurProduct2} >}
Sales)

Returns the sales for the current selection, but with the product
“OurProduct1” added to the list of selected products and “OurProduct2”
removed from the list of selected products.

sum({$<Year = Year
+ ({“20*”,1997} –
{2000}) >} Sales)

Returns the sales for the current selection but with additional selections
in the field “Year”: 1997 and all that begin with “20” – however, not 2000.

Note that if 2000 is included in the current selection, it will still be
included after the modification.

sum({$<Year = (Year
+ {“20*”,1997}) –
{2000} >} Sales)

Returns almost the same as above, but here 2000 will be excluded, also
if it initially is included in the current selection. The example shows the
importance of sometimes using brackets to define an order of
precedence.

sum({$<Year = {“*”} –
{2000}, Product =
{“*bearing*”} >} Sales
)

Returns the sales for the current selection but with a new selection in
“Year”: all years except 2000; and only for products containing the
string 'bearing'.

Set modifiers with implicit set operators
The standard way to write selections in a set modifier is to use an equals sign. For
example:

Year = {">2015"}

The expression to the right of the equals sign in the set modifier is called an element set. It defines a
set of distinct field values, in other words a selection.

This notation defines a new selection, disregarding the current selection in the field. So, if the set
identifier contains a selection in this field, the old selection will be replaced by the one in the
element set.

When you want to base your selection on the current selection in the field, you need to use a
different expression

For example, if you want to respect the old selection, and add the requirement that the year is after
2015, you can write the following:

Year = Year * {">2015"}

The asterisk is a set operator defining an intersection, so you will get the intersection between the
current selection in Year, and the additional requirement that the year be after 2015. An alternative
way to write this is the following:

Year *= {">2015"}

That is, the assignment operator (*=) implicitly defines an intersection.

Script syntax and chart functions - Qlik Sense, May 2024 305

6 Chart expressions

Similarly, implicit unions, exclusions and symmetric differences can be defined using the following:
+=, –=, /=

Examples: Chart expressions for set modifiers with implicit set operators
Examples - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression
examples below.

MyTable:

Load

Year(Date) as Year,

Date#(Date,'YYYY-MM-DD') as ISO_Date,

Date(Date#(Date,'YYYY-MM-DD'),'M/D/YYYY') as US_Date,

Country, Product, Amount

Inline

[Date, Country, Product, Amount

2018-02-20, Canada, Washer, 6

2018-07-08, Germany, Anchor bolt, 10

2018-07-14, Germany, Anchor bolt, 3

2018-08-31, France, Nut, 2

2018-09-02, Czech Republic, Bolt, 1

2019-02-11, Czech Republic, Bolt, 3

2019-07-31, Czech Republic, Washer, 6

2020-03-13, France, Anchor bolt, 1

2020-07-12, Canada, Anchor bolt, 8

2020-09-16, France, Washer, 1];

Chart expressions with implicit set operators

Create a table in a Qlik Sense sheet with the following chart expressions.

Select Canada and Czech Republic from a list of countries.

Country
Sum
(Amount)

Sum({<Country*=
{Canada}>}
Amount)

Sum({<Country-=
{Canada}>}
Amount)

Sum({<Country+=
{France}>} Amount)

Totals 24 14 10 28

Canada 14 14 0 14

Czech
Republic

10 0 10 10

France 0 0 0 4

Table - Chart expressions with implicit set operators

Script syntax and chart functions - Qlik Sense, May 2024 306

6 Chart expressions

Explanation

l Dimensions:
o Country

l Measures:
o Sum(Amount)

Sum Amount for the current selection. Note that only Canada and Czech Republic have
non-zero values.

o Sum({<Country*={Canada}>}Amount)

Sum Amount for the current selection, intersected with the requirement that the Country

be Canada. If Canada is not part of the user selection, the set expression returns an
empty set, and the column will have 0 on all rows.

o Sum({<Country-={Canada}>}Amount)

Sum Amount for the current selection, but first exclude Canada from the Country

selection. If Canada is not part of the user selection, the set expression will not change
any numbers.

o Sum({<Country+={France}>}Amount)

Sum Amount for the current selection, but first add France to the Country selection. If
France is already part of the user selection, the set expression will not change any
numbers.

Set modifiers with implicit set operators

Examples Results

sum({$<Product +=
{OurProduct1,
OurProduct2} >} Sales)

Returns the sales for the current selection, but using an implicit union
to add the products 'OurProduct1' and 'OurProduct2' to the list of
selected products.

Script syntax and chart functions - Qlik Sense, May 2024 307

6 Chart expressions

Examples Results

sum({$<Year +=
{“20*”,1997} – {2000} >}
Sales)

Returns the sales for the current selection but using an implicit union
to add a number of years in the selection: 1997 and all that begin with
“20” – however, not 2000.

Note that if 2000 is included in the current selection, it will still be
included after the modification. Same as <Year=Year + ({“20*”,1997}–

{2000})>.

sum({$<Product *=
{OurProduct1} >} Sales)

Returns the sales for the current selection, but only for the
intersection of currently selected products and the product
OurProduct1.

Set modifiers using set functions
Sometimes you need to define a set of field values using a nested set definition. For
example, you may want to select all customers that have bought a specific product,
without selecting the product.

In such cases, use the element set functions P() and E(). These return the element sets of possible
values and excluded values of a field, respectively. Inside the brackets, you can specify the field in
question, and a set expression that defines the scope. For example:

P({1<Year = {2021}>} Customer)

This will return the set of customers that had transactions in 2021. You can then use this in a set
modifier. For example:

Sum({<Customer = P({1<Year = {2021}>} Customer)>} Amount)

This set expression will select these customers, but it will not restrict the selection to 2021.

These functions cannot be used in other expressions.

Additionally, only natural sets can be used inside the element set functions. That is, a set of records
that can be defined by a simple selection.

For example, the set given by {1-$} cannot always be defined through a selection, and is therefore
not a natural set. Using these functions on non-natural sets will return unexpected results.

Examples: Chart expressions for set modifiers using set functions
Examples - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression
examples below.

Script syntax and chart functions - Qlik Sense, May 2024 308

6 Chart expressions

MyTable:

Load

Year(Date) as Year,

Date#(Date,'YYYY-MM-DD') as ISO_Date,

Date(Date#(Date,'YYYY-MM-DD'),'M/D/YYYY') as US_Date,

Country, Product, Amount

Inline

[Date, Country, Product, Amount

2018-02-20, Canada, Washer, 6

2018-07-08, Germany, Anchor bolt, 10

2018-07-14, Germany, Anchor bolt, 3

2018-08-31, France, Nut, 2

2018-09-02, Czech Republic, Bolt, 1

2019-02-11, Czech Republic, Bolt, 3

2019-07-31, Czech Republic, Washer, 6

2020-03-13, France, Anchor bolt, 1

2020-07-12, Canada, Anchor bolt, 8

2020-09-16, France, Washer, 1];

Chart expressions

Create a table in a Qlik Sense sheet with the following chart expressions.

Country
Sum
(Amount)

Sum({<Country=P
({<Year=
{2019}>}Countr
y)>} Amount)

Sum({<Product=P
({<Year=
{2019}>}Produc
t)>} Amount)

Sum({<Country=E
({<Product=
{Washer}>}Countr
y)>} Amount)

Totals 41 10 17 13

Canada 14 0 6 0

Czech
Republic

10 10 10 0

France 4 0 1 0

Germany 13 0 0 13

Table - Set modifiers using set functions

Explanation

l Dimensions:
o Country

l Measures:
o Sum(Amount)

Sum Amount with no set expression.
o Sum({<Country=P({<Year={2019}>} Country)>} Amount)

Sum Amount for the countries that are associated with year 2019. It will however not limit
the calculation to 2019.

Script syntax and chart functions - Qlik Sense, May 2024 309

6 Chart expressions

o Sum({<Product=P({<Year={2019}>} Product)>} Amount)

Sum Amount for the products that are associated with year 2019. It will however not limit
the calculation to 2019.

o Sum({<Country=E({<Product={Washer}>} Country)>} Amount)

Sum Amount for the countries that are not associated with the product Washer.

Set modifiers using set functions

Examples Results

sum(
{$<Customer =
P({1<Product=
{'Shoe'}>}
Customer)>}
Sales)

Returns the sales for current selection, but only those customers that ever
have bought the product 'Shoe'. The element function P() here returns a list of
possible customers; those that are implied by the selection 'Shoe' in the field
Product.

sum(
{$<Customer =
P({1<Product=
{'Shoe'}>})>}
Sales)

Same as above. If the field in the element function is omitted, the function will
return the possible values of the field specified in the outer assignment.

sum(
{$<Customer =
P({1<Product=
{'Shoe'}>}
Supplier)>}
Sales)

Returns the sales for current selection, but only those customers that ever
have supplied the product 'Shoe', that is, the customer is also a supplier. The
element function P() here returns a list of possible suppliers; those that are
implied by the selection 'Shoe' in the field Product. The list of suppliers is then
used as a selection in the field Customer.

sum(
{$<Customer =
E({1<Product=
{'Shoe'}>})>}
Sales)

Returns the sales for current selection, but only those customers that never
bought the product 'Shoe'. The element function E() here returns the list of
excluded customers; those that are excluded by the selection 'Shoe' in the
field Product.

Script syntax and chart functions - Qlik Sense, May 2024 310

6 Chart expressions

Inner and outer set expressions
Set expressions can be used inside and outside aggregation functions, and are enclosed in curly
brackets.

When you use a set expression inside an aggregation function, it can look like this:

Example: Inner set expression

Sum({$<Year={2021}>} Sales)

Use a set expression outside the aggregation function if you have expressions with multiple
aggregations and want to avoid writing the same set expression in every aggregation function.

If you use an outer set expression, it must be placed at the beginning of the scope.

Example: Outer set expression

{<Year={2021}>} Sum(Sales) / Count(distinct Customer)

If you use a set expression outside the aggregation function, you can also apply it on existing
master measures.

Example: Outer set expression applied to master measure

{<Year={2021}>} [Master Measure]

A set expression used outside aggregation functions affects the entire expression, unless it is
enclosed in brackets then the brackets define the scope. In the lexical scoping example below, the
set expression is only applied to the aggregation inside the brackets.

Example: Lexical scoping

({<Year={2021}>} Sum(Amount) / Count(distinct Customer)) – Avg(CustomerSales)

Rules
Lexical scope
The set expression affects the entire expression, unless it is enclosed in brackets. If so, the
brackets define the lexical scope.

Position
The set expression must be placed in the beginning of the lexical scope.

Context
The context is the selection that is relevant for the expression. Traditionally, the context has always
been the default state of current selection. But if an object is set to an alternate state, the context is
the alternate state of the current selection.

You can also define a context in the form of an outer set expression.

Script syntax and chart functions - Qlik Sense, May 2024 311

6 Chart expressions

Inheritance
Inner set expressions have precedence over outer set expressions. If the inner set expression
contains a set identifier, it replaces the context. Otherwise, the context and the set expression will
be merged.

l {$<SetExpression>} - overrides the outer set expression
l {<SetExpression>} - is merged with the outer set expression

Element set assignment
The element set assignment determines how the two selections are merged. If a normal equals sign
is used, the selection in the inner set expression has precedence. Otherwise, the implicit set
operator will be used.

l {<Field={value}>} - this inner selection replaces any outer selection in “Field”.
l {<Field+={value}>} - this inner selection is merged with the outer selection in “Field”, using

the union operator.
l {<Field*={value}>} - this inner selection is merged with the outer selection in “Field”, using

the intersection operator.

Inheritance in multiple steps
The inheritance can occur in multiple steps. Examples:

l Current Selection → Sum(Amount)

The aggregation function will use the context, which here is the current selection.
l Current Selection → {<Set1>} Sum(Amount)

Set1 will inherit from current selection, and the result will be the context for the aggregation
function.

l Current Selection → {<Set1>} ({<Set2>} Sum(Amount))

Set2 will inherit from Set1, which in turn inherits from current selection, and the result will be
the context for the aggregation function.

The Aggr() function
The Aggr() function creates a nested aggregation that has two independent aggregations. In the
example below, a Count() is calculated for each value of Dim, and the resulting array is aggregated
using the Sum() function.

Example:

Sum(Aggr(Count(X),Dim))

Count() is the inner aggregation and Sum() is the outer aggregation.

l The inner aggregation does not inherit any context from the outer aggregation.
l The inner aggregation inherits the context from the Aggr() function, which may contain a set

expression.
l Both the Aggr() function and the outer aggregation function inherit the context from an outer

set expression.

Script syntax and chart functions - Qlik Sense, May 2024 312

6 Chart expressions

Tutorial - Creating a set expression
You can build set expressions in Qlik Sense to support data analysis. In this context,
the analysis is often referred to as set analysis. Set analysis offers a way of defining a
scope that is different from the set of records defined by the current selection in an
app.

What you will learn
This tutorial provides the data and chart expressions to build set expressions using set modifiers,
identifiers and operators.

Who should complete this tutorial
This tutorial is for app developers who are comfortable working with the script editor and chart
expressions.

What you need to do before you start
A Qlik Sense Enterprise professional access allocation, which allows you to load data and create
apps.

l Set Analysis Part 1: Beginners' Introduction
l Set Analysis Part 2

Elements in a set expression
Set expressions are enclosed in an aggregation function, such as Sum(), Max(), Min(), Avg(), or Count
(). Set expressions are constructed from building blocks known as elements. These elements are
set modifiers, identifiers, and operators.

Elements in a set expression

The set expression above, for example, is built from the aggregation Sum(Sales). The set expression
is enclosed in the outer curly brackets: { }

The first operand in the expression is: $<Year={2021}>

Script syntax and chart functions - Qlik Sense, May 2024 313

https://play.vidyard.com/emzQVRFpAhM5LLwXcKNU8u
https://play.vidyard.com/U86Emuu4vymytxsQBCPmTh

6 Chart expressions

This operand returns sales for the year 2021 for the current selection. The modifier, <Year={2021}>,
contains the selection of the year 2021. The $ set identifier indicates that the set expression is
based on current selection.

The second operand in the expression is: 1<Country={'Sweden'}>

This operand returns Sales for Sweden. The modifier, <Country={'Sweden'}>, contains the selection
of the country Sweden. The 1 set identifier indicates that selections made in the app will be ignored.

Finally, the + set operator indicates that the expression returns a set consisting of the records that
belongs to any of the two set operands.

Creating a set expression tutorial
Complete the following procedures to create the set expressions shown in this tutorial.

Create a new app and load data

Do the following:

1. Create a new app.
2. Click Script editor. Alternatively, click Prepare > Data load editor in the navigation bar.
3. Create a new section in the Data load editor.
4. Copy the following data and paste it into the new section: Set expression tutorial data (page

321)
5. Click Load data. The data is loaded as an inline load.

Create set expressions with modifiers
The set modifier consists of one or more field names, each followed by a selection that should be
made on the field. The modifier is enclosed by angled brackets. For example, in this set expression:

Sum ({<Year = {2015}>} Sales)

The modifier is:

<Year = {2015}>

This modifier specifies that data from the year 2015 will be selected. The curly brackets in which
the modifier is enclosed indicate a set expression.

Script syntax and chart functions - Qlik Sense, May 2024 314

6 Chart expressions

Do the following:

1. In a sheet, open the Assets panel from the navigation bar, and then click Charts.

2. Drag a KPI onto the sheet, and then click Add measure.

3. Click Sales, and then select Sum(Sales) for the aggregation.

Script syntax and chart functions - Qlik Sense, May 2024 315

6 Chart expressions

The KPI shows the sum of sales for all years.

4. Copy and paste the KPI to create a new KPI.
5. Click the new KPI, click Sales under Measures, and then click Open Expression editor.

Script syntax and chart functions - Qlik Sense, May 2024 316

6 Chart expressions

The expression editor opens with the aggregation Sum(Sales).

6. In the expression editor, create an expression to sum Sales for 2015 only:
i. Add curly brackets to indicate a set expression: Sum({}Sales)
i. Add angle brackets to indicate a set modifier: Sum({<>}Sales)
ii. In the angle brackets, add the field to be selected, in this case the field is Year,

followed by an equal sign. Next, enclose 2015 in another set of curly brackets. The
resulting set modifier is: {<Year={2015}>}.
The entire expression is:
Sum({<Year={2015}>}Sales)

Script syntax and chart functions - Qlik Sense, May 2024 317

6 Chart expressions

iii. Click Apply to save the expression and to close the expression editor. The sum of
Sales for 2015 is shown in the KPI.

7. Create two more KPIs with the following expressions:
Sum({<Year={2015,2016}>}Sales)

The modifier in the above is <Year={2015,2016}>. The expression will return the sum of Sales
for 2015 and 2016.
Sum({<Year={2015},Country={'Germany'}>} Sales)

The modifier in the above is <Year={2015}, Country={'Germany'}>. The expression will return
the sum of Sales for 2015, where 2015 intersects with Germany.

Script syntax and chart functions - Qlik Sense, May 2024 318

6 Chart expressions

KPIs using set modifiers

Add set identifiers
The set expressions above will use current selections as base, because an identifier was not used.
Next, add identifiers to specify the behavior when selections are made.

Do the following:

On your sheet, build or copy the following set expressions:

Sum({$<Year={"2015"}>}Sales)

The $ identifier will base the set expression on the current selections made in the data. This is also
the default behavior when an identifier is not used.

Sum({1<Year={"2015"}>}Sales)

Script syntax and chart functions - Qlik Sense, May 2024 319

6 Chart expressions

The 1 identifier will cause the aggregation of Sum(Sales) on 2015 to ignore the current selection. The
value of the aggregation will not change when the user makes other selections. For example, when
Germany is selected below, the value for the aggregate sum of 2015 does not change.

KPIs using set modifiers and identifiers

Add operators
Set operators are used to include, exclude, or intersect data sets. All operators use sets as
operands and return a set as result.

You can use set operators in two different situations:

l To perform a set operation on set identifiers, representing sets of records in data.
l To perform a set operation on the element sets, on the field values, or inside a set modifier.

Do the following:

On your sheet, build or copy the following set expression:

Sum({$<Year={2015}>+1<Country={'Germany'}>}Sales)

The plus sign (+) operator produces a union of the data sets for 2015 and Germany. As explained
with set identifiers above, the dollar sign ($) identifier means current selections will be used for the
first operand, <Year={2015}>, will be respected. The 1 identifier means selection will be ignored for
the second operand, <Country={'Germany'}>.

Script syntax and chart functions - Qlik Sense, May 2024 320

6 Chart expressions

KPI using plus sign (+) operator

Alternatively, use a minus sign (-) to return a data set that consists of the records that belong to
2015 but not Germany. Or, use an asterisk (*) to return a set consisting of the records that belong
to both sets.

Sum({$<Year={2015}>-1<Country={'Germany'}>}Sales)

Sum({$<Year={2015}>*1<Country={'Germany'}>}Sales)

KPIs using operators

Set expression tutorial data
Load script
Load the following data as an inline load and then create the chart expressions in the tutorial.

//Create table SalesByCountry

SalesByCountry:

Load * Inline [

Country, Year, Sales

Argentina, 2016, 66295.03

Argentina, 2015, 140037.89

Script syntax and chart functions - Qlik Sense, May 2024 321

6 Chart expressions

Austria, 2016, 54166.09

Austria, 2015, 182739.87

Belgium, 2016, 182766.87

Belgium, 2015, 178042.33

Brazil, 2016, 174492.67

Brazil, 2015, 2104.22

Canada, 2016, 101801.33

Canada, 2015, 40288.25

Denmark, 2016, 45273.25

Denmark, 2015, 106938.41

Finland, 2016, 107565.55

Finland, 2015, 30583.44

France, 2016, 115644.26

France, 2015, 30696.98

Germany, 2016, 8775.18

Germany, 2015, 77185.68

];

Syntax for set expressions
The full syntax (not including the optional use of standard brackets to define precedence) is
described using Backus-Naur Formalism:

set_expression ::= { set_entity { set_operator set_entity } }
set_entity ::= set_identifier [set_modifier] | set_modifier
set_identifier ::= 1 | $ | $N | $_N | bookmark_id | bookmark_name
set_operator ::= + | - | * | /
set_modifier ::= < field_selection {, field_selection } >
field_selection ::= field_name [= | += | –= | *= | /=] element_set_

expression
element_set_expression ::= [-] element_set { set_operator element_set }
element_set ::= [field_name] | { element_list } | element_function
element_list ::= element { , element }
element_function ::= (P | E) ([set_expression] [field_name])
element ::= field_value | " search_mask "

6.3 General syntax for chart expressions
The following general syntax structure can be used for chart expressions, with many optional
parameters:

expression ::= (constant | expressionname | operator1 expression | expression operator2

expression | function | aggregation function | (expression))

where:

constant is a string (a text, a date or a time) enclosed by single straight quotation marks, or a
number. Constants are written without thousands separator and with a decimal point as decimal
separator.

expressionname is the name (label) of another expression in the same chart.

operator1 is a unary operator (working on one expression, the one to the right).

Script syntax and chart functions - Qlik Sense, May 2024 322

6 Chart expressions

operator2 is a binary operator (working on two expressions, one on each side).

function ::= functionname (parameters)

parameters ::= expression { , expression }

The number and types of parameters are not arbitrary. They depend on the function used.

aggregationfunction ::= aggregationfunctionname (parameters2)

parameters2 ::= aggrexpression { , aggrexpression }

The number and types of parameters are not arbitrary. They depend on the function used.

6.4 General syntax for aggregations
The following general syntax structure can be used for aggregations, with many optional
parameters:

aggrexpression ::= (fieldref | operator1 aggrexpression | aggrexpression operator2

aggrexpression | functioninaggr | (aggrexpression))

fieldref is a field name.

functionaggr ::= functionname (parameters2)

Expressions and functions can thus be nested freely, as long as fieldref is always enclosed by
exactly one aggregation function and provided the expression returns an interpretable value, Qlik
Sense does not give any error messages.

Script syntax and chart functions - Qlik Sense, May 2024 323

7 Operators

7 Operators
This section describes the operators that can be used in Qlik Sense. There are two types of
operators:

l Unary operators (take only one operand)
l Binary operators (take two operands)

Most operators are binary.

The following operators can be defined:

l Bit operators
l Logical operators
l Numeric operators
l Relational operators
l String operators

7.1 Bit operators
All bit operators convert (truncate) the operands to signed integers (32 bit) and return
the result in the same way. All operations are performed bit by bit. If an operand cannot
be interpreted as a number, the operation will return NULL.

Operator Full name Description

bitnot Bit inverse. Unary operator. The operation returns the logical inverse of the
operand performed bit by bit.

Example:

bitnot 17 returns -18

bitand Bit and. The operation returns the logical AND of the operands performed bit
by bit.

Example:

17 bitand 7 returns 1

bitor Bit or. The operation returns the logical OR of the operands performed bit
by bit.

Example:

17 bitor 7 returns 23

Bit operators

Script syntax and chart functions - Qlik Sense, May 2024 324

7 Operators

Operator Full name Description

bitxor Bit
exclusive
or.

The operation returns the logical exclusive or of the operands
performed bit by bit.

Example:

17 bitxor 7 returns 22

>> Bit right
shift.

The operation returns the first operand shifted to the right. The
number of steps is defined in the second operand.

Example:

8 >> 2 returns 2

<< Bit left
shift.

The operation returns the first operand shifted to the left. The
number of steps is defined in the second operand.

Example:

8 << 2 returns 32

7.2 Logical operators
All logical operators interpret the operands logically and return True (-1) or False (0) as
result.

Operator Description

not Logical inverse. One of the few unary operators. The operation returns
the logical inverse of the operand.

and Logical and. The operation returns the logical and of the operands.

or Logical or. The operation returns the logical or of the operands.

Xor Logical exclusive or. The operation returns the logical exclusive or of the
operands. I.e. like logical or, but with the difference that the result is
False if both operands are True.

Logical operators

7.3 Numeric operators
All numeric operators use the numeric values of the operands and return a numeric
value as result.

Script syntax and chart functions - Qlik Sense, May 2024 325

7 Operators

Operator Description

+ Sign for positive number (unary operator) or arithmetic addition. The
binary operation returns the sum of the two operands.

- Sign for negative number (unary operator) or arithmetic subtraction.
The unary operation returns the operand multiplied by -1, and the binary
the difference between the two operands.

* Arithmetic multiplication. The operation returns the product of the two
operands.

/ Arithmetic division. The operation returns the ratio between the two
operands.

Numeric operators

7.4 Relational operators
All relational operators compare the values of the operands and return True (-1) or
False (0) as the result. All relational operators are binary.

Operator Description

< Less than. A numeric comparison is made if both operands
can be interpreted numerically. The operation returns the
logical value of the evaluation of the comparison.

<= Less than or equal. A numeric comparison is made if both
operands can be interpreted numerically. The operation
returns the logical value of the evaluation of the comparison.

> Greater than. A numeric comparison is made if both operands
can be interpreted numerically. The operation returns the
logical value of the evaluation of the comparison.

>= Greater than or equal. A numeric comparison is made if both
operands can be interpreted numerically. The operation
returns the logical value of the evaluation of the comparison.

= Equals. A numeric comparison is made if both operands can
be interpreted numerically. The operation returns the logical
value of the evaluation of the comparison.

<> Not equivalent to. A numeric comparison is made if both
operands can be interpreted numerically. The operation
returns the logical value of the evaluation of the comparison.

Relational operators

Script syntax and chart functions - Qlik Sense, May 2024 326

7 Operators

Operator Description

precedes Unlike the < operator no attempt is made to make a numeric
interpretation of the argument values before the comparison.
The operation returns true if the value to the left of the
operator has a text representation which, in string
comparison, comes before the text representation of the
value on the right.

Example:

'1 ' precedes ' 2' returns FALSE

' 1' precedes ' 2' returns TRUE

as the ASCII value of a space (' ') is of less value than the ASCII
value of a number.

Compare this to:

'1 ' < ' 2' returns TRUE

' 1' < ' 2' returns TRUE

follows Unlike the > operator no attempt is made to make a numeric
interpretation of the argument values before the comparison.
The operation returns true if the value to the left of the
operator has a text representation which, in string
comparison, comes after the text representation of the value
on the right.

Example:

' 2' follows '1 ' returns FALSE

' 2' follows ' 1' returns TRUE

as the ASCII value of a space (' ') is of less value than the ASCII
value of a number.

Compare this to:

' 2' > ' 1' returns TRUE

' 2' > '1 ' returns TRUE

Script syntax and chart functions - Qlik Sense, May 2024 327

7 Operators

7.5 String operators
There are two string operators. One uses the string values of the operands and return a
string as result. The other one compares the operands and returns a boolean value to
indicate match.

&
String concatenation. The operation returns a text string, that consists of the two operand strings,
one after another.

Example:

'abc' & 'xyz' returns 'abcxyz'

like
String comparison with wildcard characters. The operation returns a boolean True (-1) if the string
before the operator is matched by the string after the operator. The second string may contain the
wildcard characters * (any number of arbitrary characters) or ? (one arbitrary character).

Example:

'abc' like 'a*' returns True (-1)

'abcd' like 'a?c*' returns True (-1)

'abc' like 'a??bc' returns False (0)

Script syntax and chart functions - Qlik Sense, May 2024 328

8 Script and chart functions

8 Script and chart functions
Transform and aggregate data using functions in data load scripts and chart expressions.

Many functions can be used in the same way in both data load scripts and chart expressions, but
there are a number of exceptions:

l Some functions can only be used in data load scripts, denoted by - script function.
l Some functions can only be used in chart expressions, denoted by - chart function.
l Some functions can be used in both data load scripts and chart expressions, but with

differences in parameters and application. These are described in separate topics denoted
by - script function or - chart function.

8.1 Analytic connections for server-side extensions
(SSE)

Functions enabled by analytic connections will only be visible if you have configured the analytic
connections and Qlik Sense has started.

You configure the analytic connections in the QMC, see the topic " Creating an analytic connection"
in the guide Manage Qlik Sense sites.

In Qlik Sense Desktop, you configure the analytic connections by editing the Settings.ini file, see the
topic " Configuring analytic connections in Qlik Sense Desktop" in the guide Qlik Sense Desktop.

8.2 Aggregation functions
The family of functions known as aggregation functions consists of functions that take
multiple field values as their input and return a single result per group, where the
grouping is defined by a chart dimension or a group by clause in the script statement.

Aggregation functions include Sum(), Count(), Min(), Max(), and many more.

Most aggregation functions can be used in both the data load script and chart expressions, but the
syntax differs.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

When naming an entity, avoid assigning the same name to more than one field, variable, or
measure. There is a strict order of precedence for resolving conflicts between entities with identical
names. This order is reflected in any objects or contexts in which these entities are used. This order
of precedence is as follows:

Script syntax and chart functions - Qlik Sense, May 2024 329

8 Script and chart functions

l Inside an aggregation, a field has precedence over a variable. Measure labels are not
relevant in aggregations and are not prioritized.

l Outside an aggregation, a measure label has precedence over a variable, which in turn has
precedence over a field name.

l Additionally, outside an aggregation, a measure can be re-used by referencing its label,
unless the label is in fact a calculated one. In that situation, the measure drops in significance
in order to reduce risk of self-reference, and in this case the name will always be interpreted
first as a measure label, second as a field name, and third as a variable name.

Using aggregation functions in a data load script
Aggregation functions can only be used inside LOAD and SELECT statements.

Using aggregation functions in chart expressions
The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

An aggregation function aggregates over the set of possible records defined by the selection.
However, an alternative set of records can be defined by using a set expression in set analysis.

How aggregations are calculated
An aggregation loops over the records of a specific table, aggregating the records in it. For
example, Count(<Field>) will count the number of records in the table where <Field> resides.
Should you want to aggregate just the distinct field values, you need to use the distinct clause,
such as Count(distinct <Field>).

If the aggregation function contains fields from different tables, the aggregation function will loop
over the records of the cross product of the tables of the constituent fields. This has a performance
penalty, and for this reason such aggregations should be avoided, particularly when you have large
amounts of data.

Aggregation of key fields
The way aggregations are calculated means that you cannot aggregate key fields because it is not
clear which table should be used for the aggregation. For example, if the field <Key> links two
tables, it is not clear whether Count(<Key>) should return the number of records from the first or
the second table.

However, if you use the distinct clause, the aggregation is well-defined and can be calculated for a
key field linked across two tables.

If you use a key field inside an aggregation function without the distinct clause, Qlik Sense will
return a number which may be meaningless. The solution is to either use the distinct clause, or use
a copy of the key – a copy that resides in one table only.

For example, in the following tables, ProductId is the key between the tables.

Script syntax and chart functions - Qlik Sense, May 2024 330

8 Script and chart functions

ProductId key between Products and Details tables

Count(ProductId) can be counted either in the Products table (which has only one record per
product – ProductId is the primary key) or it can be counted in the Details table (which most likely
has several records per product). If you want to count the number of distinct products, you should
use Count(distinct ProductId). If you want to count the number of rows in a specific table, you
should not use the key.

Aggregations of key fields contained in three or more tables
The distinct prefix only works with key fields linking up to two tables. When grouping an
aggregation over a key field that exists in three or more tables, any operation that requires
frequency information for a field will return NULL. In the case of a key field linking three or more
tables, a non-key copy of the field must be used instead.

Basic aggregation functions

Basic aggregation functions overview
Basic aggregation functions are a group of the most common aggregation functions.

Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

Script syntax and chart functions - Qlik Sense, May 2024 331

8 Script and chart functions

Basic aggregation functions in the data load script
FirstSortedValue
FirstSortedValue() returns the value from the expression specified in value that corresponds to
the result of sorting the sort_weight argument, for example, the name of the product with the
lowest unit price. The nth value in the sort order, can be specified in rank. If more than one resulting
value shares the same sort_weight for the specified rank, the function returns NULL. The sorted
values are iterated over a number of records, as defined by a group by clause, or aggregated
across the full data set if no group by clause is defined.

FirstSortedValue ([distinct] expression, sort_weight [, rank])

Max
Max() finds the highest numeric value of the aggregated data in the expression, as defined by a
group by clause. By specifying a rank n, the nth highest value can be found.

Max (expression[, rank])

Min
Min() returns the lowest numeric value of the aggregated data in the expression, as defined by a
group by clause. By specifying a rank n, the nth lowest value can be found.

Min (expression[, rank])

Mode
Mode() returns the most commonly-occurring value, the mode value, of the aggregated data in the
expression, as defined by a group by clause. The Mode() function can return numeric values as
well as text values.

Mode (expression)

Only
Only() returns a value if there is one and only one possible result from the aggregated data. If
records contain only one value then that value is returned, otherwise NULL is returned. Use the
group by clause to evaluate over multiple records. The Only() function can return numeric and text
values.

Only (expression)

Sum
Sum() calculates the total of the values aggregated in the expression, as defined by a group by
clause.
Sum ([distinct]expression)

Basic aggregation functions in chart expressions
Chart aggregation functions can only be used on fields in chart expressions. The argument
expression of one aggregation function must not contain another aggregation function.

Script syntax and chart functions - Qlik Sense, May 2024 332

8 Script and chart functions

FirstSortedValue
FirstSortedValue() returns the value from the expression specified in value that corresponds to
the result of sorting the sort_weight argument, for example, the name of the product with the
lowest unit price. The nth value in the sort order, can be specified in rank. If more than one resulting
value shares the same sort_weight for the specified rank, the function returns NULL.

FirstSortedValue - chart function([{SetExpression}] [DISTINCT] [TOTAL [<fld

{,fld}>]] value, sort_weight [,rank])

Max
Max() finds the highest value of the aggregated data. By specifying a rank n, the nth highest value
can be found.
Max - chart functionMax() finds the highest value of the aggregated data. By
specifying a rank n, the nth highest value can be found. You might also want
to look at FirstSortedValue and rangemax, which have similar functionality to
the Max function. Max([{SetExpression}] [TOTAL [<fld {,fld}>]] expr [,rank])
numeric ArgumentsArgumentDescriptionexprThe expression or field containing
the data to be measured.rankThe default value of rank is 1, which corresponds
to the highest value. By specifying rank as 2, the second highest value is
returned. If rank is 3, the third highest value is returned, and so
on.SetExpressionBy default, the aggregation function will aggregate over the
set of possible records defined by the selection. An alternative set of
records can be defined by a set analysis expression. TOTALIf the word TOTAL
occurs before the function arguments, the calculation is made over all
possible values given the current selections, and not just those that pertain
to the current dimensional value, that is, it disregards the chart
dimensions. By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is
followed by a list of one or more field names as a subset of the chart
dimension variables, you create a subset of the total possible
values. DataCustomerProductUnitSalesUnitPrice
AstridaAA416AstridaAA1015AstridaBB99BetacabBB510BetacabCC220BetacabDD-
25CanutilityAA815CanutilityCC-19Examples and resultsExamplesResultsMax
(UnitSales)10, because this is the highest value in UnitSales.The value of an
order is calculated from the number of units sold in (UnitSales) multiplied
by the unit price.Max(UnitSales*UnitPrice)150, because this is the highest
value of the result of calculating all possible values of (UnitSales)*
(UnitPrice).Max(UnitSales, 2)9, which is the second highest value.Max
(TOTAL UnitSales)10, because the TOTAL qualifier means the highest possible
value is found, disregarding the chart dimensions. For a chart with Customer
as dimension, the TOTAL qualifier will ensure the maximum value across the
full dataset is returned, instead of the maximum UnitSales for each
customer.Make the selection Customer B.Max({1} TOTAL UnitSales)10,
independent of the selection made, because the Set Analysis expression {1}
defines the set of records to be evaluated as ALL, no matter what selection
is made.Data used in examples:ProductData:LOAD * inline
[Customer|Product|UnitSales|UnitPriceAstrida|AA|4|16Astrida|AA|10|15Astrida|B

Script syntax and chart functions - Qlik Sense, May 2024 333

#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2
#$$xref$$_2

8 Script and chart functions

B|9|9Betacab|BB|5|10Betacab|CC|2|20Betacab|DD||25Canutility|AA|8|15Canutility
|CC||19] (delimiter is '|'); FirstSortedValue RangeMax ([{SetExpression}]
[DISTINCT] [TOTAL [<fld {,fld}>]] expr [,rank])

Min
Min() finds the lowest value of the aggregated data. By specifying a rank n, the nth lowest value
can be found.

Min - chart function([{SetExpression}] [DISTINCT] [TOTAL [<fld {,fld}>]] expr

[,rank])

Mode
Mode() finds the most commonly-occurring value, the mode value, in the aggregated data. The
Mode() function can process text values as well as numeric values.

Mode - chart function ({[SetExpression] [TOTAL [<fld {,fld}>]]} expr)

Only
Only() returns a value if there is one and only one possible result from the aggregated data. For
example, searching for the only product where the unit price =9 will return NULL if more than one
product has a unit price of 9.

Only - chart function([{SetExpression}] [DISTINCT] [TOTAL [<fld {,fld}>]]

expr)

Sum
Sum() calculates the total of the values given by the expression or field across the aggregated
data.

Sum - chart function([{SetExpression}] [DISTINCT] [TOTAL [<fld {,fld}>]]

expr])

FirstSortedValue
FirstSortedValue() returns the value from the expression specified in value that corresponds to
the result of sorting the sort_weight argument, for example, the name of the product with the
lowest unit price. The nth value in the sort order, can be specified in rank. If more than one resulting
value shares the same sort_weight for the specified rank, the function returns NULL. The sorted
values are iterated over a number of records, as defined by a group by clause, or aggregated
across the full data set if no group by clause is defined.

Syntax:
FirstSortedValue ([distinct] value, sort-weight [, rank])

Script syntax and chart functions - Qlik Sense, May 2024 334

#$$xref$$_2
#$$xref$$_2

8 Script and chart functions

Return data type: dual

Arguments:

Argument Description

value
Expression

The function finds the value of the expression value that corresponds to the
result of sorting sort_weight.

sort-weight
Expression

The expression containing the data to be sorted. The first (lowest) value of sort_
weight is found, from which the corresponding value of the value expression is
determined. If you place a minus sign in front of sort_weight, the function returns
the last (highest) sorted value instead.

rank
Expression

By stating a rank "n" larger than 1, you get the nth sorted value.

distinct If the word DISTINCT occurs before the function arguments, duplicates resulting
from the evaluation of the function arguments are disregarded.

Arguments

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results
column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch
from Auto to Custom, then deselect numerical and alphabetical sorting.

Script syntax and chart functions - Qlik Sense, May 2024 335

8 Script and chart functions

Example Result

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|CustomerID

Astrida|AA|1|10|1

Astrida|AA|7|18|1

Astrida|BB|4|9|1

Astrida|CC|6|2|1

Betacab|AA|5|4|2

Betacab|BB|2|5|2

Betacab|DD|12|25|2

Canutility|AA|3|8|3

Canutility|CC|13|19|3

Divadip|AA|9|16|4

Divadip|AA|10|16|4

Divadip|DD|11|10|4

] (delimiter is '|');

FirstSortedValue:

LOAD Customer,FirstSortedValue(Product, UnitSales)

as MyProductWithSmallestOrderByCustomer Resident

Temp Group By Customer;

Customer

MyProductWithSmallestOrderByCustomer

Astrida CC

Betacab AA

Canutility AA

Divadip DD

The function sorts UnitSales from
smallest to largest, looking for the value
of Customer with the smallest value of
UnitSales, the smallest order.

Because CC corresponds to the
smallest order (value of UnitSales=2) for
customer Astrida. AA corresponds to
the smallest order (4) for customer
Betacab, AA corresponds to the
smallest order (8) for customer
Canutility, and DD corresponds to the
smallest order (10) for customer
Divadip..

Given that the Temp table is loaded as in the previous
example:

LOAD Customer,FirstSortedValue(Product, -UnitSales)

as MyProductWithLargestOrderByCustomer Resident

Temp Group By Customer;

Customer

MyProductWithLargestOrderByCustomer

Astrida AA

Betacab DD

Canutility CC

Divadip -

A minus sign precedes the sort_weight
argument, so the function sorts the
largest first.

Because AA corresponds to the largest
order (value of UnitSales:18) for
customer Astrida, DD corresponds to
the largest order (12) for customer
Betacab, and CC corresponds to the
largest order (13) for customer
Canutility. There are two identical
values for the largest order (16) for
customer Divadip, therefore this
produces a null result.

Scripting examples

Script syntax and chart functions - Qlik Sense, May 2024 336

8 Script and chart functions

Example Result

Given that the Temp table is loaded as in the previous
example:

LOAD Customer,FirstSortedValue(distinct Product, -

UnitSales) as MyProductWithSmallestOrderByCustomer

Resident Temp Group By Customer;

Customer

MyProductWithLargestOrderByCustomer

Astrida AA

Betacab DD

Canutility CC

Divadip AA

This is the same as the previous
example, except the distinct qualifier is
used. This causes the duplicate result
for Divadip to be disregarded, allowing a
non-null value to be returned.

FirstSortedValue - chart function
FirstSortedValue() returns the value from the expression specified in value that corresponds to
the result of sorting the sort_weight argument, for example, the name of the product with the
lowest unit price. The nth value in the sort order, can be specified in rank. If more than one resulting
value shares the same sort_weight for the specified rank, the function returns NULL.

Syntax:
FirstSortedValue([{SetExpression}] [DISTINCT] [TOTAL [<fld {,fld}>]] value,

sort_weight [,rank])

Return data type: dual

Arguments:

Argument Description

value Output field. The function finds the value of the expression value that
corresponds to the result of sorting sort_weight.

sort_weight Input field. The expression containing the data to be sorted. The first (lowest)
value of sort_weight is found, from which the corresponding value of the
value expression is determined. If you place a minus sign in front of sort_
weight, the function returns the last (highest) sorted value instead.

rank By stating a rank "n" larger than 1, you get the nth sorted value.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 337

8 Script and chart functions

Argument Description

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Examples and results:

Customer Product UnitSales UnitPrice

Astrida AA 4 16

Astrida AA 10 15

Astrida BB 9 9

Betacab BB 5 10

Betacab CC 2 20

Betacab DD - 25

Canutility AA 8 15

Canutility CC - 19

Data

Example Result

firstsortedvalue (Product,

UnitPrice)
BB, which is the Productwith the lowest UnitPrice(9).

firstsortedvalue (Product,

UnitPrice, 2)
BB, which is the Productwith the second-lowest UnitPrice(10).

firstsortedvalue (Customer,

-UnitPrice, 2)
Betacab, which is the Customerwith the Product that has second-
highest UnitPrice(20).

firstsortedvalue (Customer,

UnitPrice, 3)
NULL, because there are two values of Customer (Astrida and
Canutility) with the samerank (third-lowest) UnitPrice(15).

Use the distinct qualifier to make sure unexpected null results do
not occur.

firstsortedvalue (Customer,

-UnitPrice*UnitSales, 2)
Canutility, which is the Customer with the second-highest sales
order value UnitPrice multiplied by UnitSales (120).

Examples and results

Script syntax and chart functions - Qlik Sense, May 2024 338

8 Script and chart functions

Data used in examples:

ProductData:

LOAD * inline [

Customer|Product|UnitSales|UnitPrice

Astrida|AA|4|16

Astrida|AA|10|15

Astrida|BB|9|9

Betacab|BB|5|10

Betacab|CC|2|20

Betacab|DD||25

Canutility|AA|8|15

Canutility|CC||19

] (delimiter is '|');

Max
Max() finds the highest numeric value of the aggregated data in the expression, as defined by a
group by clause. By specifying a rank n, the nth highest value can be found.

Syntax:
Max (expr [, rank])

Return data type: numeric

Arguments:

Argument Description

expr
Expression

The expression or field containing the data to be measured.

rank
Expression

The default value of rank is 1, which corresponds to the highest value. By
specifying rank as 2, the second highest value is returned. If rank is 3, the third
highest value is returned, and so on.

Arguments

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results
column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch
from Auto to Custom, then deselect numerical and alphabetical sorting.

Example:

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|CustomerID

Astrida|AA|1|10|1

Astrida|AA|7|18|1

Astrida|BB|4|9|1

Astrida|CC|6|2|1

Script syntax and chart functions - Qlik Sense, May 2024 339

8 Script and chart functions

Betacab|AA|5|4|2

Betacab|BB|2|5|2

Betacab|DD

Canutility|DD|3|8

Canutility|CC

] (delimiter is '|');

Max:

LOAD Customer, Max(UnitSales) as MyMax Resident Temp Group By Customer;

Customer MyMax

Astrida 18

Betacab 5

Canutility 8

Resulting table

Example:

Given that the Temp table is loaded as in the previous example:

LOAD Customer, Max(UnitSales,2) as MyMaxRank2 Resident Temp Group By Customer;

Customer MyMaxRank2

Astrida 10

Betacab 4

Canutility -

Resulting table

Max - chart function
Max() finds the highest value of the aggregated data. By specifying a rank n, the nth highest value
can be found.

You might also want to look at FirstSortedValue and rangemax, which have similar
functionality to the Max function.

Syntax:
Max([{SetExpression}] [TOTAL [<fld {,fld}>]] expr [,rank])

Script syntax and chart functions - Qlik Sense, May 2024 340

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

rank The default value of rank is 1, which corresponds to the highest value. By
specifying rank as 2, the second highest value is returned. If rank is 3, the
third highest value is returned, and so on.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Arguments

Examples and results:

Customer Product UnitSales UnitPrice

Astrida AA 4 16

Astrida AA 10 15

Astrida BB 9 9

Betacab BB 5 10

Betacab CC 2 20

Betacab DD - 25

Canutility AA 8 15

Canutility CC - 19

Data

Script syntax and chart functions - Qlik Sense, May 2024 341

8 Script and chart functions

Examples Results

Max(UnitSales) 10, because this is the highest value in UnitSales.

The value of an order is
calculated from the
number of units sold in
(UnitSales) multiplied by
the unit price.

Max

(UnitSales*UnitPrice)

150, because this is the highest value of the result of calculating all
possible values of (UnitSales)*(UnitPrice).

Max(UnitSales, 2) 9, which is the second highest value.

Max(TOTAL UnitSales) 10, because the TOTAL qualifier means the highest possible value is
found, disregarding the chart dimensions. For a chart with Customer
as dimension, the TOTAL qualifier will ensure the maximum value
across the full dataset is returned, instead of the maximum UnitSales
for each customer.

Make the selection
Customer B.

Max({1}

TOTAL UnitSales)

10, independent of the selection made, because the Set Analysis
expression {1} defines the set of records to be evaluated as ALL, no
matter what selection is made.

Examples and results

Data used in examples:

ProductData:

LOAD * inline [

Customer|Product|UnitSales|UnitPrice

Astrida|AA|4|16

Astrida|AA|10|15

Astrida|BB|9|9

Betacab|BB|5|10

Betacab|CC|2|20

Betacab|DD||25

Canutility|AA|8|15

Canutility|CC||19

] (delimiter is '|');

See also:
p FirstSortedValue - chart function (page 337)
p RangeMax (page 1347)

Min
Min() returns the lowest numeric value of the aggregated data in the expression, as
defined by a group by clause. By specifying a rank n, the nth lowest value can be
found.

Script syntax and chart functions - Qlik Sense, May 2024 342

8 Script and chart functions

Syntax:
Min (expr [, rank])

Return data type: numeric

Arguments:

Argument Description

expr
Expression

The expression or field containing the data to be measured.

rank
Expression

The default value of rank is 1, which corresponds to the lowest value. By
specifying rank as 2, the second lowest value is returned. If rank is 3, the third
lowest value is returned, and so on.

Arguments

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results
column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch
from Auto to Custom, then deselect numerical and alphabetical sorting.

Example:

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|CustomerID

Astrida|AA|1|10|1

Astrida|AA|7|18|1

Astrida|BB|4|9|1

Astrida|CC|6|2|1

Betacab|AA|5|4|2

Betacab|BB|2|5|2

Betacab|DD

Canutility|DD|3|8

Canutility|CC

] (delimiter is '|');

Min:

LOAD Customer, Min(UnitSales) as MyMin Resident Temp Group By Customer;

Customer MyMin

Astrida 2

Betacab 4

Canutility 8

Resulting table

Script syntax and chart functions - Qlik Sense, May 2024 343

8 Script and chart functions

Example:

Given that the Temp table is loaded as in the previous example:

LOAD Customer, Min(UnitSales,2) as MyMinRank2 Resident Temp Group By Customer;

Customer MyMinRank2

Astrida 9

Betacab 5

Canutility -

Resulting table

Min - chart function
Min() finds the lowest value of the aggregated data. By specifying a rank n, the nth lowest value
can be found.

You might also want to look at FirstSortedValue and rangemin, which have similar
functionality to the Min function.

Syntax:
Min({[SetExpression] [TOTAL [<fld {,fld}>]]} expr [,rank])

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

rank The default value of rank is 1, which corresponds to the lowest value. By
specifying rank as 2, the second lowest value is returned. If rank is 3, the
third lowest value is returned, and so on.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 344

8 Script and chart functions

Examples and results:

Customer Product UnitSales UnitPrice

Astrida AA 4 16

Astrida AA 10 15

Astrida BB 9 9

Betacab BB 5 10

Betacab CC 2 20

Betacab DD - 25

Canutility AA 8 15

Canutility CC - 19

Data

The Min() function must return a non-NULL value from the array of values given by the
expression, if there is one. So in the examples, because there are NULL values in the
data, the function returns the first non-NULL value evaluated from the expression.

Examples Results

Min(UnitSales) 2, because this is the lowest non-NULL value in UnitSales.

The value of an order is
calculated from the
number of units sold in
(UnitSales) multiplied by
the unit price.

Min

(UnitSales*UnitPrice)

40, because this is the lowest non-NULL value result of calculating all
possible values of (UnitSales)*(UnitPrice).

Min(UnitSales, 2) 4, which is the second lowest value (after the NULL values).

Min(TOTAL UnitSales) 2, because the TOTAL qualifier means the lowest possible value is
found, disregarding the chart dimensions. For a chart with Customer
as dimension, the TOTAL qualifier will ensure the minimum value
across the full dataset is returned, instead of the minimum UnitSales
for each customer.

Examples and results

Script syntax and chart functions - Qlik Sense, May 2024 345

8 Script and chart functions

Examples Results

Make the selection
Customer B.

Min({1}

TOTAL UnitSales)

2, which is independent of the selection of Customer B.

The Set Analysis expression {1} defines the set of records to be
evaluated as ALL, no matter what selection is made.

Data used in examples:

ProductData:

LOAD * inline [

Customer|Product|UnitSales|UnitPrice

Astrida|AA|4|16

Astrida|AA|10|15

Astrida|BB|9|9

Betacab|BB|5|10

Betacab|CC|2|20

Betacab|DD||25

Canutility|AA|8|15

Canutility|CC||19

] (delimiter is '|');

See also:
p FirstSortedValue - chart function (page 337)
p RangeMin (page 1351)

Mode
Mode() returns the most commonly-occurring value, the mode value, of the
aggregated data in the expression, as defined by a group by clause. The Mode()
function can return numeric values as well as text values.

Syntax:
Mode (expr)

Return data type: dual

Argument Description

expr Expression The expression or field containing the data to be measured.

Arguments

Limitations:

If more than one value is equally commonly occurring, NULL is returned.

Script syntax and chart functions - Qlik Sense, May 2024 346

8 Script and chart functions

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results
column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch
from Auto to Custom, then deselect numerical and alphabetical sorting.

Example Result

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|CustomerID

Astrida|AA|1|10|1

Astrida|AA|7|18|1

Astrida|BB|4|9|1

Astrida|CC|6|2|1

Betacab|AA|5|4|2

Betacab|BB|2|5|2

Betacab|DD

Canutility|DD|3|8

Canutility|CC

] (delimiter is '|');

Mode:

LOAD Customer, Mode(Product) as MyMostOftenSoldProduct

Resident Temp Group By Customer;

MyMostOftenSoldProduct

AA

because AA is the only product
sold more than once.

Scripting examples

Mode - chart function
Mode() finds the most commonly-occurring value, the mode value, in the aggregated data. The
Mode() function can process text values as well as numeric values.

Syntax:
Mode({[SetExpression] [TOTAL [<fld {,fld}>]]} expr)

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 347

8 Script and chart functions

Argument Description

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Examples and results:

Customer Product UnitSales UnitPrice

Astrida AA 4 16

Astrida AA 10 15

Astrida BB 9 9

Betacab BB 5 10

Betacab CC 2 20

Betacab DD - 25

Canutility AA 8 15

Canutility CC - 19

Data

Examples Results

Mode(UnitPrice)

Make the selection
Customer A.

15, because this is the most commonly-occurring value in UnitSales.

Returns NULL (-). No single value occurs more often than another.

Mode(Product)

Make the selection
Customer A

AA, because this is the most commonly occurring value in Product.

Returns NULL (-). No single value occurs more often than another.

Mode

(TOTAL UnitPrice)
15, because the TOTAL qualifier means the most commonly occurring
value is still 15, even disregarding the chart dimensions.

Make the selection
Customer B.

Mode({1}

TOTAL UnitPrice)

15, independent of the selection made, because the Set Analysis
expression {1} defines the set of records to be evaluated as ALL, no matter
what selection is made.

Examples and results

Data used in examples:

Script syntax and chart functions - Qlik Sense, May 2024 348

8 Script and chart functions

ProductData:

LOAD * inline [

Customer|Product|UnitSales|UnitPrice

Astrida|AA|4|16

Astrida|AA|10|15

Astrida|BB|9|9

Betacab|BB|5|10

Betacab|CC|2|20

Betacab|DD||25

Canutility|AA|8|15

Canutility|CC||19

] (delimiter is '|');

See also:
p Avg - chart function (page 407)
p Median - chart function (page 446)

Only
Only() returns a value if there is one and only one possible result from the aggregated
data. If records contain only one value then that value is returned, otherwise NULL is
returned. Use the group by clause to evaluate over multiple records. The Only()
function can return numeric and text values.

Syntax:
Only (expr)

Return data type: dual

Argument Description

expr Expression The expression or field containing the data to be measured.

Arguments

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results
column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch
from Auto to Custom, then deselect numerical and alphabetical sorting.

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|CustomerID

Astrida|AA|1|10|1

Astrida|AA|7|18|1

Astrida|BB|4|9|1

Astrida|CC|6|2|1

Betacab|AA|5|4|2

Betacab|BB|2|5|2

Betacab|DD

Script syntax and chart functions - Qlik Sense, May 2024 349

8 Script and chart functions

Canutility|DD|3|8

Canutility|CC

] (delimiter is '|');

Only:

LOAD Customer, Only(CustomerID) as MyUniqIDCheck Resident Temp Group By Customer;

Customer MyUniqIDCheck

Astrida 1

because only customer Astrida has complete records that include CustomerID.

Resulting table

Only - chart function
Only() returns a value if there is one and only one possible result from the aggregated data. For
example, searching for the only product where the unit price =9 will return NULL if more than one
product has a unit price of 9.

Syntax:
Only([{SetExpression}] [TOTAL [<fld {,fld}>]] expr)

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Arguments

Use Only() when you want a NULL result if there are multiple possible values in the
sample data.

Script syntax and chart functions - Qlik Sense, May 2024 350

8 Script and chart functions

Examples and results:

Customer Product UnitSales UnitPrice

Astrida AA 4 16

Astrida AA 10 15

Astrida BB 9 9

Betacab BB 5 10

Betacab CC 2 20

Betacab DD - 25

Canutility AA 8 15

Canutility CC - 19

Data

Examples Results

Only({<UnitPrice=

{9}>} Product)
BB, because this is the only Productthat has a UnitPrice of '9'.

Only({<Product=

{DD}>} Customer)
Betacab, because it is the only Customer selling a Product called 'DD'.

Only({<UnitPrice=

{20}>} UnitSales)
The number of UnitSales where UnitPrice is 20 is 2, because there is only
one value of UnitSales where the UnitPrice =20.

Only({<UnitPrice=

{15}>} UnitSales)
NULL, because there are two values of UnitSales where the UnitPrice

=15.

Examples and results

Data used in examples:

ProductData:

LOAD * inline [

Customer|Product|UnitSales|UnitPrice

Astrida|AA|4|16

Astrida|AA|10|15

Astrida|BB|9|9

Betacab|BB|5|10

Betacab|CC|2|20

Betacab|DD||25

Canutility|AA|8|15

Canutility|CC||19

] (delimiter is '|');

Script syntax and chart functions - Qlik Sense, May 2024 351

8 Script and chart functions

Sum
Sum() calculates the total of the values aggregated in the expression, as defined by a
group by clause.

Syntax:
sum ([distinct] expr)

Return data type: numeric

Arguments:

Argument Description

distinct If the word distinct occurs before the expression, all duplicates will be
disregarded.

expr
Expression

The expression or field containing the data to be measured.

Arguments

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results
column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch
from Auto to Custom, then deselect numerical and alphabetical sorting.

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|CustomerID

Astrida|AA|1|10|1

Astrida|AA|7|18|1

Astrida|BB|4|9|1

Astrida|CC|6|2|1

Betacab|AA|5|4|2

Betacab|BB|2|5|2

Betacab|DD

Canutility|DD|3|8

Canutility|CC

] (delimiter is '|');

Sum:

LOAD Customer, Sum(UnitSales) as MySum Resident Temp Group By Customer;

Customer MySum

Astrida 39

Betacab 9

Canutility 8

Resulting table

Script syntax and chart functions - Qlik Sense, May 2024 352

8 Script and chart functions

Sum - chart function
Sum() calculates the total of the values given by the expression or field across the aggregated
data.

Syntax:
Sum([{SetExpression}] [DISTINCT] [TOTAL [<fld {,fld}>]] expr])

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

Although the DISTINCT qualifier is supported, use it only with
extreme caution because it may mislead the reader into thinking a
total value is shown when some data has been omitted.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Arguments

Examples and results:

Customer Product UnitSales UnitPrice

Astrida AA 4 16

Astrida AA 10 15

Astrida BB 9 9

Data

Script syntax and chart functions - Qlik Sense, May 2024 353

8 Script and chart functions

Customer Product UnitSales UnitPrice

Betacab BB 5 10

Betacab CC 2 20

Betacab DD - 25

Canutility AA 8 15

Canutility CC - 19

Examples Results

Sum(UnitSales) 38. The total of the values in UnitSales.

Sum(UnitSales*UnitPrice) 505. The total of UnitPrice multiplied by UnitSales aggregated.

Sum

(TOTAL UnitSales*UnitPrice)
505 for all rows in the table as well as the total, because the
TOTAL qualifier means the sum is still 505, disregarding the
chart dimensions.

Make the selection Customer

B.

Sum({1}

TOTAL UnitSales*UnitPrice)

505, independent of the selection made, because the Set
Analysis expression {1} defines the set of records to be
evaluated as ALL, no matter what selection is made.

Examples and results

Data used in examples:

ProductData:

LOAD * inline [

Customer|Product|UnitSales|UnitPrice

Astrida|AA|4|16

Astrida|AA|10|15

Astrida|BB|9|9

Betacab|BB|5|10

Betacab|CC|2|20

Betacab|DD||25

Canutility|AA|8|15

Canutility|CC||19

] (delimiter is '|');

Counter aggregation functions
Counter aggregation functions return various types of counts of an expression over a number of
records in a data load script or a number of values in a chart dimension.

Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

Script syntax and chart functions - Qlik Sense, May 2024 354

8 Script and chart functions

Counter aggregation functions in the data load script
Count
Count() returns the number of values aggregated in expression, as defined by a group by clause.

Count ([distinct] expression | *)

MissingCount
MissingCount() returns the number of missing values aggregated in the expression, as defined by
a group by clause.

MissingCount ([distinct] expression)

NullCount
NullCount() returns the number of NULL values aggregated in the expression, as defined by a
group by clause.

NullCount ([distinct] expression)

NumericCount
NumericCount() returns the number of numeric values found in the expression, as defined by a
group by clause.

NumericCount ([distinct] expression)

TextCount
TextCount() returns the number of field values that are non-numeric aggregated in the expression,
as defined by a group by clause.

TextCount ([distinct] expression)

Counter aggregation functions in chart expressions
The following counter aggregation functions can be used in charts.

Count
Count() is used to aggregate the number of values, text and numeric, in each chart dimension.

Count - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld {,fld}>]]}

expr)

MissingCount
MissingCount() is used to aggregate the number of missing values in each chart dimension.
Missing values are all non-numeric values.

MissingCount - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld

{,fld}>]] expr)

NullCount
NullCount() is used to aggregate the number of NULL values in each chart dimension.

Script syntax and chart functions - Qlik Sense, May 2024 355

8 Script and chart functions

NullCount - chart function({[SetExpression][DISTINCT] [TOTAL [<fld {,fld}>]]}

expr)

NumericCount
NumericCount() aggregates the number of numeric values in each chart dimension.

NumericCount - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld

{,fld}>]]} expr)

TextCount
TextCount() is used to aggregate the number of field values that are non-numeric in each chart
dimension.

TextCount - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld

{,fld}>]]} expr)

Count
Count() returns the number of values aggregated in expression, as defined by a group
by clause.

Syntax:
Count([distinct] expr)

Return data type: integer

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

distinct If the word distinct occurs before the expression, all duplicates are disregarded.

Arguments

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results
column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch
from Auto to Custom, then deselect numerical and alphabetical sorting.

Script syntax and chart functions - Qlik Sense, May 2024 356

8 Script and chart functions

Example Result

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|UnitPrice

Astrida|AA|1|4|16

Astrida|AA|7|10|15

Astrida|BB|4|9|9

Betacab|CC|6|5|10

Betacab|AA|5|2|20

Betacab|BB|1|25| 25

Canutility|AA|3|8|15

Canutility|CC|||19

Divadip|CC|2|4|16

Divadip|DD|3|1|25

] (delimiter is '|');

Count1:

LOAD Customer,Count(OrderNumber) as

OrdersByCustomer Resident Temp Group By Customer;

Customer OrdersByCustomer

Astrida 3

Betacab 3

Canutility 2

Divadip 2

As long as the dimension Customer is
included in the table on the sheet
otherwise the result for
OrdersByCustomer is 3, 2.

Given that the Temp table is loaded as in the
previous example:

LOAD Count(OrderNumber) as TotalOrderNumber

Resident Temp;

TotalOrderNumber

10

Given that the Temp table is loaded as in the first
example:

LOAD Count(distinct OrderNumber) as

TotalOrderNumber Resident Temp;

TotalOrderNumber

8

Because there are two values of
OrderNumber with the same value, 1, and
one null value.

Scripting examples

Count - chart function
Count() is used to aggregate the number of values, text and numeric, in each chart dimension.

Syntax:
Count({[SetExpression] [DISTINCT] [TOTAL [<fld {,fld}>]]} expr)

Return data type: integer

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 357

8 Script and chart functions

Argument Description

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Examples and results:

Customer Product OrderNumber UnitSales Unit Price

Astrida AA 1 4 16

Astrida AA 7 10 15

Astrida BB 4 9 9

Betacab BB 6 5 10

Betacab CC 5 2 20

Betacab DD 1 25 25

Canutility AA 3 8 15

Canutility CC 19

Divadip AA 2 4 16

Divadip DD 3 25

Data

The following examples assume that all customers are selected, except where stated.

Script syntax and chart functions - Qlik Sense, May 2024 358

8 Script and chart functions

Example Result

Count(OrderNumber) 10, because there are 10 fields that could have a value for
OrderNumber, and all records, even empty ones, are counted.

"0" counts as a value and not an empty cell. However, if a
measure aggregates to 0 for a dimension, that dimension
will not be included in charts.

Count(Customer) 10, because Count evaluates the number of occurrences in all fields.

Count(DISTINCT

[Customer])
4, because using the Distinct qualifier, Count only evaluates unique
occurrences.

Given that customer
Canutility is selected

Count

(OrderNumber)/Count({1}

TOTAL OrderNumber)

0.2, because the expression returns the number of orders from the
selected customer as a percentage of orders from all customers. In
this case 2 / 10.

Given that customers
Astrida and Canutility
are selected

Count(TOTAL <Product>

OrderNumber)

5, because that is the number of orders placed on products for the
selected customers only and empty cells are counted.

Examples and results

Data used in examples:

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|UnitPrice

Astrida|AA|1|4|16

Astrida|AA|7|10|15

Astrida|BB|4|9|9

Betacab|CC|6|5|10

Betacab|AA|5|2|20

Betacab|BB|1|25| 25

Canutility|AA|3|8|15

Canutility|CC|||19

Divadip|CC|2|4|16

Divadip|DD|3|1|25

] (delimiter is '|');

MissingCount
MissingCount() returns the number of missing values aggregated in the expression, as
defined by a group by clause.

Script syntax and chart functions - Qlik Sense, May 2024 359

8 Script and chart functions

Syntax:
MissingCount ([distinct] expr)

Return data type: integer

Arguments:

Argument Description

expr
Expression

The expression or field containing the data to be measured.

distinct If the word distinct occurs before the expression, all duplicates are
disregarded.

Arguments

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results
column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch
from Auto to Custom, then deselect numerical and alphabetical sorting.

Example Result

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|UnitPrice

Astrida|AA|1|4|16

Astrida|AA|7|10|15

Astrida|BB|4|9|9

Betacab|CC|6|5|10

Betacab|AA|5|2|20

Betacab|BB||| 25

Canutility|AA|||15

Canutility|CC| ||19

Divadip|CC|2|4|16

Divadip|DD|3|1|25

] (delimiter is '|');

MissCount1:

LOAD Customer,MissingCount(OrderNumber) as

MissingOrdersByCustomer Resident Temp Group By Customer;

Load MissingCount(OrderNumber) as TotalMissingCount

Resident Temp;

Customer

MissingOrdersByCustomer

Astrida 0

Betacab 1

Canutility 2

Divadip 0

The second statement gives:

TotalMissingCount

3

in a table with that dimension.

Given that the Temp table is loaded as in the previous
example:

LOAD MissingCount(distinct OrderNumber) as

TotalMissingCountDistinct Resident Temp;

TotalMissingCountDistinct

1

Because there is only
oneOrderNumber one missing
value.

Scripting examples

Script syntax and chart functions - Qlik Sense, May 2024 360

8 Script and chart functions

MissingCount - chart function
MissingCount() is used to aggregate the number of missing values in each chart dimension.
Missing values are all non-numeric values.

Syntax:
MissingCount({[SetExpression] [DISTINCT] [TOTAL [<fld {,fld}>]]} expr)

Return data type: integer

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Arguments

Examples and results:

Customer Product OrderNumber UnitSales Unit Price

Astrida AA 1 4 16

Astrida AA 7 10 15

Astrida BB 4 9 9

Betacab BB 6 5 10

Betacab CC 5 2 20

Betacab DD 25

Data

Script syntax and chart functions - Qlik Sense, May 2024 361

8 Script and chart functions

Customer Product OrderNumber UnitSales Unit Price

Canutility AA 15

Canutility CC 19

Divadip AA 2 4 16

Divadip DD 3 25

Example Result

MissingCount([OrderNumber]) 3 because 3 of the 10 OrderNumber fields are empty

"0" counts as a value and not an empty cell.
However, if a measure aggregates to 0 for a
dimension, that dimension will not be included in
charts.

MissingCount

([OrderNumber])/MissingCount

({1} Total [OrderNumber])

The expression returns the number of incomplete orders from
the selected customer as a fraction of incomplete orders from
all customers. There is a total of 3 missing values for
OrderNumber for all customers. So, for each Customer that
has a missing value for Product the result is 1/3.

Examples and results

Data used in example:

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|UnitPrice

Astrida|AA|1|4|16

Astrida|AA|7|10|15

Astrida|BB|4|9|9

Betacab|CC|6|5|10

Betacab|AA|5|2|20

Betacab|BB||| 25

Canutility|AA|||15

Canutility|CC| ||19

Divadip|CC|2|4|16

Divadip|DD|3|1|25

] (delimiter is '|');

NullCount
NullCount() returns the number of NULL values aggregated in the expression, as
defined by a group by clause.

Syntax:
NullCount ([distinct] expr)

Script syntax and chart functions - Qlik Sense, May 2024 362

8 Script and chart functions

Return data type: integer

Arguments:

Argument Description

expr
Expression

The expression or field containing the data to be measured.

distinct If the word distinct occurs before the expression, all duplicates are
disregarded.

Arguments

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results
column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch
from Auto to Custom, then deselect numerical and alphabetical sorting.

Example Result

Set NULLINTERPRET = NULL;

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|CustomerID

Astrida|AA|1|10|1

Astrida|AA|7|18|1

Astrida|BB|4|9|1

Astrida|CC|6|2|1

Betacab|AA|5|4|2

Betacab|BB|2|5|2

Betacab|DD|||

Canutility|AA|3|8|

Canutility|CC|NULL||

] (delimiter is '|');

Set NULLINTERPRET=;

NullCount1:

LOAD Customer,NullCount(OrderNumber) as

NullOrdersByCustomer Resident Temp Group By

Customer;

LOAD NullCount(OrderNumber) as TotalNullCount

Resident Temp;

Customer NullOrdersByCustomer

Astrida 0

Betacab 0

Canutility 1

The second statement gives:

TotalNullCount

1

in a table with that dimension, because
only one record contains a null value.

Scripting examples

NullCount - chart function
NullCount() is used to aggregate the number of NULL values in each chart dimension.

Syntax:
NullCount({[SetExpression][DISTINCT] [TOTAL [<fld {,fld}>]]} expr)

Script syntax and chart functions - Qlik Sense, May 2024 363

8 Script and chart functions

Return data type: integer

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

set_
expression

By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined by
a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting
from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made
over all possible values given the current selections, and not just those that
pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of
one or more field names as a subset of the chart dimension variables, you create
a subset of the total possible values.

Arguments

Examples and results:

Example Result

NullCount
([OrderNumber])

1 because we have introduced a null value using NullInterpret in the inline
LOAD statement.

Examples and results

Data used in example:

Set NULLINTERPRET = NULL;

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|CustomerID

Astrida|AA|1|10|1

Astrida|AA|7|18|1

Astrida|BB|4|9|1

Astrida|CC|6|2|1

Betacab|AA|5|4|2

Betacab|BB|2|5|2

Betacab|DD|||

Canutility|AA|3|8|

Canutility|CC|NULL||

] (delimiter is '|');

Set NULLINTERPRET=;

Script syntax and chart functions - Qlik Sense, May 2024 364

8 Script and chart functions

NumericCount
NumericCount() returns the number of numeric values found in the expression, as
defined by a group by clause.

Syntax:
NumericCount ([distinct] expr)

Return data type: integer

Arguments:

Argument Description

expr
Expression

The expression or field containing the data to be measured.

distinct If the word distinct occurs before the expression, all duplicates are
disregarded.

Arguments

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results
column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch
from Auto to Custom, then deselect numerical and alphabetical sorting.

Example Result

LOAD NumericCount(OrderNumber) as

TotalNumericCount Resident Temp;
The second statement gives:
TotalNumericCount
7
in a table with that dimension.

Given that the Temp table is loaded as in
the previous example:

LOAD NumericCount(distinct OrderNumber)

as TotalNumeriCCountDistinct Resident

Temp;

TotalNumericCountDistinct
6
Because there is one OrderNumber that duplicates
another, so the result is 6 that are not duplicates..

Scripting example

Example:

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|UnitPrice

Astrida|AA|1|4|16

Astrida|AA|7|10|15

Script syntax and chart functions - Qlik Sense, May 2024 365

8 Script and chart functions

Astrida|BB|4|9|9

Betacab|CC|6|5|10

Betacab|AA|5|2|20

Betacab|BB||| 25

Canutility|AA|||15

Canutility|CC| ||19

Divadip|CC|2|4|16

Divadip|DD|7|1|25

] (delimiter is '|');

NumCount1:

LOAD Customer,NumericCount(OrderNumber) as NumericCountByCustomer Resident Temp Group By

Customer;

Customer NumericCountByCustomer

Astrida 3

Betacab 2

Canutility 0

Divadip 2

Resulting table

NumericCount - chart function
NumericCount() aggregates the number of numeric values in each chart dimension.

Syntax:
NumericCount({[SetExpression] [DISTINCT] [TOTAL [<fld {,fld}>]]} expr)

Return data type: integer

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

set_
expression

By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined by
a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates resulting
from the evaluation of the function arguments are disregarded.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 366

8 Script and chart functions

Argument Description

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made
over all possible values given the current selections, and not just those that
pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of
one or more field names as a subset of the chart dimension variables, you create
a subset of the total possible values.

Examples and results:

Customer Product OrderNumber UnitSales Unit Price

Astrida AA 1 4 16

Astrida AA 7 10 15

Astrida BB 4 9 1

Betacab BB 6 5 10

Betacab CC 5 2 20

Betacab DD 25

Canutility AA 15

Canutility CC 19

Divadip AA 2 4 16

Divadip DD 3 25

Data

The following examples assume that all customers are selected, except where stated.

Example Result

NumericCount

([OrderNumber])
7 because three of the 10 fields in OrderNumber are empty.

"0" counts as a value and not an empty cell. However, if a
measure aggregates to 0 for a dimension, that dimension
will not be included in charts.

Examples and results

Script syntax and chart functions - Qlik Sense, May 2024 367

8 Script and chart functions

Example Result

NumericCount

([Product])
0 because all product names are in text. Typically you could use this to
check that no text fields have been given numeric content.

NumericCount (DISTINCT

[OrderNumber])/Count

(DISTINCT

[OrderNumber)]

Counts all the number of distinct numeric order numbers and divides it
by the number of order numbers numeric and non-numeric. This will be
1 if all field values are numeric. Typically you could use this to check
that all field values are numeric. In the example, there are 7 distinct
numeric values for OrderNumber of 8 distinct numeric and non-
numerid, so the expression returns 0.875.

Data used in example:

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|UnitPrice

Astrida|AA|1|4|16

Astrida|AA|7|10|15

Astrida|BB|4|9|9

Betacab|CC|6|5|10

Betacab|AA|5|2|20

Betacab|BB||| 25

Canutility|AA|||15

Canutility|CC| ||19

Divadip|CC|2|4|16

Divadip|DD|3|1|25

] (delimiter is '|');

TextCount
TextCount() returns the number of field values that are non-numeric aggregated in the
expression, as defined by a group by clause.

Syntax:
TextCount ([distinct] expr)

Return data type: integer

Arguments:

Argument Description

expr
Expression

The expression or field containing the data to be measured.

distinct If the word distinct occurs before the expression, all duplicates are
disregarded.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 368

8 Script and chart functions

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results
column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch
from Auto to Custom, then deselect numerical and alphabetical sorting.

Example:

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|UnitPrice

Astrida|AA|1|4|16

Astrida|AA|7|10|15

Astrida|BB|4|9|9

Betacab|CC|6|5|10

Betacab|AA|5|2|20

Betacab|BB||| 25

Canutility|AA|||15

Canutility|CC| ||19

Divadip|CC|2|4|16

Divadip|DD|3|1|25

] (delimiter is '|');

TextCount1:

LOAD Customer,TextCount(Product) as ProductTextCount Resident Temp Group By Customer;

Customer ProductTextCount

Astrida 3

Betacab 3

Canutility 2

Divadip 2

Resulting table

Example:

LOAD Customer,TextCount(OrderNumber) as OrderNumberTextCount Resident Temp Group By Customer;

Customer OrderNumberTextCount

Astrida 0

Betacab 1

Canutility 2

Divadip 0

Resulting table

Script syntax and chart functions - Qlik Sense, May 2024 369

8 Script and chart functions

TextCount - chart function
TextCount() is used to aggregate the number of field values that are non-numeric in each chart
dimension.

Syntax:
TextCount({[SetExpression] [DISTINCT] [TOTAL [<fld {,fld}>]]} expr)

Return data type: integer

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Arguments

Examples and results:

Customer Product OrderNumber UnitSales Unit Price

Astrida AA 1 4 16

Astrida AA 7 10 15

Astrida BB 4 9 1

Betacab BB 6 5 10

Betacab CC 5 2 20

Betacab DD 25

Data

Script syntax and chart functions - Qlik Sense, May 2024 370

8 Script and chart functions

Customer Product OrderNumber UnitSales Unit Price

Canutility AA 15

Canutility CC 19

Divadip AA 2 4 16

Divadip DD 3 25

Example Result

TextCount

([Product])
10 because all of the 10 fields in Product are text.

"0" counts as a value and not an empty cell. However, if a
measure aggregates to 0 for a dimension, that dimension will
not be included in charts. Empty cells are evaluated as being
non text and are not counted by TextCount.

TextCount

([OrderNumber])
3, because empty cells are counted. Typically, you would use this to check
that no numeric fields have been given text values or are non-zero.

TextCount

(DISTINCT

[Product])/Count

([Product)]

Counts all the number of distinct text values of Product (4), and divides it
by the total number of values in Product (10). The result is 0.4.

Examples and results

Data used in example:

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|UnitPrice

Astrida|AA|1|4|16

Astrida|AA|7|1|15

Astrida|BB|4|9|9

Betacab|CC|6|5|10

Betacab|AA|5|2|20

Betacab|BB|||| 25

Canutility|AA|||15

Canutility|CC|||19

Divadip|CC|2|4|16

Divadip|DD|3|1|25

] (delimiter is '|');

Financial aggregation functions
This section describes aggregation functions for financial operations regarding payments and cash
flow.

Script syntax and chart functions - Qlik Sense, May 2024 371

8 Script and chart functions

Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

Financial aggregation functions in the data load script
IRR
IRR() returns the aggregated internal rate of return for a series of cash flows represented by the
numbers in the expression iterated over a number of records as defined by a group by clause.

IRR (expression)

XIRR
XIRR() returns the aggregated internal rate of return (yearly) for a schedule of cash flows (that is
not necessarily periodic) represented by paired numbers in pmt and date iterated over a number of
records as defined by a group by clause. All payments are discounted based on a 365-day year.

XIRR (valueexpression, dateexpression)

NPV
The NPV() script function takes a discount rate and multiple values ordered by period. Inflows
(incomes) are positive, and outflows (future payments) are assumed to be negative values for these
calculations. These occur at the end of each period.

NPV (rate, expression)

XNPV
XNPV() returns the aggregated net present value for a schedule of cashflows (not necessarily
periodic) represented by paired numbers in pmt and date. All payments are discounted based on a
365-day year.

XNPV (rate, valueexpression, dateexpression)

Financial aggregation functions in chart expressions
These financial aggregation functions can be used in charts

IRR
IRR() returns the aggregated internal rate of return for a series of cash flows represented by the
numbers in the expression given by value iterated over the chart dimensions.

IRR - chart function[TOTAL [<fld {,fld}>]] value)

NPV
NPV() returns the aggregated net present value of an investment based on a discount_rate per
period and a series of future payments (negative values) and incomes (positive values,)
represented by the numbers in value, iterated over the chart dimensions. The payments and
incomes are assumed to occur at the end of each period.

NPV - chart function([TOTAL [<fld {,fld}>]] discount_rate, value)

Script syntax and chart functions - Qlik Sense, May 2024 372

8 Script and chart functions

XIRR
XIRR() returns the aggregated internal rate of return (yearly) for a schedule of cash flows (that is
not necessarily periodic) represented by paired numbers in the expressions given by pmt and date
iterated over the chart dimensions. All payments are discounted based on a 365-day year.

XIRR - chart function([TOTAL [<fld {,fld}>]] pmt, date)

XNPV
XNPV() returns the aggregated net present value for a schedule of cash flows (not necessarily
periodic) represented by paired numbers in the expressions given by pmt and date, iterated over
the chart dimensions. All payments are discounted based on a 365-day year.

XNPV - chart function([TOTAL [<fld{,fld}>]] discount_rate, pmt, date)

IRR
IRR() returns the aggregated internal rate of return for a series of cash flows
represented by the numbers in the expression iterated over a number of records as
defined by a group by clause.

These cash flows do not have to be even, as they would be for an annuity. However, the cash flows
must occur at regular intervals, such as monthly or annually. The internal rate of return is the
interest rate received for an investment consisting of payments (negative values) and income
(positive values) that occur at regular periods. The function needs at least one positive and one
negative value to calculate.

This function uses a simplified version of the Newton method for calculating the internal rate of
return (IRR).

Syntax:
IRR(value)

Return data type: numeric

Arguments:

Argument Description

value The expression or field containing the data to be measured.

Arguments

Limitations:

Text values, NULL values and missing values are disregarded.

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Script syntax and chart functions - Qlik Sense, May 2024 373

8 Script and chart functions

Examples and results:

Example Year IRR2013

Cashflow:

LOAD 2013 as Year, * inline [

Date|Discount|Payments

2013-01-01|0.1|-10000

2013-03-01|0.1|3000

2013-10-30|0.1|4200

2014-02-01|0.2|6800

] (delimiter is '|');

Cashflow1:

LOAD Year,IRR(Payments) as IRR2013 Resident Cashflow Group By Year;

2013 0.1634

Examples and results

IRR - chart function
IRR() returns the aggregated internal rate of return for a series of cash flows represented by the
numbers in the expression given by value iterated over the chart dimensions.

These cash flows do not have to be even, as they would be for an annuity. However, the cash flows
must occur at regular intervals, such as monthly or annually. The internal rate of return is the
interest rate received for an investment consisting of payments (negative values) and income
(positive values) that occur at regular periods. The function needs at least one positive and one
negative value to calculate.

This function uses a simplified version of the Newton method for calculating the internal rate of
return (IRR).

Syntax:
IRR([TOTAL [<fld {,fld}>]] value)

Return data type: numeric

Arguments:

Argument Description

value The expression or field containing the data to be measured.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made
over all possible values given the current selections, and not just those that
pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of
one or more field names as a subset of the chart dimension variables, you create
a subset of the total possible values.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 374

8 Script and chart functions

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

Text values, NULL values and missing values are disregarded.

Examples and results:

Example Result

IRR

(Payments)
0.1634

The payments are assumed to be periodic in nature, for example monthly.

The Date field is used in the XIRR example where payments can be
non-periodical as long as you provide the dates on which payments
were made.

Examples and results

Data used in examples:

Cashflow:

LOAD 2013 as Year, * inline [

Date|Discount|Payments

2013-01-01|0.1|-10000

2013-03-01|0.1|3000

2013-10-30|0.1|4200

2014-02-01|0.2|6800

] (delimiter is '|');

See also:
p XIRR - chart function (page 387)
p Aggr - chart function (page 549)

NPV
The NPV() script function takes a discount rate and multiple values ordered by period.
Inflows (incomes) are positive, and outflows (future payments) are assumed to be
negative values for these calculations. These occur at the end of each period.

Net Present Value, or NPV, is used to calculate the current total value of a future stream of cash
flows. To calculate NPV, we need to estimate future cash flows for each period and determine the
correct discount rate. The NPV() script function takes a discount rate and multiple values ordered
by period. Inflows (incomes) are positive, and outflows (future payments) are assumed to be
negative values for these calculations. These occur at the end of each period.

Script syntax and chart functions - Qlik Sense, May 2024 375

8 Script and chart functions

Syntax:
NPV(discount_rate, value)

Return data type: numeric. By default, the result will be formatted as currency.

The formula to calculate net present value is:

where:

l R
t
= Net cash inflow-outflows during a single period t

l i = Discount rate or return that could be earned in alternative investments
l t = Number of timer periods

Argument Description

discount_
rate

discount_rate is the percentage rate of discount applied.

A value of 0.1 would indicate a 10% discount rate.

value This field holds values for multiple periods ordered by period. The first value is
assumed to be the cashflow at the end of period 1, and so on.

Arguments

Limitations:

The NPV() function has the following limitations:

l Text values, NULL values and missing values are disregarded.
l Cashflow values must be in order of ascending period.

When to use it
NPV() is a financial function used to check project profitability and to derive other measures. This
function is useful when cashflows are available as raw data.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Script syntax and chart functions - Qlik Sense, May 2024 376

8 Script and chart functions

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – Single payment (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of one project and its cashflow for one period, which is loaded into a table named
CashFlow.

l A resident load from the CashFlow table, which is used to calculate the NPV field for the
project in a table named NPV.

l A hard-coded discount rate of 10% , which is used in the NPV calculation.
l A Group By statement, which is used to group all the payments for the project.

Load script

CashFlow:

Load

*

Inline

[

PrjId,PeriodId,Values

1,1,1000

];

NPV:

Load

PrjId,

NPV(0.1,Values) as NPV //Discount Rate of 10%

Resident CashFlow

Group By PrjId;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l PrjId

l NPV

Script syntax and chart functions - Qlik Sense, May 2024 377

8 Script and chart functions

PrjId NPV

1 $909.09

Results table

For a single payment of $1000 to be received at the end of one period, at a discount rate of 10% per
period, the NPV is equal to $1000 divided by (1 + discount rate). The effective NPV is equal to
$909.09

Example 2 – Multiple payments (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of one project and its cashflow for multiple periods, which is loaded into a table
named CashFlow.

l A resident load from the CashFlow table, which is used to calculate the NPV field for the
project in a table named NPV.

l A hard-coded discount rate of 10% (0.1) is used in the NPV calculation.
l A Group By statement, which is used to group all the payments for the project.

Load script

CashFlow:

Load

*

Inline

[

PrjId,PeriodId,Values

1,1,1000

1,2,1000

];

NPV:

Load

PrjId,

NPV(0.1,Values) as NPV //Discount Rate of 10%

Resident CashFlow

Group By PrjId;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 378

8 Script and chart functions

l PrjId

l NPV

PrjId NPV

1 $1735.54

Results table

For payments of $1000 to be received at the end of two periods, at a discount rate of 10% per
period, the effective NPV is equal to $1735.54.

Example 3 – Multiple payments (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l Discount rates for two projects, which is loaded into a table named Project.
l Cashflows for multiple periods for each project by project ID and period ID. This period ID

could be used to order the records in case the data is not ordered.
l The combination of NoConcatenate, Resident loads, and the Left Join function to create a

temporary table, tmpNPV. The table combines the records of Project and CashFlow tables into
one flat table. This table will have discount rates repeated for each period.

l A resident load from the tmpNPV table, which is used to calculate the NPV field for each
project in a table named NPV.

l The single value discount rate associated to each project. This is retrieved using the only()

function and is used in the NPV calculation for each project.
l A Group By statement, which is used to group all the payments for each project by project ID.

To avoid any synthetic or redundant data being loaded into the data model, the tmpNPV table is
dropped at the end of the script.

Load script

Project:

Load * inline [

PrjId,Discount_Rate

1,0.1

2,0.15

];

CashFlow:

Load

*

Inline

Script syntax and chart functions - Qlik Sense, May 2024 379

8 Script and chart functions

[

PrjId,PeriodId,Values

1,1,1000

1,2,1000

1,3,1000

2,1,500

2,2,500

2,3,1000

2,4,1000

];

tmpNPV:

NoConcatenate Load *

Resident Project;

Left Join

Load *

Resident CashFlow;

NPV:

Load

PrjId,

NPV(Only(Discount_Rate),Values) as NPV //Discount Rate will be 10% for Project 1 and 15% for

Project 2

Resident tmpNPV

Group By PrjId;

Drop table tmpNPV;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l PrjId

l NPV

PrjId NPV

1 $2486.85

2 $2042.12

Results table

Project ID 1 expects for payments of $1000 to be received at the end of three periods, at a discount
rate of 10% per period. Therefore, the effective NPV is equal to $2486.85.

Project ID 2 expects two payments of $500 and two further payments of $1000 across four periods
at a discount rate of 15%. Therefore, the effective NPV is equal to $2042.12.

Script syntax and chart functions - Qlik Sense, May 2024 380

8 Script and chart functions

Example 4 – Project profitability example (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l Discount rates and initial investments (period 0) for two projects, loaded into a table named
Project.

l Cashflows for multiple periods for each project by project ID and period ID. This period ID
could be used to order the records in case the data is not ordered.

l The combination of NoConcatenate, Resident loads, and the Left Join function to create a
temporary table, tmpNPV. The table combines the records of Project and CashFlow tables into
one flat table. This table will have discount rates repeated for each period.

l The single value discount rate associated to each project, which is retrieved using the only()

function and is used in the NPV calculation for each project.
l A resident load from the tmpNPV table is used to calculate the NPV field for each project in a

table named NPV.
l An additional field that divides the NPV by the initial investment of each project is created to

calculate the project profitability index.
l A group by statement, grouping by project ID, is used to group all the payments for each

project.

To avoid any synthetic or redundant data being loaded into the data model, the tmpNPV table is
dropped at the end of the script.

Load script

Project:

Load * inline [

PrjId,Discount_Rate, Initial_Investment

1,0.1,100000

2,0.15,100000

];

CashFlow:

Load

*

Inline

[

PrjId,PeriodId,Values,

1,1,35000

1,2,35000

1,3,35000

2,1,30000

2,2,40000

2,3,50000

Script syntax and chart functions - Qlik Sense, May 2024 381

8 Script and chart functions

2,4,60000

];

tmpNPV:

NoConcatenate Load *

Resident Project;

Left Join

Load *

Resident CashFlow;

NPV:

Load

PrjId,

NPV(Only(Discount_Rate),Values) as NPV, //Discount Rate will be 10% for Project 1 and

15% for Project 2

NPV(Only(Discount_Rate),Values)/ Only(Initial_Investment) as Profitability_Index

Resident tmpNPV

Group By PrjId;

Drop table tmpNPV;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l PrjId

l NPV

Create the following measure:

=only(Profitability_Index)

PrjId NPV =only(Profitability_Index)

1 $87039.82 0.87

2 $123513.71 1.24

Results table

Project ID 1 has an effective NPV of $87039.82 and an initial investment of $100000. Therefore, the
profitability index is equal to 0.87. Because it is less than 1, the project is not profitable.

Project ID 2 has an effective NPV of $123513.71 and an initial investment of $100000. Therefore,
the profitability index is equal to 1.24. Because it is greater than 1, the project is profitable.

NPV - chart function
NPV() returns the aggregated net present value of an investment based on a discount_rate per
period and a series of future payments (negative values) and incomes (positive values,)
represented by the numbers in value, iterated over the chart dimensions. The payments and
incomes are assumed to occur at the end of each period.

Syntax:
NPV([TOTAL [<fld {,fld}>]] discount_rate, value)

Script syntax and chart functions - Qlik Sense, May 2024 382

8 Script and chart functions

Return data type: numeric By default, the result will be formatted as currency.

Arguments:

Argument Description

discount_
rate

discount_rate is the percentage rate of discount applied.

value The expression or field containing the data to be measured.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made
over all possible values given the current selections, and not just those that
pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of
one or more field names as a subset of the chart dimension variables, you create
a subset of the total possible values.

The TOTAL qualifier may be followed by a list of one or more field names within
angle brackets. These field names should be a subset of the chart dimension
variables. In this case, the calculation is made disregarding all chart dimension
variables except those listed, that is, one value is returned for each combination
of field values in the listed dimension fields. Also, fields that are not currently a
dimension in a chart may be included in the list. This may be useful in the case of
group dimensions, where the dimension fields are not fixed. Listing all of the
variables in the group causes the function to work when the drill-down level
changes.

Arguments

Limitations:

discount_rate and value must not contain aggregation functions, unless these inner aggregations
contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced function
Aggr, in combination with a specified dimension.

Text values, NULL values and missing values are disregarded.

Examples and results:

Example Result

NPV(Discount, Payments) -$540.12

Examples and results

Data used in examples:

Cashflow:

LOAD 2013 as Year, * inline [

Script syntax and chart functions - Qlik Sense, May 2024 383

8 Script and chart functions

Date|Discount|Payments

2013-01-01|0.1|-10000

2013-03-01|0.1|3000

2013-10-30|0.1|4200

2014-02-01|0.2|6800

] (delimiter is '|');

See also:
p XNPV - chart function (page 397)
p Aggr - chart function (page 549)

XIRR
XIRR() returns the aggregated internal rate of return (yearly) for a schedule of cash
flows (that is not necessarily periodic) represented by paired numbers in pmt and date
iterated over a number of records as defined by a group by clause. All payments are
discounted based on a 365-day year.

Qlik's XIRR functionality (XIRR() and RangeXIRR() functions) uses the following equation, solving
for the Rate value, to determine the correct XIRR value:

XNPV(Rate, pmt, date) = 0

The equation is solved using a simplified version of the Newton method.

Syntax:
XIRR(pmt, date)

Return data type: numeric

Argument Description

pmt Payments. The expression or field containing the cash flows corresponding to the
payment schedule given in date.

date The expression or field containing the schedule of dates corresponding to the
cash flow payments given in pmt.

Arguments

When working with this function, the following limitations apply:

l Text values, NULL values and missing values in any or both pieces of a data-pair will result in
the entire data-pair to be disregarded.

l This function requires at least one valid negative and at least one valid positive payment
(with corresponding valid dates). If these payments are not provided, a NULL value is
returned.

These topics might help you work with this function:

Script syntax and chart functions - Qlik Sense, May 2024 384

8 Script and chart functions

l XNPV (page 390): Use this function to calculate aggregated net present value for a schedule
of cash flows.

l RangeXIRR (page 1369): RangeXIRR() is the equivalent range function for the XIRR
() function.

Across different versions of Qlik Sense Client-Managed, there are variations in the
underlying algorithm used by this function. For more information about recent updates
to the algorithm, see support article XIRR function Fix and Update.

Example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l Transaction data for a series of cashflows.
l The use of the XIRR() function to compute internal yearly rate of return for these cashflows.

Load script

Cashflow:

LOAD 2013 as Year, * inline [

Date|Payments

2013-01-01|-10000

2013-03-01|3000

2013-10-30|4200

2014-02-01|6800

] (delimiter is '|');

Cashflow1:

LOAD Year,XIRR(Payments, Date) as XIRR2013 Resident Cashflow Group By Year;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l Year

l XIRR2013

Year XIRR2013

2013 0.5385

Results table

Script syntax and chart functions - Qlik Sense, May 2024 385

https://community.qlik.com/t5/Member-Articles/XIRR-function-Fix-and-Update/ta-p/2049021

8 Script and chart functions

Interpreting the XIRR return value
The XIRR functionality is usually used to analyze an investment, where there is an outgoing
(negative) payment in the beginning, and then a series of smaller income (positive) payments later
on. Here is a simplified example with only one negative and one positive payment:

Cashflow:

LOAD * inline [

Date|Payments

2023-01-01|-100

2024-01-01|110

] (delimiter is '|');

We make an initial payment of 100 and get 110 back after exactly one year. This represents a rate of
return of 10% per year. XIRR(Payments, Date) returns a value of 0.1.

The return value of the XIRR functionality can be positive or negative. In the case of an investment,
a negative result indicates that the investment is a loss. The amount of gain or loss can be
calculated simply by making a sum aggregation over the payments field.

In the example above, we are lending out our money for one year. The rate of return can be thought
of as interest. It is also possible to use XIRR's functionality when you are on the other side of the
transaction (for example, if you are the borrower instead of the lender).

Consider this example:

Cashflow:

LOAD * inline [

Date|Payments

2023-01-01|100

2024-01-01|-110

] (delimiter is '|');

This is the same as the first example but inverted. Here, we are borrowing 100 for one year and we
repay it with a 10% interest. In this example, the XIRR calculation returns 0.1 (10%), the same value
as the first example.

Note that in the first example, we received a profit of 10, and in the second example, we
experienced a loss of 10, but the return value of the XIRR functionality is positive for both these
examples. This is because the XIRR functionality calculates the hidden interest in the transaction,
regardless of which side you are on in the transaction.

Limitations with multiple solutions
Qlik's XIRR functionality is defined by the following equation, in which the Rate value is solved:

XNPV(Rate, pmt, date) = 0

It is sometimes possible for this equation to have more than one solution. This is known as the
“multiple-IRR problem”, and is caused by a non-normal cash flow stream (also called an
unconventional cash flow). The following load script shows an example of this:

Cashflow:

LOAD * inline [

Date|Payments

Script syntax and chart functions - Qlik Sense, May 2024 386

8 Script and chart functions

2021-01-01|-200

2022-01-01|500

2023-01-01|-250

] (delimiter is '|');

In this example, there is one negative solution and one positive solution (Rate = -0.3 and Rate = 0.8).
XIRR() will return 0.8.

When Qlik's XIRR functionality searches for a solution, it starts at Rate = 0 and increases the rate in
steps until it finds a solution. If there is more than one positive solution, it will return the first one
that it encounters. If it cannot find a positive solution, it will reset the Rate back to zero and start
searching for a solution in the negative direction.

Note that a “normal” cash flow stream is guaranteed to have only one solution. “Normal” cash flow
stream means that all payments with the same sign (positive or negative) are in a continuous group.

See also:
p XNPV (page 390)
p RangeXIRR (page 1369)
≤ XIRR function Fix and Update

XIRR - chart function
XIRR() returns the aggregated internal rate of return (yearly) for a schedule of cash flows (that is
not necessarily periodic) represented by paired numbers in the expressions given by pmt and date
iterated over the chart dimensions. All payments are discounted based on a 365-day year.

Qlik's XIRR functionality (XIRR() and RangeXIRR() functions) uses the following equation, solving
for the Rate value, to determine the correct XIRR value:

XNPV(Rate, pmt, date) = 0

The equation is solved using a simplified version of the Newton method.

Syntax:
XIRR([TOTAL [<fld {,fld}>]] pmt, date)

Return data type: numeric

Argument Description

pmt Payments. The expression or field containing the cash flows corresponding to the
payment schedule given in date.

date The expression or field containing the schedule of dates corresponding to the
cash flow payments given in pmt.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 387

https://community.qlik.com/t5/Member-Articles/XIRR-function-Fix-and-Update/ta-p/2049021

8 Script and chart functions

Argument Description

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made
over all possible values given the current selections, and not just those that
pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of
one or more field names as a subset of the chart dimension variables, you create
a subset of the total possible values.

When working with this function, the following limitations apply:

l pmt and date must not contain aggregation functions, unless these inner aggregations
contain the TOTAL qualifier. For more advanced nested aggregations, use the advanced
function Aggr, in combination with a specified dimension.

l Text values, NULL values and missing values in any or both pieces of a data-pair result in the
entire data-pair being disregarded.

l This function requires at least one valid negative and at least one valid positive payment
(with corresponding valid dates). If these payments are not provided, a NULL value is
returned.

These topics might help you work with this function:

l XNPV - chart function (page 397): Use this function to calculate aggregated net present
value for a schedule of cash flows.

l RangeXIRR (page 1369): RangeXIRR() is the equivalent range function for the XIRR
() function.

Across different versions of Qlik Sense Client-Managed, there are variations in the
underlying algorithm used by this function. For more information about recent updates
to the algorithm, see support article XIRR function Fix and Update.

Example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing cashflow transactions.
l Information stored in a table called Cashflow.

Script syntax and chart functions - Qlik Sense, May 2024 388

https://community.qlik.com/t5/Member-Articles/XIRR-function-Fix-and-Update/ta-p/2049021

8 Script and chart functions

Load script

Cashflow:

LOAD 2013 as Year, * inline [

Date|Payments

2013-01-01|-10000

2013-03-01|3000

2013-10-30|4200

2014-02-01|6800

] (delimiter is '|');

Results

Do the following:

Load the data and open a sheet. Create a new table and add the following calculation as a measure:

=XIRR(Payments, Date)

=XIRR(Payments, Date)

0.5385

Results table

Interpreting the XIRR return value
The XIRR functionality is usually used to analyze an investment, where there is an outgoing
(negative) payment in the beginning, and then a series of smaller income (positive) payments later
on. Here is a simplified example with only one negative and one positive payment:

Cashflow:

LOAD * inline [

Date|Payments

2023-01-01|-100

2024-01-01|110

] (delimiter is '|');

We make an initial payment of 100 and get 110 back after exactly one year. This represents a rate of
return of 10% per year. XIRR(Payments, Date) returns a value of 0.1.

The return value of the XIRR functionality can be positive or negative. In the case of an investment,
a negative result indicates that the investment is a loss. The amount of gain or loss can be
calculated simply by making a sum aggregation over the payments field.

In the example above, we are lending out our money for one year. The rate of return can be thought
of as interest. It is also possible to use XIRR's functionality when you are on the other side of the
transaction (for example, if you are the borrower instead of the lender).

Consider this example:

Cashflow:

LOAD * inline [

Date|Payments

Script syntax and chart functions - Qlik Sense, May 2024 389

8 Script and chart functions

2023-01-01|100

2024-01-01|-110

] (delimiter is '|');

This is the same as the first example but inverted. Here, we are borrowing 100 for one year and we
repay it with a 10% interest. In this example, the XIRR calculation returns 0.1 (10%), the same value
as the first example.

Note that in the first example, we received a profit of 10, and in the second example, we
experienced a loss of 10, but the return value of the XIRR functionality is positive for both these
examples. This is because the XIRR functionality calculates the hidden interest in the transaction,
regardless of which side you are on in the transaction.

Limitations with multiple solutions
Qlik's XIRR functionality is defined by the following equation, in which the Rate value is solved:

XNPV(Rate, pmt, date) = 0

It is sometimes possible for this equation to have more than one solution. This is known as the
“multiple-IRR problem”, and is caused by a non-normal cash flow stream (also called an
unconventional cash flow). The following load script shows an example of this:

Cashflow:

LOAD * inline [

Date|Payments

2021-01-01|-200

2022-01-01|500

2023-01-01|-250

] (delimiter is '|');

In this example, there is one negative solution and one positive solution (Rate = -0.3 and Rate = 0.8).
XIRR() will return 0.8.

When Qlik's XIRR functionality searches for a solution, it starts at Rate = 0 and increases the rate in
steps until it finds a solution. If there is more than one positive solution, it will return the first one
that it encounters. If it cannot find a positive solution, it will reset the Rate back to zero and start
searching for a solution in the negative direction.

Note that a “normal” cash flow stream is guaranteed to have only one solution. “Normal” cash flow
stream means that all payments with the same sign (positive or negative) are in a continuous group.

See also:
p IRR - chart function (page 374)
p Aggr - chart function (page 549)
≤ XIRR function Fix and Update

XNPV
XNPV() returns the aggregated net present value for a schedule of cashflows (not
necessarily periodic) represented by paired numbers in pmt and date. All payments are
discounted based on a 365-day year.

Script syntax and chart functions - Qlik Sense, May 2024 390

https://community.qlik.com/t5/Member-Articles/XIRR-function-Fix-and-Update/ta-p/2049021

8 Script and chart functions

Syntax:
XNPV(discount_rate, pmt, date)

Return data type: numeric

By default, the result will be formatted as currency.

The formula to calculate XNPV is shown below:

XNPV aggregation formula

where:

l P
i

= Net cash inflow-outflows during a single period i

l d
1
= the first payment date

l d
i

= the i
th payment date

l rate = discount rate

Net present value, or NPV, is used to calculate the current total value of a future stream of cash
flows given a discount rate. To calculate XNPV, we need to estimate future cash flows with
corresponding dates. After this, for each payment, we apply the compounded discount rate based
on the date of the payment.

Performing the XNPV aggregation over a series of payments is similar to performing a Sum
aggregation over those payments. The difference is that each amount is modified (or “discounted”)
according to the chosen discount rate (similar to interest rate) and how far into the future the
payment is. Performing XNPV with the discount_rate parameter set to zero will make XNPV
equivalent to a Sum operation (the payments will not be modified before being summed). In general,
the closer the discount_rate is set to zero, the more similar the XNPV result will be to that of a Sum
aggregation.

Argument Description

discount_rate discount_rate is the yearly rate that the payments should be discounted by.

A value of 0.1 would indicate a 10% discount rate.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 391

8 Script and chart functions

Argument Description

pmt Payments. The expression or field containing the cash flows corresponding
to the payment schedule given in date. Positive values are assumed to be
inflows, and negative values are assumed to be outflows.

XNPV() does not discount the initial cash flow since it will always
happen on the start date. Subsequent payments are discounted
based on a 365-day year. This is different from NPV(), where also
the first payment is discounted.

date The expression or field containing the schedule of dates corresponding to
the cash flow payments given in pmt. The first value is used as the start date
for calculating the time offsets for future cashflows.

When working with this function, the following limitations apply:

l Text values, NULL values and missing values in any or both pieces of a data-pair result in the
entire data-pair being disregarded.

When to use it
l XNPV() is used in financial modeling for calculating the net present value (NPV) of an

investment opportunity.
l Due to its higher precision, XNPV is preferred over NPV, for all types of financial models.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – Single payment (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2024 392

8 Script and chart functions

l A dataset of one project and its cashflow for one year, in a table named CashFlow. The initial
date for calculation is set to July 1, 2022, with a net cashflow of 0. After one year, a cashflow
of $1000 occurs.

l A resident load from the CashFlow table, which is used to calculate the XNPV field for the
project in a table named XNPV.

l A hard-coded discount rate of 10% (0.1) is used in the XNPV calculation.
l A Group By statement is used to group all the payments for the project.

Load script

CashFlow:

Load

*

Inline

[

PrjId,Dates,Values

1,'07/01/2022',0

1,'07/01/2023',1000

];

XNPV:

Load

PrjId,

XNPV(0.1,Values,Dates) as XNPV //Discount Rate of 10%

Resident CashFlow

Group By PrjId;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l PrjId

l XNPV

PrjId XNPV

1 $909.09

Results table

As per the formula, the XNPV value for the first record is 0, and for the second record, the XNPV
value is $909.09 Thus, the total XNPV is $909.09.

Example 2 – Multiple payments (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, May 2024 393

8 Script and chart functions

The load script contains:

l A dataset of one project and its cashflow for one year, in a table named CashFlow.
l A resident load from the CashFlow table, which is used to calculate the XNPV field for the

project in a table named XNPV.
l A hard-coded discount rate of 10% (0.1) is used in the XNPV calculation.
l A Group By statement is used to group all the payments for the project.

Load script

CashFlow:

Load

*

Inline

[

PrjId,Dates,Values

1,'07/01/2022',0

1,'07/01/2024',500

1,'07/01/2023',1000

];

XNPV:

Load

PrjId,

XNPV(0.1,Values,Dates) as XNPV //Discount Rate of 10%

Resident CashFlow

Group By PrjId;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l PrjId

l XNPV

PrjId XNPV

1 $1322.21

Results table

In this example, a payment of $1000 is received at the end of first year, and a payment of $500 is
received at the end of second year. With a discount rate of 10% per period, the effective XNPV is
equal to $1322.21.

Note that only the first row of data should refer to the base date for calculations. For rest of the
rows, order is not important, since the date parameter is used to calculate the elapsed period.

Script syntax and chart functions - Qlik Sense, May 2024 394

8 Script and chart functions

Example 3 – Multiple payments and irregular cashflows (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l Discount rates for two projects in a table named Project.
l Cashflows for multiple periods for each project by project ID and Dates. The Dates field is

used to calculate the duration for which discount rate is applied to the cash flow. Apart from
the first record (initial cashflow and date), order of records is not important, and changing it
should not impact the calculations.

l Using a combination of NoConcatenate, Resident loads, and the Left Join function, a
temporary table, tmpNPV, is created that combines the records of the Project and CashFlow

tables in one flat table. This table will have discount rates repeated for each cashflow.
l A resident load from the tmpNPV table, which is used to calculate the XNPV field for each project

in a table named XNPV.
l The single value discount rate associated to each project is fetched using the only() function

and is used in the XNPV calculation for each project.
l A Group By statement, grouping by project ID, is used to group all the payments and

corresponding dates for each project.
l To avoid any synthetic or redundant data being loaded into the data model, the tmpXNPV table

is dropped at the end of the script.

Load script

Project:

Load * inline [

PrjId,Discount_Rate

1,0.1

2,0.15

];

CashFlow:

Load

*

Inline

[

PrjId,Dates,Values

1,'07/01/2021',0

1,'07/01/2022',1000

1,'07/01/2023',1000

2,'07/01/2020',0

2,'07/01/2023',500

2,'07/01/2024',1000

2,'07/01/2022',500

];

Script syntax and chart functions - Qlik Sense, May 2024 395

8 Script and chart functions

tmpXNPV:

NoConcatenate Load *

Resident Project;

Left Join

Load *

Resident CashFlow;

XNPV:

Load

PrjId,

XNPV(Only(Discount_Rate),Values,Dates) as XNPV //Discount Rate will be 10% for Project 1 and

15% for Project 2

Resident tmpXNPV

Group By PrjId;

Drop table tmpXNPV;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l PrjId

l XNPV

PrjId XNPV

1 $1735.54

2 $278.36

Results table

Project ID 1 has an initial cashflow of $0 on July 1, 2021. There are two payments of $1000 to be
received at the end of two subsequent years, at a discount rate of 10% per period. Therefore, the
effective XNPV is equal to $1735.54.

Project ID 2 has an initial outflow of $1000 (thus the negative sign) on July 1, 2020. After two years,
a payment of $500 is expected. After 3 years, another $500 payment is expected. Finally, on July 1,
2024, a payment of $1000 is expected. With the discount rate of 15%, the effective XNPV is equal to
$278.36.

See also:
p Drop table (page 150)
p group by (page 160)
p Join (page 71)
p Max (page 339)
p NoConcatenate (page 89)
p NPV - chart function (page 382)
p Only (page 349)

Script syntax and chart functions - Qlik Sense, May 2024 396

8 Script and chart functions

XNPV - chart function
XNPV() returns the aggregated net present value for a schedule of cash flows (not necessarily
periodic) represented by paired numbers in the expressions given by pmt and date, iterated over
the chart dimensions. All payments are discounted based on a 365-day year.

Syntax:
XNPV([TOTAL [<fld{,fld}>]] discount_rate, pmt, date)

Return data type: numeric

By default, the result will be formatted as currency.

The formula to calculate XNPV is shown below:

XNPV aggregation formula

where:

l P
i

= Net cash inflow-outflows during a single period i

l d
1
= the first payment date

l d
i

= the i
th payment date

l rate = discount rate

Net present value, or NPV, is used to calculate the current total value of a future stream of cash
flows given a discount rate. To calculate XNPV, we need to estimate future cash flows with
corresponding dates. After this, for each payment, we apply the compounded discount rate based
on the date of the payment.

Performing the XNPV aggregation over a series of payments is similar to performing a Sum
aggregation over those payments. The difference is that each amount is modified (or “discounted”)
according to the chosen discount rate (similar to interest rate) and how far into the future the
payment is. Performing XNPV with the discount_rate parameter set to zero will make XNPV
equivalent to a Sum operation (the payments will not be modified before being summed). In general,
the closer the discount_rate is set to zero, the more similar the XNPV result will be to that of a Sum
aggregation.

Script syntax and chart functions - Qlik Sense, May 2024 397

8 Script and chart functions

Argument Description

discount_
rate

discount_rate is the yearly rate that the payments should be discounted by.

A value of 0.1 would indicate a 10% discount rate.

pmt Payments. The expression or field containing the cash flows corresponding to the
payment schedule given in date. Positive values are assumed to be inflows, and
negative values are assumed to be outflows.

XNPV() does not discount the initial cash flow since it will always
happen on the start date. Subsequent payments are discounted based
on a 365-day year. This is different from NPV(), where also the first
payment is discounted.

date The expression or field containing the schedule of dates corresponding to the
cash flow payments given in pmt. The first value is used as the start date for
calculating the time offsets for future cash flows.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is made
over all possible values given the current selections, and not just those that
pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list of
one or more field names as a subset of the chart dimension variables, you create
a subset of the total possible values.

Arguments

When working with this function, the following limitations apply:

l discount_rate, pmt and date must not contain aggregation functions, unless these inner
aggregations contain the TOTAL or ALL qualifiers. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

l Text values, NULL values and missing values in any or both pieces of a data-pair result in the
entire data-pair being disregarded.

When to use it
l XNPV() is used in financial modeling for calculating the net present value (NPV) of an

investment opportunity.
l Due to its higher precision, XNPV is preferred over NPV, for all types of financial models.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Script syntax and chart functions - Qlik Sense, May 2024 398

8 Script and chart functions

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing cashflow transactions.
l Information stored in a table called Cashflow.

Load script

Cashflow:

LOAD 2013 as Year, * inline [

Date|Payments

2013-01-01|-10000

2013-03-01|3000

2013-10-30|4200

2014-02-01|6800

] (delimiter is '|');

Results

Do the following:

Load the data and open a sheet. Create a new table and add the following calculation as a measure:

=XNPV(0.09, Payments, Date)

=XNPV(0.09, Payments, Date)

$3062.49

Results table

See also:
p NPV - chart function (page 382)
p Aggr - chart function (page 549)

Script syntax and chart functions - Qlik Sense, May 2024 399

8 Script and chart functions

Statistical aggregation functions
Each function is described further after the overview. You can also click the function
name in the syntax to immediately access the details for that specific function.

Statistical aggregation functions in the data load script
The following statistical aggregation functions can be used in scripts.

Avg
Avg() finds the average value of the aggregated data in the expression over a number of records as
defined by a group by clause.

Avg ([distinct] expression)

Correl
Correl() returns the aggregated correlation coefficient for a series of coordinates represented by
paired numbers in x-expression and y-expression iterated over a number of records as defined by a
group by clause.

Correl (x-expression, y-expression)

Fractile
Fractile() finds the value that corresponds to the inclusive fractile (quantile) of the aggregated data
in the expression over a number of records as defined by a group by clause.

Fractile (expression, fractile)

FractileExc
FractileExc() finds the value that corresponds to the exclusive fractile (quantile) of the aggregated
data in the expression over a number of records as defined by a group by clause.

FractileExc (expression, fractile)

Kurtosis
Kurtosis() returns the kurtosis of the data in the expression over a number of records as defined by
a group by clause.

Kurtosis ([distinct] expression)

LINEST_B
LINEST_B() returns the aggregated b value (y-intercept) of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers in x-expression and y-
expression iterated over a number of records as defined by a group by clause.

LINEST_B (y-expression, x-expression [, y0 [, x0]])

Script syntax and chart functions - Qlik Sense, May 2024 400

8 Script and chart functions

LINEST_df
LINEST_DF() returns the aggregated degrees of freedom of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers in x-expression and y-
expression iterated over a number of records as defined by a group by clause.

LINEST_DF (y-expression, x-expression [, y0 [, x0]])

LINEST_f
This script function returns the aggregated F statistic (r2/(1-r2)) of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers in x-expression and y-
expression iterated over a number of records as defined by a group by clause.

LINEST_F (y-expression, x-expression [, y0 [, x0]])

LINEST_m
LINEST_M() returns the aggregated m value (slope) of a linear regression defined by the equation
y=mx+b for a series of coordinates represented by paired numbers in x-expression and y-
expression iterated over a number of records as defined by a group by clause.

LINEST_M (y-expression, x-expression [, y0 [, x0]])

LINEST_r2
LINEST_R2() returns the aggregated r2 value (coefficient of determination) of a linear regression
defined by the equation y=mx+b for a series of coordinates represented by paired numbers in x-
expression and y-expression iterated over a number of records as defined by a group by clause.

LINEST_R2 (y-expression, x-expression [, y0 [, x0]])

LINEST_seb
LINEST_SEB() returns the aggregated standard error of the b value of a linear regression defined
by the equation y=mx+b for a series of coordinates represented by paired numbers in x-expression
and y-expression iterated over a number of records as defined by a group by clause.

LINEST_SEB (y-expression, x-expression [, y0 [, x0]])

LINEST_sem
LINEST_SEM() returns the aggregated standard error of the m value of a linear regression defined
by the equation y=mx+b for a series of coordinates represented by paired numbers in x-expression
and y-expression iterated over a number of records as defined by a group by clause.

LINEST_SEM (y-expression, x-expression [, y0 [, x0]])

LINEST_sey
LINEST_SEY() returns the aggregated standard error of the y estimate of a linear regression
defined by the equation y=mx+b for a series of coordinates represented by paired numbers in x-
expression and y-expression iterated over a number of records as defined by a group by clause.

LINEST_SEY (y-expression, x-expression [, y0 [, x0]])

Script syntax and chart functions - Qlik Sense, May 2024 401

8 Script and chart functions

LINEST_ssreg
LINEST_SSREG() returns the aggregated regression sum of squares of a linear regression defined
by the equation y=mx+b for a series of coordinates represented by paired numbers in x-expression
and y-expression iterated over a number of records as defined by a group by clause.

LINEST_SSREG (y-expression, x-expression [, y0 [, x0]])

Linest_ssresid
LINEST_SSRESID() returns the aggregated residual sum of squares of a linear regression defined
by the equation y=mx+b for a series of coordinates represented by paired numbers in x-expression
and y-expression iterated over a number of records as defined by a group by clause.

LINEST_SSRESID (y-expression, x-expression [, y0 [, x0]])

Median
Median() returns the aggregated median of the values in the expression over a number of records
as defined by a group by clause.

Median (expression)

Skew
Skew() returns the skewness of expression over a number of records as defined by a group by
clause.

Skew ([distinct] expression)

Stdev
Stdev() returns the standard deviation of the values given by the expression over a number of
records as defined by a group by clause.

Stdev ([distinct] expression)

Sterr
Sterr() returns the aggregated standard error (stdev/sqrt(n)) for a series of values represented by
the expression iterated over a number of records as defined by a group by clause.

Sterr ([distinct] expression)

STEYX
STEYX() returns the aggregated standard error of the predicted y-value for each x-value in the
regression for a series of coordinates represented by paired numbers in x-expression and y-
expression iterated over a number of records as defined by a group by clause.

STEYX (y-expression, x-expression)

Statistical aggregation functions in chart expressions
The following statistical aggregation functions can be used in charts:

Avg
Avg() returns the aggregated average of the expression or field iterated over the chart dimensions.

Script syntax and chart functions - Qlik Sense, May 2024 402

8 Script and chart functions

Avg - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld{, fld}>]]}

expr)

Correl
Correl() returns the aggregated correlation coefficient for two data sets. The correlation function is
a measure of the relationship between the data sets and is aggregated for (x,y) value pairs iterated
over the chart dimensions.

Correl - chart function({[SetExpression] [TOTAL [<fld {, fld}>]]} value1,

value2)

Fractile
Fractile() finds the value that corresponds to the inclusive fractile (quantile) of the aggregated data
in the range given by the expression iterated over the chart dimensions.

Fractile - chart function({[SetExpression] [TOTAL [<fld {, fld}>]]} expr,

fraction)

FractileExc
FractileExc() finds the value that corresponds to the exclusive fractile (quantile) of the aggregated
data in the range given by the expression iterated over the chart dimensions.

FractileExc - chart function({[SetExpression] [TOTAL [<fld {, fld}>]]} expr,

fraction)

Kurtosis
Kurtosis() finds the kurtosis of the range of data aggregated in the expression or field iterated over
the chart dimensions.

Kurtosis - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld{, fld}>]]}

expr)

LINEST_b
LINEST_B() returns the aggregated b value (y-intercept) of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers in the expressions
given by the expressions x_value and y_value, iterated over the chart dimensions.

LINEST_R2 - chart function({[SetExpression] [TOTAL [<fld{ ,fld}>]] }y_value,

x_value[, y0_const[, x0_const]])

LINEST_df
LINEST_DF() returns the aggregated degrees of freedom of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers in the expressions
given by x_value and y_value, iterated over the chart dimensions.

LINEST_DF - chart function({[SetExpression] [TOTAL [<fld{, fld}>]]} y_value,

x_value [, y0_const [, x0_const]])

Script syntax and chart functions - Qlik Sense, May 2024 403

8 Script and chart functions

LINEST_f
LINEST_F() returns the aggregated F statistic (r2/(1-r2)) of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers in the expressions
given by x_value and the y_value, iterated over the chart dimensions.

LINEST_F - chart function({[SetExpression] [TOTAL[<fld{, fld}>]]} y_value, x_

value [, y0_const [, x0_const]])

LINEST_m
LINEST_M() returns the aggregated m value (slope) of a linear regression defined by the equation
y=mx+b for a series of coordinates represented by paired numbers given by the expressions x_
value and y_value, iterated over the chart dimensions.

LINEST_M - chart function({[SetExpression] [TOTAL[<fld{, fld}>]]} y_value, x_

value [, y0_const [, x0_const]])

LINEST_r2
LINEST_R2() returns the aggregated r2 value (coefficient of determination) of a linear regression
defined by the equation y=mx+b for a series of coordinates represented by paired numbers given
by the expressions x_value and y_value, iterated over the chart dimensions.

LINEST_R2 - chart function({[SetExpression] [TOTAL [<fld{ ,fld}>]] }y_value,

x_value[, y0_const[, x0_const]])

LINEST_seb
LINEST_SEB() returns the aggregated standard error of the b value of a linear regression defined
by the equation y=mx+b for a series of coordinates represented by paired numbers given by the
expressions x_value and y_value, iterated over the chart dimensions.

LINEST_SEB - chart function({[SetExpression] [TOTAL [<fld{ ,fld}>]] }y_value,

x_value[, y0_const[, x0_const]])

LINEST_sem
LINEST_SEM() returns the aggregated standard error of the m value of a linear regression defined
by the equation y=mx+b for a series of coordinates represented by paired numbers given by the
expressions x_value and y_value, iterated over the chart dimensions.

LINEST_SEM - chart function([{set_expression}][distinct] [total [<fld

{,fld}>]] y-expression, x-expression [, y0 [, x0]])

LINEST_sey
LINEST_SEY() returns the aggregated standard error of the y estimate of a linear regression
defined by the equation y=mx+b for a series of coordinates represented by paired numbers given
by the expressions x_value and y_value, iterated over the chart dimensions.

LINEST_SEY - chart function({[SetExpression] [TOTAL [<fld{ ,fld}>]] }y_value,

x_value[, y0_const[, x0_const]])

Script syntax and chart functions - Qlik Sense, May 2024 404

8 Script and chart functions

LINEST_ssreg
LINEST_SSREG() returns the aggregated regression sum of squares of a linear regression defined
by the equation y=mx+b for a series of coordinates represented by paired numbers given by the
expressions x_value and y_value, iterated over the chart dimensions.

LINEST_SSREG - chart function({[SetExpression] [TOTAL [<fld{ ,fld}>]] }y_

value, x_value[, y0_const[, x0_const]])

LINEST_ssresid
LINEST_SSRESID() returns the aggregated residual sum of squares of a linear regression defined
by the equation y=mx+b for a series of coordinates represented by paired numbers in the
expressions given by x_value and y_value, iterated over the chart dimensions.

LINEST_SSRESID - chart functionLINEST_SSRESID() returns the aggregated
residual sum of squares of a linear regression defined by the equation y=mx+b
for a series of coordinates represented by paired numbers in the expressions
given by x_value and y_value, iterated over the chart dimensions. LINEST_
SSRESID([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_value
[, y0_const[, x0_const]]) numeric ArgumentsArgumentDescriptiony_valueThe
expression or field containing the range of y-values to be measured.x_
valueThe expression or field containing the range of x-values to be
measured.y0, x0An optional value y0 may be stated forcing the regression line
to pass through the y-axis at a given point. By stating both y0 and x0 it is
possible to force the regression line to pass through a single fixed
coordinate. Unless both y0 and x0 are stated, the function requires at least
two valid data-pairs to calculate. If y0 and x0 are stated, a single data
pair will do. SetExpressionBy default, the aggregation function will
aggregate over the set of possible records defined by the selection. An
alternative set of records can be defined by a set analysis expression.
DISTINCTIf the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.
TOTALIf the word TOTAL occurs before the function arguments, the calculation
is made over all possible values given the current selections, and not just
those that pertain to the current dimensional value, that is, it disregards
the chart dimensions. By using TOTAL [<fld {.fld}>], where the TOTAL
qualifier is followed by a list of one or more field names as a subset of the
chart dimension variables, you create a subset of the total possible
values.An optional value y0 may be stated forcing the regression line to pass
through the y-axis at a given point. By stating both y0 and x0 it is possible
to force the regression line to pass through a single fixed coordinate. The
parameter of the aggregation function must not contain other aggregation
functions, unless these inner aggregations contain the TOTAL qualifier. For
more advanced nested aggregations, use the advanced function Aggr, in
combination with a specified dimension. Text values, NULL values and missing
values in any or both pieces of a data-pair result in the entire data-pair

Script syntax and chart functions - Qlik Sense, May 2024 405

#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6
#$$xref$$_6

8 Script and chart functions

being disregarded. An example of how to use linest functionsavg
({[SetExpression] [TOTAL [<fld{ ,fld}>]] }y_value, x_value[, y0_const[, x0_

const]])

Median
Median() returns the median value of the range of values aggregated in the expression iterated
over the chart dimensions.

Median - chart function({[SetExpression] [TOTAL [<fld{, fld}>]]} expr)

MutualInfo
MutualInfo calculates the mutual information (MI) between two fields or between aggregated
values in Aggr().

MutualInfo - chart function{[SetExpression] [DISTINCT] [TOTAL target, driver

[, datatype [, breakdownbyvalue [, samplesize]]])

Skew
Skew() returns the aggregated skewness of the expression or field iterated over the chart
dimensions.

Skew - chart function{[SetExpression] [DISTINCT] [TOTAL [<fld{ ,fld}>]]}

expr)

Stdev
Stdev() finds the standard deviation of the range of data aggregated in the expression or field
iterated over the chart dimensions.

Stdev - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld{, fld}>]]}

expr)

Sterr
Sterr() finds the value of the standard error of the mean, (stdev/sqrt(n)), for the series of values
aggregated in the expression iterated over the chart dimensions.

Sterr - chart function({[SetExpression] [DISTINCT] [TOTAL[<fld{, fld}>]]}

expr)

STEYX
STEYX() returns the aggregated standard error when predicting y-values for each x-value in a
linear regression given by a series of coordinates represented by paired numbers in the
expressions given by y_value and x_value.

STEYX - chart function{[SetExpression] [TOTAL [<fld{, fld}>]]} y_value, x_

value)

Avg
Avg() finds the average value of the aggregated data in the expression over a number
of records as defined by a group by clause.

Script syntax and chart functions - Qlik Sense, May 2024 406

#$$xref$$_6

8 Script and chart functions

Syntax:
Avg([DISTINCT] expr)

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

DISTINCT If the word distinct occurs before the expression, all duplicates will be
disregarded.

Arguments

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Example Result

Temp:

crosstable (Month, Sales) load * inline [

Customer|Jan|Feb|Mar||Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec

Astrida|46|60|70|13|78|20|45|65|78|12|78|22

Betacab|65|56|22|79|12|56|45|24|32|78|55|15

Canutility|77|68|34|91|24|68|57|36|44|90|67|27

Divadip|36|44|90|67|27|57|68|47|90|80|94

] (delimiter is '|');

Avg1:

LOAD Customer, Avg(Sales) as MyAverageSalesByCustomer

Resident Temp Group By Customer;

Customer

MyAverageSalesByCustomer

Astrida 48.916667

Betacab 44.916667

Canutility 56.916667

Divadip 63.083333

This can be checked in the
sheet by creating a table
including the measure .
Sum(Sales)/12

Given that the Temp table is loaded as in the previous
example:

LOAD Customer,Avg(DISTINCT Sales) as MyAvgSalesDistinct

Resident Temp Group By Customer;

Customer

MyAverageSalesByCustomer

Astrida 43.1

Betacab 43.909091

Canutility 55.909091

Divadip 61

Only the distinct values are
counted. Divide the total by the
number of non-duplicate
values.

Resulting data

Avg - chart function
Avg() returns the aggregated average of the expression or field iterated over the chart dimensions.

Script syntax and chart functions - Qlik Sense, May 2024 407

8 Script and chart functions

Syntax:
Avg([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] expr)

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Arguments

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

Examples and results:

Custome
r

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Astrida 46 60 70 13 78 20 45 65 78 12 78 22

Betacab 65 56 22 79 12 56 45 24 32 78 55 15

Canutility 77 68 34 91 24 68 57 36 44 90 67 27

Divadip 57 36 44 90 67 27 57 68 47 90 80 94

Example table

Script syntax and chart functions - Qlik Sense, May 2024 408

8 Script and chart functions

Example Result

Avg(Sales) For a table including the dimension Customer and the measure Avg([Sales]), if
Totals are shown, the result is 2566.

Avg([TOTAL

(Sales))
53.458333 for all values of Customer, because the TOTAL qualifier means that
dimensions are disregarded.

Avg(DISTINCT

(Sales))
51.862069 for the total, because using the Distinct qualifier means only unique
values in Sales for each Customer are evaluated.

Function examples

Data used in examples:

Monthnames:

LOAD *, Dual(MonthText,MonthNumber) as Month INLINE [

MonthText, MonthNumber

Jan, 1

Feb, 2

Mar, 3

Apr, 4

May, 5

Jun, 6

Jul, 7

Aug, 8

Sep, 9

Oct, 10

Nov, 11

Dec, 12

];

Sales2013:

Crosstable (MonthText, Sales) LOAD * inline [

Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec

Astrida|46|60|70|13|78|20|45|65|78|12|78|22

Betacab|65|56|22|79|12|56|45|24|32|78|55|15

Canutility|77|68|34|91|24|68|57|36|44|90|67|27

Divadip|57|36|44|90|67|27|57|68|47|90|80|94

] (delimiter is '|');

See also:
p Aggr - chart function (page 549)

Correl
Correl() returns the aggregated correlation coefficient for a series of coordinates
represented by paired numbers in x-expression and y-expression iterated over a
number of records as defined by a group by clause.

Syntax:
Correl(value1, value2)

Script syntax and chart functions - Qlik Sense, May 2024 409

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value1,
value2

The expressions or fields containing the two sample sets for which the correlation
coefficient is to be measured.

Arguments

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Example Result

Salary:

Load *, 1 as Grp;

LOAD * inline [

"Employee

name"|Gender|Age|Salary

Aiden Charles|Male|20|25000

Brenda Davies|Male|25|32000

Charlotte

Edberg|Female|45|56000

Daroush Ferrara|Male|31|29000

Eunice Goldblum|Female|31|32000

Freddy Halvorsen|Male|25|26000

Gauri Indu|Female|36|46000

Harry Jones|Male|38|40000

Ian Underwood|Male|40|45000

Jackie Kingsley|Female|23|28000

] (delimiter is '|');

Correl1:

LOAD Grp,

Correl(Age,Salary) as Correl_

Salary Resident Salary Group By

Grp;

In a table with the dimension Correl_Salary, the result of the
Correl() calculation in the data load script will be shown:
0.9270611

Resulting data

Script syntax and chart functions - Qlik Sense, May 2024 410

8 Script and chart functions

Correl - chart function
Correl() returns the aggregated correlation coefficient for two data sets. The correlation function is
a measure of the relationship between the data sets and is aggregated for (x,y) value pairs iterated
over the chart dimensions.

Syntax:
Correl([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] value1, value2)

Return data type: numeric

Arguments:

Argument Description

value1, value2 The expressions or fields containing the two sample sets for which the
correlation coefficient is to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Arguments

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

Script syntax and chart functions - Qlik Sense, May 2024 411

8 Script and chart functions

Examples and results:

Example Result

Correl

(Age,

Salary)

For a table including the dimension Employee name and the measure Correl(Age,

Salary), the result is 0.9270611. The result is only displayed for the totals cell.

Correl

(TOTAL

Age,

Salary))

0.927. This and the following results are shown to three decimal places for
readability.

If you create a filter pane with the dimension Gender, and make selections from it,
you see the result 0.951 when Female is selected and 0.939 if Male is selected.
This is because the selection excludes all results that do not belong to the other
value of Gender.

Correl({1}

TOTAL Age,

Salary))

0.927. Independent of selections. This is because the set expression {1} disregards
all selections and dimensions.

Correl

(TOTAL

<Gender>

Age,

Salary))

0.927 in the total cell, 0.939 for all values of Male, and 0.951 for all values of
Female. This corresponds to the results from making the selections in a filter pane
based on Gender.

Function examples

Data used in examples:

Salary:

LOAD * inline [

"Employee name"|Gender|Age|Salary

Aiden Charles|Male|20|25000

Brenda Davies|Male|25|32000

Charlotte Edberg|Female|45|56000

Daroush Ferrara|Male|31|29000

Eunice Goldblum|Female|31|32000

Freddy Halvorsen|Male|25|26000

Gauri Indu|Female|36|46000

Harry Jones|Male|38|40000

Ian Underwood|Male|40|45000

Jackie Kingsley|Female|23|28000

] (delimiter is '|');

See also:
p Aggr - chart function (page 549)
p Avg - chart function (page 407)
p RangeCorrel (page 1339)

Script syntax and chart functions - Qlik Sense, May 2024 412

8 Script and chart functions

Fractile
Fractile() finds the value that corresponds to the inclusive fractile (quantile) of the
aggregated data in the expression over a number of records as defined by a group by
clause.

You can use FractileExc (page 417) to calculate the exclusive fractile.

Syntax:
Fractile(expr, fraction)

Return data type: numeric

The function returns the value corresponding to the rank as defined by rank = fraction * (N-1) + 1

where N is the number of values in expr. If rank is a non-integer number, an interpolation is made
between the two closest values.

Arguments:

Argument Description

expr The expression or field containing the data to use when calculating the fractile.

fraction A number between 0 and 1 corresponding to the fractile (quantile expressed as a
fraction) to be calculated.

Arguments

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Script syntax and chart functions - Qlik Sense, May 2024 413

8 Script and chart functions

Example Result

Table1:

Crosstable (Type, Value)

Load recno() as ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is '|');

Fractile1:

LOAD Type,

Fractile(Value,0.75) as

MyFractile Resident Table1 Group

By Type;

In a table with the dimensions Type and MyFractile, the
results of the Fractile() calculations in the data load script
are:

Type MyFractile

Comparison 27.5

Observation 36

Resulting data

Fractile - chart function
Fractile() finds the value that corresponds to the inclusive fractile (quantile) of the aggregated data
in the range given by the expression iterated over the chart dimensions.

You can use FractileExc - chart function (page 418) to calculate the exclusive fractile.

Syntax:
Fractile([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] expr, fraction)

Return data type: numeric

The function returns the value corresponding to the rank as defined by rank = fraction * (N-1) + 1

where N is the number of values in expr. If rank is a non-integer number, an interpolation is made
between the two closest values.

Script syntax and chart functions - Qlik Sense, May 2024 414

8 Script and chart functions

Arguments:

Argument Description

expr The expression or field containing the data to use when calculating the
fractile.

fraction A number between 0 and 1 corresponding to the fractile (quantile expressed
as a fraction) to be calculated.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Arguments

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

Examples and results:

Custome
r

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Astrida 46 60 70 13 78 20 45 65 78 12 78 22

Betacab 65 56 22 79 12 56 45 24 32 78 55 15

Canutility 77 68 34 91 24 68 57 36 44 90 67 27

Divadip 57 36 44 90 67 27 57 68 47 90 80 94

Example table

Script syntax and chart functions - Qlik Sense, May 2024 415

8 Script and chart functions

Example Result

Fractile

(Sales,

0.75)

For a table including the dimension Customer and the measure Fractile([Sales]), if
Totals are shown, the result is 71.75. This is the point in the distribution of values
of Sales that 75% of the values fall beneath.

Fractile

(TOTAL

Sales,

0.75))

71.75 for all values of Customer, because the TOTAL qualifier means that
dimensions are disregarded.

Fractile

(DISTINCT

Sales,

0.75)

70 for the total, because using the DISTINCT qualifier means only unique values in
Sales for each Customer are evaluated.

Function examples

Data used in examples:

Monthnames:

LOAD *, Dual(MonthText,MonthNumber) as Month INLINE [

MonthText, MonthNumber

Jan, 1

Feb, 2

Mar, 3

Apr, 4

May, 5

Jun, 6

Jul, 7

Aug, 8

Sep, 9

Oct, 10

Nov, 11

Dec, 12

];

Sales2013:

Crosstable (MonthText, Sales) LOAD * inline [

Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec

Astrida|46|60|70|13|78|20|45|65|78|12|78|22

Betacab|65|56|22|79|12|56|45|24|32|78|55|15

Canutility|77|68|34|91|24|68|57|36|44|90|67|27

Divadip|57|36|44|90|67|27|57|68|47|90|80|94

] (delimiter is '|');

See also:
p Aggr - chart function (page 549)

Script syntax and chart functions - Qlik Sense, May 2024 416

8 Script and chart functions

FractileExc
FractileExc() finds the value that corresponds to the exclusive fractile (quantile) of the
aggregated data in the expression over a number of records as defined by a group by
clause.

You can use Fractile (page 413) to calculate the inclusive fractile.

Syntax:
FractileExc(expr, fraction)

Return data type: numeric

The function returns the value corresponding to the rank as defined by rank = fraction * (N+1)

where N is the number of values in expr. If rank is a non-integer number, an interpolation is made
between the two closest values.

Arguments:

Argument Description

expr The expression or field containing the data to use when calculating the fractile.

fraction A number between 0 and 1 corresponding to the fractile (quantile expressed as a
fraction) to be calculated.

Arguments

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Script syntax and chart functions - Qlik Sense, May 2024 417

8 Script and chart functions

Example Result

Table1:

Crosstable (Type, Value)

Load recno() as ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is '|');

Fractile1:

LOAD Type,

FractileExc(Value,0.75) as

MyFractile Resident Table1 Group

By Type;

In a table with the dimensions Type and MyFractile, the
results of the FractileExc() calculations in the data load
script are:

Type MyFractile

Comparison 28.5

Observation 38

Resulting data

FractileExc - chart function
FractileExc() finds the value that corresponds to the exclusive fractile (quantile) of the aggregated
data in the range given by the expression iterated over the chart dimensions.

You can use Fractile - chart function (page 414) to calculate the inclusive fractile.

Syntax:
FractileExc([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] expr,

fraction)

Return data type: numeric

The function returns the value corresponding to the rank as defined by rank = fraction * (N+1)

where N is the number of values in expr. If rank is a non-integer number, an interpolation is made
between the two closest values.

Script syntax and chart functions - Qlik Sense, May 2024 418

8 Script and chart functions

Arguments:

Argument Description

expr The expression or field containing the data to use when calculating the
fractile.

fraction A number between 0 and 1 corresponding to the fractile (quantile expressed
as a fraction) to be calculated.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Arguments

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

Examples and results:

Custome
r

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Astrida 46 60 70 13 78 20 45 65 78 12 78 22

Betacab 65 56 22 79 12 56 45 24 32 78 55 15

Canutility 77 68 34 91 24 68 57 36 44 90 67 27

Divadip 57 36 44 90 67 27 57 68 47 90 80 94

Example table

Script syntax and chart functions - Qlik Sense, May 2024 419

8 Script and chart functions

Example Result

FractileExc

(Sales, 0.75)
For a table including the dimension Customer and the measure FractileExc

([Sales]), if Totals are shown, the result is 75.25. This is the point in the
distribution of values of Sales that 75% of the values fall beneath.

FractileExc

(TOTAL Sales,

0.75))

75.25 for all values of Customer, because the TOTAL qualifier means that
dimensions are disregarded.

FractileExc

(DISTINCT

Sales, 0.75)

73.50 for the total, because using the DISTINCT qualifier means only unique
values in Sales for each Customer are evaluated.

Function examples

Data used in examples:

Monthnames:

LOAD *, Dual(MonthText,MonthNumber) as Month INLINE [

MonthText, MonthNumber

Jan, 1

Feb, 2

Mar, 3

Apr, 4

May, 5

Jun, 6

Jul, 7

Aug, 8

Sep, 9

Oct, 10

Nov, 11

Dec, 12

];

Sales2013:

Crosstable (MonthText, Sales) LOAD * inline [

Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec

Astrida|46|60|70|13|78|20|45|65|78|12|78|22

Betacab|65|56|22|79|12|56|45|24|32|78|55|15

Canutility|77|68|34|91|24|68|57|36|44|90|67|27

Divadip|57|36|44|90|67|27|57|68|47|90|80|94

] (delimiter is '|');

See also:
p Aggr - chart function (page 549)

Kurtosis
Kurtosis() returns the kurtosis of the data in the expression over a number of records
as defined by a group by clause.

Script syntax and chart functions - Qlik Sense, May 2024 420

8 Script and chart functions

Syntax:
Kurtosis([distinct] expr)

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

distinct If the word distinct occurs before the expression, all duplicates will be
disregarded.

Arguments

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Script syntax and chart functions - Qlik Sense, May 2024 421

8 Script and chart functions

Example Result

Table1:

Crosstable (Type, Value)

Load recno() as ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is '|');

Kurtosis1:

LOAD Type,

Kurtosis(Value) as MyKurtosis1,

Kurtosis(DISTINCT Value) as

MyKurtosis2

Resident Table1 Group By Type;

In a table with the dimensions Type, MyKurtosis1,and
MyKurtosis2, the results of the Kurtosis() calculations in the
data load script are:

Type MyKurtosis1 MyKurtosis2

Comparison -1.1612957 -1.4982366

Observation -1.1148768 -0.93540144

Resulting data

Kurtosis - chart function
Kurtosis() finds the kurtosis of the range of data aggregated in the expression or field iterated over
the chart dimensions.

Syntax:
Kurtosis([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] expr)

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 422

8 Script and chart functions

Argument Description

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

Examples and results:

Type
Val
ue

Compa
rison

2 2
7

3
8

3
1

1 1
9

1 3
4

3 1 2 3 2 1 2 1 3 2
9

3
7

2

Observ
ation

35 4
0

1
2

1
5

2
1

1
4

4
6

1
0

2
8

4
8

1
6

3
0

3
2

4
8

3
1

2
2

1
2

3
9

1
9

2
5

Example table

Example Result

Kurtosis

(Value)
For a table including the dimension Type and the measure Kurtosis(Value), if Totals
are shown for the table, and number formatting is set to 3 significant figures, the
result is 1.252. For Comparison it is 1.161 and for Observation it is 1.115.

Kurtosis

(TOTAL

Value))

1.252 for all values of Type, because the TOTAL qualifier means that dimensions are
disregarded.

Function examples

Data used in examples:

Table1:

Crosstable (Type, Value)

Script syntax and chart functions - Qlik Sense, May 2024 423

8 Script and chart functions

Load recno() as ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is '|');

See also:
p Avg - chart function (page 407)

LINEST_B
LINEST_B() returns the aggregated b value (y-intercept) of a linear regression defined
by the equation y=mx+b for a series of coordinates represented by paired numbers in
x-expression and y-expression iterated over a number of records as defined by a
group by clause.

Syntax:
LINEST_B (y_value, x_value[, y0 [, x0]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 424

8 Script and chart functions

Argument Description

y(0), x(0) An optional value y0 may be stated forcing the regression line to pass through the
y-axis at a given point. By stating both y0 and x0 it is possible to force the
regression line to pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid data-
pairs to calculate. If y0 and x0 are stated, a single data pair will do.

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

See also:
p Examples of how to use linest functions (page 464)

LINEST_B - chart function
LINEST_B() returns the aggregated b value (y-intercept) of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers in the expressions
given by the expressions x_value and y_value, iterated over the chart dimensions.

Syntax:
LINEST_B([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_value

[, y0_const [, x0_const]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

y0_const, x0_
const

An optional value y0 may be stated forcing the regression line to pass through
the y-axis at a given point. By stating both y0 and x0 it is possible to force the
regression line to pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least
two valid data-pairs to calculate. If y0 and x0 are stated, a single
data pair will do.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 425

8 Script and chart functions

Argument Description

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

See also:
p Examples of how to use linest functions (page 464)
p Avg - chart function (page 407)

LINEST_DF
LINEST_DF() returns the aggregated degrees of freedom of a linear regression defined
by the equation y=mx+b for a series of coordinates represented by paired numbers in
x-expression and y-expression iterated over a number of records as defined by a
group by clause.

Syntax:
LINEST_DF (y_value, x_value[, y0 [, x0]])

Script syntax and chart functions - Qlik Sense, May 2024 426

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

y(0), x(0) An optional value y0 may be stated forcing the regression line to pass through the
y-axis at a given point. By stating both y0 and x0 it is possible to force the
regression line to pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid data-
pairs to calculate. If y0 and x0 are stated, a single data pair will do.

Arguments

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

See also:
p Examples of how to use linest functions (page 464)

LINEST_DF - chart function
LINEST_DF() returns the aggregated degrees of freedom of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers in the expressions
given by x_value and y_value, iterated over the chart dimensions.

Syntax:
LINEST_DF([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_

value [, y0_const [, x0_const]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 427

8 Script and chart functions

Argument Description

y0, x0 An optional value y0 may be stated forcing the regression line to pass through
the y-axis at a given point. By stating both y0 and x0 it is possible to force the
regression line to pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least
two valid data-pairs to calculate. If y0 and x0 are stated, a single
data pair will do.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

See also:
p Examples of how to use linest functions (page 464)
p Avg - chart function (page 407)

LINEST_F
This script function returns the aggregated F statistic (r2/(1-r2)) of a linear regression
defined by the equation y=mx+b for a series of coordinates represented by paired
numbers in x-expression and y-expression iterated over a number of records as
defined by a group by clause.

Script syntax and chart functions - Qlik Sense, May 2024 428

8 Script and chart functions

Syntax:
LINEST_F (y_value, x_value[, y0 [, x0]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

y(0), x(0) An optional value y0 may be stated forcing the regression line to pass through the
y-axis at a given point. By stating both y0 and x0 it is possible to force the
regression line to pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid data-
pairs to calculate. If y0 and x0 are stated, a single data pair will do.

Arguments

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

See also:
p Examples of how to use linest functions (page 464)

LINEST_F - chart function
LINEST_F() returns the aggregated F statistic (r2/(1-r2)) of a linear regression defined by the
equation y=mx+b for a series of coordinates represented by paired numbers in the expressions
given by x_value and the y_value, iterated over the chart dimensions.

Syntax:
LINEST_F([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_value

[, y0_const [, x0_const]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 429

8 Script and chart functions

Argument Description

x_value The expression or field containing the range of x-values to be measured.

y0, x0 An optional value y0 may be stated forcing the regression line to pass through
the y-axis at a given point. By stating both y0 and x0 it is possible to force the
regression line to pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least
two valid data-pairs to calculate. If y0 and x0 are stated, a single
data pair will do.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

See also:
p Examples of how to use linest functions (page 464)
p Avg - chart function (page 407)

LINEST_M
LINEST_M() returns the aggregated m value (slope) of a linear regression defined by
the equation y=mx+b for a series of coordinates represented by paired numbers in x-
expression and y-expression iterated over a number of records as defined by a group
by clause.

Script syntax and chart functions - Qlik Sense, May 2024 430

8 Script and chart functions

Syntax:
LINEST_M (y_value, x_value[, y0 [, x0]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

y(0), x(0) An optional value y0 may be stated forcing the regression line to pass through the
y-axis at a given point. By stating both y0 and x0 it is possible to force the
regression line to pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid data-
pairs to calculate. If y0 and x0 are stated, a single data pair will do.

Arguments

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

See also:
p Examples of how to use linest functions (page 464)

LINEST_M - chart function
LINEST_M() returns the aggregated m value (slope) of a linear regression defined by the equation
y=mx+b for a series of coordinates represented by paired numbers given by the expressions x_
value and y_value, iterated over the chart dimensions.

Syntax:
LINEST_M([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_value

[, y0_const [, x0_const]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 431

8 Script and chart functions

Argument Description

x_value The expression or field containing the range of x-values to be measured.

y0, x0 An optional value y0 may be stated forcing the regression line to pass through
the y-axis at a given point. By stating both y0 and x0 it is possible to force the
regression line to pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least
two valid data-pairs to calculate. If y0 and x0 are stated, a single
data pair will do.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

See also:
p Examples of how to use linest functions (page 464)
p Avg - chart function (page 407)

LINEST_R2
LINEST_R2() returns the aggregated r2 value (coefficient of determination) of a linear
regression defined by the equation y=mx+b for a series of coordinates represented by
paired numbers in x-expression and y-expression iterated over a number of records as
defined by a group by clause.

Script syntax and chart functions - Qlik Sense, May 2024 432

8 Script and chart functions

Syntax:
LINEST_R2 (y_value, x_value[, y0 [, x0]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

y(0), x(0) An optional value y0 may be stated forcing the regression line to pass through the
y-axis at a given point. By stating both y0 and x0 it is possible to force the
regression line to pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid data-
pairs to calculate. If y0 and x0 are stated, a single data pair will do.

Arguments

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

See also:
p Examples of how to use linest functions (page 464)

LINEST_R2 - chart function
LINEST_R2() returns the aggregated r2 value (coefficient of determination) of a linear regression
defined by the equation y=mx+b for a series of coordinates represented by paired numbers given
by the expressions x_value and y_value, iterated over the chart dimensions.

Syntax:
LINEST_R2([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_

value[, y0_const[, x0_const]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 433

8 Script and chart functions

Argument Description

x_value The expression or field containing the range of x-values to be measured.

y0, x0 An optional value y0 may be stated forcing the regression line to pass through
the y-axis at a given point. By stating both y0 and x0 it is possible to force the
regression line to pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least
two valid data-pairs to calculate. If y0 and x0 are stated, a single
data pair will do.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

See also:
p Examples of how to use linest functions (page 464)
p Avg - chart function (page 407)

LINEST_SEB
LINEST_SEB() returns the aggregated standard error of the b value of a linear
regression defined by the equation y=mx+b for a series of coordinates represented by
paired numbers in x-expression and y-expression iterated over a number of records as
defined by a group by clause.

Script syntax and chart functions - Qlik Sense, May 2024 434

8 Script and chart functions

Syntax:
LINEST_SEB (y_value, x_value[, y0 [, x0]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

y(0), x(0) An optional value y0 may be stated forcing the regression line to pass through the
y-axis at a given point. By stating both y0 and x0 it is possible to force the
regression line to pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid data-
pairs to calculate. If y0 and x0 are stated, a single data pair will do.

Arguments

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

See also:
p Examples of how to use linest functions (page 464)

LINEST_SEB - chart function
LINEST_SEB() returns the aggregated standard error of the b value of a linear regression defined
by the equation y=mx+b for a series of coordinates represented by paired numbers given by the
expressions x_value and y_value, iterated over the chart dimensions.

Syntax:
LINEST_SEB([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_

value[, y0_const[, x0_const]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 435

8 Script and chart functions

Argument Description

x_value The expression or field containing the range of x-values to be measured.

y0, x0 An optional value y0 may be stated forcing the regression line to pass through
the y-axis at a given point. By stating both y0 and x0 it is possible to force the
regression line to pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least
two valid data-pairs to calculate. If y0 and x0 are stated, a single
data pair will do.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

See also:
p Examples of how to use linest functions (page 464)
p Avg - chart function (page 407)

LINEST_SEM
LINEST_SEM() returns the aggregated standard error of the m value of a linear
regression defined by the equation y=mx+b for a series of coordinates represented by
paired numbers in x-expression and y-expression iterated over a number of records as
defined by a group by clause.

Script syntax and chart functions - Qlik Sense, May 2024 436

8 Script and chart functions

Syntax:
LINEST_SEM (y_value, x_value[, y0 [, x0]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

y(0), x(0) An optional value y0 may be stated forcing the regression line to pass through the
y-axis at a given point. By stating both y0 and x0 it is possible to force the
regression line to pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid data-
pairs to calculate. If y0 and x0 are stated, a single data pair will do.

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

See also:
p Examples of how to use linest functions (page 464)

LINEST_SEM - chart function
LINEST_SEM() returns the aggregated standard error of the m value of a linear regression defined
by the equation y=mx+b for a series of coordinates represented by paired numbers given by the
expressions x_value and y_value, iterated over the chart dimensions.

Syntax:
LINEST_SEM([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_

value[, y0_const[, x0_const]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 437

8 Script and chart functions

Argument Description

x_value The expression or field containing the range of x-values to be measured.

y0, x0 An optional value y0 may be stated forcing the regression line to pass through
the y-axis at a given point. By stating both y0 and x0 it is possible to force the
regression line to pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least
two valid data-pairs to calculate. If y0 and x0 are stated, a single
data pair will do.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

See also:
p Examples of how to use linest functions (page 464)
p Avg - chart function (page 407)

LINEST_SEY
LINEST_SEY() returns the aggregated standard error of the y estimate of a linear
regression defined by the equation y=mx+b for a series of coordinates represented by
paired numbers in x-expression and y-expression iterated over a number of records as
defined by a group by clause.

Script syntax and chart functions - Qlik Sense, May 2024 438

8 Script and chart functions

Syntax:
LINEST_SEY (y_value, x_value[, y0 [, x0]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

y(0), x(0) An optional value y0 may be stated forcing the regression line to pass through the
y-axis at a given point. By stating both y0 and x0 it is possible to force the
regression line to pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid data-
pairs to calculate. If y0 and x0 are stated, a single data pair will do.

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

See also:
p Examples of how to use linest functions (page 464)

LINEST_SEY - chart function
LINEST_SEY() returns the aggregated standard error of the y estimate of a linear regression
defined by the equation y=mx+b for a series of coordinates represented by paired numbers given
by the expressions x_value and y_value, iterated over the chart dimensions.

Syntax:
LINEST_SEY([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_

value[, y0_const[, x0_const]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 439

8 Script and chart functions

Argument Description

x_value The expression or field containing the range of x-values to be measured.

y0, x0 An optional value y0 may be stated forcing the regression line to pass through
the y-axis at a given point. By stating both y0 and x0 it is possible to force the
regression line to pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least
two valid data-pairs to calculate. If y0 and x0 are stated, a single
data pair will do.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

See also:
p Examples of how to use linest functions (page 464)
p Avg - chart function (page 407)

LINEST_SSREG
LINEST_SSREG() returns the aggregated regression sum of squares of a linear
regression defined by the equation y=mx+b for a series of coordinates represented by
paired numbers in x-expression and y-expression iterated over a number of records as
defined by a group by clause.

Script syntax and chart functions - Qlik Sense, May 2024 440

8 Script and chart functions

Syntax:
LINEST_SSREG (y_value, x_value[, y0 [, x0]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

y(0), x(0) An optional value y0 may be stated forcing the regression line to pass through the
y-axis at a given point. By stating both y0 and x0 it is possible to force the
regression line to pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid data-
pairs to calculate. If y0 and x0 are stated, a single data pair will do.

Arguments

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

See also:
p Examples of how to use linest functions (page 464)

LINEST_SSREG - chart function
LINEST_SSREG() returns the aggregated regression sum of squares of a linear regression defined
by the equation y=mx+b for a series of coordinates represented by paired numbers given by the
expressions x_value and y_value, iterated over the chart dimensions.

Syntax:
LINEST_SSREG([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_

value[, y0_const[, x0_const]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 441

8 Script and chart functions

Argument Description

x_value The expression or field containing the range of x-values to be measured.

y0, x0 An optional value y0 may be stated forcing the regression line to pass through
the y-axis at a given point. By stating both y0 and x0 it is possible to force the
regression line to pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least
two valid data-pairs to calculate. If y0 and x0 are stated, a single
data pair will do.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

See also:
p Examples of how to use linest functions (page 464)
p Avg - chart function (page 407)

LINEST_SSRESID
LINEST_SSRESID() returns the aggregated residual sum of squares of a linear
regression defined by the equation y=mx+b for a series of coordinates represented by
paired numbers in x-expression and y-expression iterated over a number of records as
defined by a group by clause.

Script syntax and chart functions - Qlik Sense, May 2024 442

8 Script and chart functions

Syntax:
LINEST_SSRESID (y_value, x_value[, y0 [, x0]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

y(0), x(0) An optional value y0 may be stated forcing the regression line to pass through the
y-axis at a given point. By stating both y0 and x0 it is possible to force the
regression line to pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least two valid data-
pairs to calculate. If y0 and x0 are stated, a single data pair will do.

Arguments

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

See also:
p Examples of how to use linest functions (page 464)

LINEST_SSRESID - chart function
LINEST_SSRESID() returns the aggregated residual sum of squares of a linear regression defined
by the equation y=mx+b for a series of coordinates represented by paired numbers in the
expressions given by x_value and y_value, iterated over the chart dimensions.

Syntax:
LINEST_SSRESID([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value,

x_value[, y0_const[, x0_const]])

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 443

8 Script and chart functions

Argument Description

x_value The expression or field containing the range of x-values to be measured.

y0, x0 An optional value y0 may be stated forcing the regression line to pass through
the y-axis at a given point. By stating both y0 and x0 it is possible to force the
regression line to pass through a single fixed coordinate.

Unless both y0 and x0 are stated, the function requires at least
two valid data-pairs to calculate. If y0 and x0 are stated, a single
data pair will do.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

An optional value y0 may be stated forcing the regression line to pass through the y-axis at a given
point. By stating both y0 and x0 it is possible to force the regression line to pass through a single
fixed coordinate.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

See also:
p Examples of how to use linest functions (page 464)
p Avg - chart function (page 407)

Median
Median() returns the aggregated median of the values in the expression over a number
of records as defined by a group by clause.

Script syntax and chart functions - Qlik Sense, May 2024 444

8 Script and chart functions

Syntax:
Median (expr)

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

Arguments

Example: Script expression using Median
Example - script expression

Load script
Load the following inline data and script expression in the data load editor for this example.

Table 1:

Load RecNo() as RowNo, Letter, Number Inline

[Letter, Number

A,1

A,3

A,4

A,9

B,2

B,8

B,9];

Median:

LOAD Letter,

Median(Number) as MyMedian

Resident Table1 Group By Letter;

Create a visualization
Create a table visualization in a Qlik Sense sheet with Letter and MyMedian as dimensions.

Result

Explanation
The median is considered the "middle" number when the numbers have been sorted in order from
smallest to greatest. If the data set has an even number of values, the function returns the average
of the two middle values. In this example, the median is calculated for each set of values of A and B,

Script syntax and chart functions - Qlik Sense, May 2024 445

8 Script and chart functions

which is 3.5 and 8, respectively.

Median - chart function
Median() returns the median value of the range of values aggregated in the expression iterated
over the chart dimensions.

Syntax:
Median([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] expr)

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Arguments

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

Example: Chart expression using Median
Example - chart expression

Load script
Load the following data as an inline load in the data load editor to create the chart expression
example below.

Load RecNo() as RowNo, Letter, Number Inline

[Letter, Number

A,1

Script syntax and chart functions - Qlik Sense, May 2024 446

8 Script and chart functions

A,3

A,4

A,9

B,2

B,8

B,9];

Create a visualization
Create a table visualization in a Qlik Sense sheet with Letter as a dimension.

Chart expression
Add the following expression to the table, as a measure:

Median(Number)

Result

Explanation
The median is considered the "middle" number when the numbers have been sorted in order from
smallest to greatest. If the data set has an even number of values, the function returns the average
of the two middle values. In this example, the median is calculated for each set of values of A and B,
which is 3.5 and 8, respectively.

The median for Totals is calculated from all values, which equals 4.

See also:
p Avg - chart function (page 407)

MutualInfo - chart function
MutualInfo calculates the mutual information (MI) between two fields or between
aggregated values in Aggr().

MutualInfo returns the aggregated mutual information for two datasets. This allows key driver
analysis between a field and a potential driver. Mutual information measures the relationship
between the datasets and is aggregated for (x,y) pair values iterated over the chart dimensions.
Mutual information is measured between 0 and 1 and can be formatted as a percentile value.
MutualInfo is defined by either selections or by a set expression.

MutualInfo allows different kinds of MI analysis:

Script syntax and chart functions - Qlik Sense, May 2024 447

8 Script and chart functions

l Pair-wise MI: Calculate the MI between a driver field and a target field.
l Driver breakdown by value: The MI is calculated between individual field values in the driver

and target fields.
l Feature selection: Use MutualInfo in a grid chart to create a matrix where all fields are

compared to each other based on MI.

MutualInfo does not necessarily indicate causality between fields sharing mutual information. Two
fields may share mutual information, but may not be equal drivers for each other. For example,
when comparing ice cream sales and outdoor temperature, MutualInfo will show mutual
information between the two. It will not indicate if it is outdoor temperature driving ice cream sales,
which is likely, or if it is ice cream sales that drives outdoor temperature, which is unlikely.

When calculating mutual information, associations affect the correspondence between and the
frequency of values from fields that are from different tables.

Returned values for the same fields or selections may vary slightly. This is due to each MutualInfo
call operating on a randomly selected sample and the inherent randomness of the MutualInfo
algorithm.

MutualInfo can be applied to the Aggr() function.

Syntax:
MutualInfo({SetExpression}] [DISTINCT] [TOTAL] field1, field2 , datatype [,

breakdownbyvalue [, samplesize]])

Return data type: numeric

Arguments:

Argument Description

field1, field2 The expressions or fields containing the two sample sets for which the
mutual information to be measured.

datatype The data types contained in the target and driver,

1 or 'dd' for discrete:discrete

2 or 'cc' for continuous:continuous

3 or 'cd' for continuous:discrete

4 or 'dc' for discrete:continuous

Data types are not case sensitive.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 448

8 Script and chart functions

Argument Description

breakdownbyvalue A static value corresponding to a value in the driver. If supplied, the
calculation will calculate the MI contribution for that value. You can use
ValueList() or ValueLoop(). If Null() is added, the calculation will
calculate the overall MI for all values in the driver.

Breaking down by value requires the driver contain discrete data.

samplesize The number of values to sample from the target and driver. Sampling is
random. MutualInfo requires a minimum sample size of 80. By default,
MutualInfo only samples up to 10,000 data-pairs as MutualInfo can be
resource intensive. You can specify greater numbers of data-pairs in the
sample size. If MutualInfo times out, reduce the sample size.

SetExpression By default, the aggregation function will aggregate over the set of
possible records defined by the selection. An alternative set of records
can be defined by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation
is made over all possible values given the current selections, and not just
those that pertain to the current dimensional value, that is, it disregards
the chart dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by
a list of one or more field names as a subset of the chart dimension
variables, you create a subset of the total possible values.

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Example Result

mutualinfo

(Age, Salary,

1)

For a table including the dimension Employee name and the measure mutualinfo

(Age, Salary, 1), the result is 0.99820986. The result is only displayed for the
totals cell.

Function examples

Script syntax and chart functions - Qlik Sense, May 2024 449

8 Script and chart functions

Example Result

mutualinfo

(TOTAL Age,

Salary, 1,

null(), 81)

If you create a filter pane with the dimension Gender, and make selections from
it, you see the result 0.99805677 when Female is selected and 0.99847373 if
Male is selected. This is because the selection excludes all results that do not
belong to the other value of Gender.

mutualinfo

(TOTAL Age,

Gender, 1,

ValueLoop

(25,35))

0.68196996. Selecting any value from Gender will change this to 0.

mutualinfo

({1}

TOTAL Age,

Salary, 1,

null())

0.99820986. This is independent of selections. The set expression {1}
disregards all selections and dimensions.

Data used in examples:

Salary:

LOAD * inline [

"Employee name"|Age|Gender|Salary

Aiden Charles|20|Male|25000

Ann Lindquist|69|Female|58000

Anna Johansen|37|Female|36000

Anna Karlsson|42|Female|23000

Antonio Garcia|20|Male|61000

Benjamin Smith|42|Male|27000

Bill Yang|49|Male|50000

Binh Protzmann|69|Male|21000

Bob Park|51|Male|54000

Brenda Davies|25|Male|32000

Celine Gagnon|48|Female|38000

Cezar Sandu|50|Male|46000

Charles Ingvar Jönsson|27|Male|58000

Charlotte Edberg|45|Female|56000

Cindy Lynn|69|Female|28000

Clark Wayne|63|Male|31000

Daroush Ferrara|31|Male|29000

David Cooper|37|Male|64000

David Leg|58|Male|57000

Eunice Goldblum|31|Female|32000

Freddy Halvorsen|25|Male|26000

Gauri Indu|36|Female|46000

George van Zaant|59|Male|47000

Glenn Brown|58|Male|40000

Harry Jones|38|Male|40000

Helen Brolin|52|Female|66000

Hiroshi Ito|24|Male|42000

Ian Underwood|40|Male|45000

Ingrid Hendrix|63|Female|27000

Ira Baumel|39|Female|39000

Jackie Kingsley|23|Female|28000

Jennica Williams|36|Female|48000

Jerry Tessel|31|Male|57000

Jim Bond|50|Male|58000

Script syntax and chart functions - Qlik Sense, May 2024 450

8 Script and chart functions

Joan Callins|60|Female|65000

Joan Cleaves|25|Female|61000

Joe Cheng|61|Male|41000

John Doe|36|Male|59000

John Lemon|43|Male|21000

Karen Helmkey|54|Female|25000

Karl Berger|38|Male|68000

Karl Straubaum|30|Male|40000

Kaya Alpan|32|Female|60000

Kenneth Finley|21|Male|25000

Leif Shine|63|Male|70000

Lennart Skoglund|63|Male|24000

Leona Korhonen|46|Female|50000

Lina André|50|Female|65000

Louis Presley|29|Male|36000

Luke Langston|50|Male|63000

Marcus Salvatori|31|Male|46000

Marie Simon|57|Female|23000

Mario Rossi|39|Male|62000

Markus Danzig|26|Male|48000

Michael Carlen|21|Male|45000

Michelle Tyson|44|Female|69000

Mike Ashkenaz|45|Male|68000

Miro Ito|40|Male|39000

Nina Mihn|62|Female|57000

Olivia Nguyen|35|Female|51000

Olivier Simenon|44|Male|31000

Östen Ärlig|68|Male|57000

Pamala Garcia|69|Female|29000

Paolo Romano|34|Male|45000

Pat Taylor|67|Female|69000

Paul Dupont|34|Male|38000

Peter Smith|56|Male|53000

Pierre Clouseau|21|Male|37000

Preben Jørgensen|35|Male|38000

Rey Jones|65|Female|20000

Ricardo Gucci|55|Male|65000

Richard Ranieri|30|Male|64000

Rob Carsson|46|Male|54000

Rolf Wesenlund|25|Male|51000

Ronaldo Costa|64|Male|39000

Sabrina Richards|57|Female|40000

Sato Hiromu|35|Male|21000

Sehoon Daw|57|Male|24000

Stefan Lind|67|Male|35000

Steve Cioazzi|58|Male|23000

Sunil Gupta|45|Male|40000

Sven Svensson|45|Male|55000

Tom Lindwall|46|Male|24000

Tomas Nilsson|27|Male|22000

Trinity Rizzo|52|Female|48000

Vanessa Lambert|54|Female|27000

] (delimiter is '|');

Skew
Skew() returns the skewness of expression over a number of records as defined by a
group by clause.

Script syntax and chart functions - Qlik Sense, May 2024 451

8 Script and chart functions

Syntax:
Skew([distinct] expr)

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

DISTINCT If the word distinct occurs before the expression, all duplicates will be
disregarded.

Arguments

Examples and results:

Add the example script to your app and run it. Then build a straight table with Type and MySkew as
dimensions.

Script syntax and chart functions - Qlik Sense, May 2024 452

8 Script and chart functions

Example Result

Table1:

Crosstable (Type, Value)

Load recno() as ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is '|');

Skew1:

LOAD Type,

Skew(Value) as MySkew

Resident Table1 Group By Type;

The results of the Skew() calculation are:

l Type is MySkew

l Comparison is 0.86414768
l Observation is 0.32625351

Resulting data

Skew - chart function
Skew() returns the aggregated skewness of the expression or field iterated over the chart
dimensions.

Syntax:
Skew([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] expr)

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 453

8 Script and chart functions

Argument Description

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

Examples and results:

Add the example script to your app and run it. Then build a straight table with Type as dimension
and Skew(Value) as measure.

Totals should be enabled in the properties of the table.

Script syntax and chart functions - Qlik Sense, May 2024 454

8 Script and chart functions

Example Result

Table1:

Crosstable (Type, Value)

Load recno() as ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is '|');

The results of the Skew(Value) calculation are:

l Total is 0.23522195
l Comparison is 0.86414768
l Observation is 0.32625351

See also:
p Avg - chart function (page 407)

Stdev
Stdev() returns the standard deviation of the values given by the expression over a
number of records as defined by a group by clause.

Syntax:
Stdev([distinct] expr)

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

distinct If the word distinct occurs before the expression, all duplicates will be
disregarded.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 455

8 Script and chart functions

Examples and results:

Add the example script to your appand run it. Then build a straight table with Type and MyStdev as
dimensions.

Example Result

Table1:

Crosstable (Type, Value)

Load recno() as ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is '|');

Stdev1:

LOAD Type,

Stdev(Value) as MyStdev

Resident Table1 Group By Type;

The results of the Stdev() calculation are:

l Type is MyStdev

l Comparison is 14.61245
l Observation is 12.507997

Resulting data

Stdev - chart function
Stdev() finds the standard deviation of the range of data aggregated in the expression or field
iterated over the chart dimensions.

Syntax:
Stdev([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] expr)

Script syntax and chart functions - Qlik Sense, May 2024 456

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Arguments

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

Examples and results:

Add the example script to your app and run it. Then build a straight table with Type as dimension
and Stdev(Value) as measure.

Totals should be enabled in the properties of the table.

Script syntax and chart functions - Qlik Sense, May 2024 457

8 Script and chart functions

Example Result

Stdev(Value)

Table1:

Crosstable (Type, Value)

Load recno() as ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is '|');

The results of the Stdev(Value) calculation are:

l Total is 15.47529
l Comparison is 14.61245
l Observation is 12.507997

See also:
p Avg - chart function (page 407)
p STEYX - chart function (page 462)

Sterr
Sterr() returns the aggregated standard error (stdev/sqrt(n)) for a series of values
represented by the expression iterated over a number of records as defined by a
group by clause.

Syntax:
Sterr ([distinct] expr)

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

distinct If the word distinct occurs before the expression, all duplicates will be
disregarded.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 458

8 Script and chart functions

Limitations:

Text values, NULL values and missing values are disregarded.

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Example Result

Table1:

Crosstable (Type, Value)

Load recno() as ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is '|');

Sterr1:

LOAD Type,

Sterr(Value) as MySterr

Resident Table1 Group By Type;

In a table with the dimensions Type and MySterr, the results
of the Sterr() calculation in the data load script are:

Type MySterr

Comparison 3.2674431

Observation 2.7968733

Resulting data

Sterr - chart function
Sterr() finds the value of the standard error of the mean, (stdev/sqrt(n)), for the series of values
aggregated in the expression iterated over the chart dimensions.

Syntax:
Sterr([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] expr)

Script syntax and chart functions - Qlik Sense, May 2024 459

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Arguments

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

Text values, NULL values and missing values are disregarded.

Examples and results:

Add the example script to your app and run it. Then build a straight table with Type as dimension
and Sterr(Value) as measure.

Totals should be enabled in the properties of the table.

Script syntax and chart functions - Qlik Sense, May 2024 460

8 Script and chart functions

Example Result

Table1:

Crosstable (Type, Value)

Load recno() as ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is '|');

The results of the Sterr(Value) calculation are:

l Total is 2.4468583
l Comparison is 3.2674431
l Observation is 2.7968733

See also:
p Avg - chart function (page 407)
p STEYX - chart function (page 462)

STEYX
STEYX() returns the aggregated standard error of the predicted y-value for each x-
value in the regression for a series of coordinates represented by paired numbers in x-
expression and y-expression iterated over a number of records as defined by a group
by clause.

Syntax:
STEYX (y_value, x_value)

Return data type: numeric

Arguments:

Argument Description

y_value The expression or field containing the range of y-values to be measured.

x_value The expression or field containing the range of x-values to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 461

8 Script and chart functions

Limitations:

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Example Result

Trend:

Load *, 1 as Grp;

LOAD * inline [

Month|KnownY|KnownX

Jan|2|6

Feb|3|5

Mar|9|11

Apr|6|7

May|8|5

Jun|7|4

Jul|5|5

Aug|10|8

Sep|9|10

Oct|12|14

Nov|15|17

Dec|14|16

] (delimiter is '|');

STEYX1:

LOAD Grp,

STEYX(KnownY, KnownX)

as MySTEYX

Resident Trend Group

By Grp;

In a table with the dimension MySTEYX, the result of the STEYX()
calculation in the data load script is 2.0714764.

Resulting data

STEYX - chart function
STEYX() returns the aggregated standard error when predicting y-values for each x-value in a
linear regression given by a series of coordinates represented by paired numbers in the
expressions given by y_value and x_value.

Syntax:
STEYX([{SetExpression}] [DISTINCT] [TOTAL [<fld{, fld}>]] y_value, x_value)

Script syntax and chart functions - Qlik Sense, May 2024 462

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

y_value The expression or fieldcontaining the range of known y-values to be
measured.

x_value The expression or field containing the range of known x-values to be
measured.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Arguments

Limitations:

The parameter of the aggregation function must not contain other aggregation functions, unless
these inner aggregations contain the TOTAL qualifier. For more advanced nested aggregations,
use the advanced function Aggr, in combination with a specified dimension.

Text values, NULL values and missing values in any or both pieces of a data-pair result in the entire
data-pair being disregarded.

Examples and results:

Add the example script to your app and run it. Then build a straight table with KnownY and KnownX as
dimension and Steyx(KnownY,KnownX) as measure

Totals should be enabled in the properties of the table.

Script syntax and chart functions - Qlik Sense, May 2024 463

8 Script and chart functions

Example Result

Trend:

LOAD * inline [

Month|KnownY|KnownX

Jan|2|6

Feb|3|5

Mar|9|11

Apr|6|7

May|8|5

Jun|7|4

Jul|5|5

Aug|10|8

Sep|9|10

Oct|12|14

Nov|15|17

Dec|14|16

] (delimiter is '|');

The result of the STEYX(KnownY,KnownX) calculation is 2.071 (If
number formatting is set to 3 decimal places.)

See also:
p Avg - chart function (page 407)
p Sterr - chart function (page 459)

Examples of how to use linest functions
The linest functions are used to find values associated with linear regression analysis. This section
describes how to build visualizations using sample data to find the values of the linest functions
available in Qlik Sense. The linest functions can be used in the data load script and in chart
expressions.

Refer to the individual linest chart function and script function topics for descriptions of syntax and
arguments.

Data and script expressions used in the examples
Load the following inline data and script expressions in the data load editor for the linest() examples
below.

T1:

LOAD *, 1 as Grp;

LOAD * inline [

X|Y

1|0

2|1

3|3

4|8

5|14

6|20

7|0

8|50

9|25

10|60

11|38

12|19

13|26

Script syntax and chart functions - Qlik Sense, May 2024 464

8 Script and chart functions

14|143

15|98

16|27

17|59

18|78

19|158

20|279] (delimiter is '|');

R1:

LOAD

Grp,

linest_B(Y,X) as Linest_B,

linest_DF(Y,X) as Linest_DF,

linest_F(Y,X) as Linest_F,

linest_M(Y,X) as Linest_M,

linest_R2(Y,X) as Linest_R2,

linest_SEB(Y,X,1,1) as Linest_SEB,

linest_SEM(Y,X) as Linest_SEM,

linest_SEY(Y,X) as Linest_SEY,

linest_SSREG(Y,X) as Linest_SSREG,

linest_SSRESID(Y,X) as Linest_SSRESID

resident T1 group by Grp;

Example 1: Script expressions using linest
Example: Script expressions

Create a visualization from the data load script calculations
Create a table visualization in a Qlik Sense sheet with the following fields as columns:

l Linest_B
l Linest_DF
l Linest_F
l Linest_M
l Linest_R2
l Linest_SEB
l Linest_SEM
l Linest_SEY
l Linest_SSREG
l Linest_SSRESID

Result
The table containing the results of the linest calculations made in the data load script should look
like this:

Linest_B Linest_DF Linest_F Linest_M Linest_R2 Linest_SEB

-35.047 18 20.788 8.605 0.536 22.607

Results table

Script syntax and chart functions - Qlik Sense, May 2024 465

8 Script and chart functions

Linest_SEM Linest_SEY Linest_SSREG Linest_SSRESID

1.887 48.666 49235.014 42631.186

Results table

Example 2: Chart expressions using linest
Example: Chart expressions
Create a table visualization in a Qlik Sense sheet with the following fields as dimensions:

ValueList('Linest_b', 'Linest_df','Linest_f', 'Linest_m','Linest_r2','Linest_SEB','Linest_

SEM','Linest_SEY','Linest_SSREG','Linest_SSRESID')

This expression uses the synthetic dimensions function to create labels for the dimensions with the
names of the linest functions. You can change the label to Linest functions to save space.

Add the following expression to the table as a measure:

Pick(Match(ValueList('Linest_b', 'Linest_df','Linest_f', 'Linest_m','Linest_r2','Linest_

SEB','Linest_SEM','Linest_SEY','Linest_SSREG','Linest_SSRESID'),'Linest_b', 'Linest_

df','Linest_f', 'Linest_m','Linest_r2','Linest_SEB','Linest_SEM','Linest_SEY','Linest_

SSREG','Linest_SSRESID'),Linest_b(Y,X),Linest_df(Y,X),Linest_f(Y,X),Linest_m(Y,X),Linest_r2

(Y,X),Linest_SEB(Y,X,1,1),Linest_SEM(Y,X),Linest_SEY(Y,X),Linest_SSREG(Y,X),Linest_SSRESID

(Y,X))

This expression displays the value of the result of each linest function against the corresponding
name in the synthetic dimension. The result of Linest_b(Y,X) is displayed next to linest_b, and so
on.

Result

Linest functions Linest function results

Linest_b -35.047

Linest_df 18

Linest_f 20.788

Linest_m 8.605

Linest_r2 0.536

Linest_SEB 22.607

Linest_SEM 1.887

Linest_SEY 48.666

Linest_SSREG 49235.014

Linest_SSRESID 42631.186

Results table

Script syntax and chart functions - Qlik Sense, May 2024 466

8 Script and chart functions

Example 3: Chart expressions using linest
Example: Chart expressions

1. Create a barchart visualization in a Qlik Sense sheet with X as a dimension and Y as a
measure.

2. Add a linear trend line to the Y measure.
3. Add a KPI visualization to the sheet.

1. Add slope as a label for the KPI.
2. Add sum(Linest_M) as an expression for the KPI.

4. Add a second KPI visualization to the sheet.
1. Add intercept as a label for the KPI.
2. Add Sum(Linest_B) as an expression for the KPI.

5. Add a third KPI visualization to the sheet.
1. Add coefficient of determination as a label for the KPI.
2. Add Sum(Linest_R2) as an expression for the KPI.

Result

Explanation
The barchart shows the plotting of the X and Y data. Relevant linest() functions provide values for
the linear regression equation that the trend line is based on, namely y = m * x + b. The equation
uses the "least squares" method to calculate a straight line (trend line) by returning an array that
describes a line that best fits the data.

The KPIs display the results of the linest() functions sum(Linest_M) for slope and sum(Linest_B)
for the Y intercept, which are variablesin the linear regression equation, and the corresponding
aggregated R2 value for coefficient of determination.

Statistical test functions
Statistical test functions can be used in both the data load scriptand chart expressions,
but the syntax differs.

Script syntax and chart functions - Qlik Sense, May 2024 467

8 Script and chart functions

Chi-2 test functions
Generally used in the study of qualitative variables. One can compare observed frequencies in a
one-way frequency table with expected frequencies, or study the connection between two
variables in a contingency table.

T-test functions
T-test functions are used for statistical examination of two population means. A two-sample t-test
examines whether two samples are different and is commonly used when two normal distributions
have unknown variances and when an experiment uses a small sample size.

Z-test functions
A statistical examination of two population means. A two sample z-test examines whether two
samples are different and is commonly used when two normal distributions have known variances
and when an experiment uses a large sample size.

Chi2-test functions
Generally used in the study of qualitative variables. One can compare observed
frequencies in a one-way frequency table with expected frequencies, or study the
connection between two variables in a contingency table.Chi-squared test functions
are used to determine whether there is a statistically significant difference between
the expected frequencies and the observed frequencies in one or more groups. Often a
histogram is used, and the different bins are compared to an expected distribution.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Chi2Test_chi2
Chi2Test_chi2() returns the aggregated chi2-test value for one or two series of values.

Chi2Test_chi2() returns the aggregated chi2-test value for one or two series
of values.(col, row, actual_value[, expected_value])

Chi2Test_df
Chi2Test_df() returns the aggregated chi2-test df value (degrees of freedom) for one or two series
of values.

Chi2Test_df() returns the aggregated chi2-test df value (degrees of freedom)
for one or two series of values.(col, row, actual_value[, expected_value])

Chi2Test_p
Chi2Test_p() returns the aggregated chi2-test p value (significance) for one or two series of
values.

Script syntax and chart functions - Qlik Sense, May 2024 468

8 Script and chart functions

Chi2Test_p - chart function(col, row, actual_value[, expected_value])

See also:
p T-test functions (page 471)
p Z-test functions (page 506)

Chi2Test_chi2
Chi2Test_chi2() returns the aggregated chi2-test value for one or two series of values.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

All Qlik Sense chi2 -test functions have the same arguments.

Syntax:
Chi2Test_chi2(col, row, actual_value[, expected_value])

Return data type: numeric

Arguments:

Argument Description

col, row The specified column and row in the matrix of values being tested.

actual_value The observed value of the data at the specified col and row.

expected_value The expected value for the distribution at the specified col and row.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

Chi2Test_chi2(Grp, Grade, Count)

Chi2Test_chi2(Gender, Description, Observed, Expected)

See also:
p Examples of how to use chi2-test functions in charts (page 522)
p Examples of how to use chi2-test functions in the data load script (page 525)

Script syntax and chart functions - Qlik Sense, May 2024 469

8 Script and chart functions

Chi2Test_df
Chi2Test_df() returns the aggregated chi2-test df value (degrees of freedom) for one
or two series of values.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

All Qlik Sense chi2 -test functions have the same arguments.

Syntax:
Chi2Test_df(col, row, actual_value[, expected_value])

Return data type: numeric

Arguments:

Argument Description

col, row The specified column and row in the matrix of values being tested.

actual_value The observed value of the data at the specified col and row.

expected_value The expected value for the distribution at the specified col and row.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

Chi2Test_df(Grp, Grade, Count)

Chi2Test_df(Gender, Description, Observed, Expected)

See also:
p Examples of how to use chi2-test functions in charts (page 522)
p Examples of how to use chi2-test functions in the data load script (page 525)

Chi2Test_p - chart function
Chi2Test_p() returns the aggregated chi2-test p value (significance) for one or two
series of values. The test can be done either on the values in actual_value, testing for
variations within the specified col and row matrix, or by comparing values in actual_

Script syntax and chart functions - Qlik Sense, May 2024 470

8 Script and chart functions

value with corresponding values in expected_value, if specified.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

All Qlik Sense chi2 -test functions have the same arguments.

Syntax:
Chi2Test_p(col, row, actual_value[, expected_value])

Return data type: numeric

Arguments:

Argument Description

col, row The specified column and row in the matrix of values being tested.

actual_value The observed value of the data at the specified col and row.

expected_value The expected value for the distribution at the specified col and row.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

Chi2Test_p(Grp, Grade, Count)

Chi2Test_p(Gender, Description, Observed, Expected)

See also:
p Examples of how to use chi2-test functions in charts (page 522)
p Examples of how to use chi2-test functions in the data load script (page 525)

T-test functions
T-test functions are used for statistical examination of two population means. A two-
sample t-test examines whether two samples are different and is commonly used when
two normal distributions have unknown variances and when an experiment uses a
small sample size.

Script syntax and chart functions - Qlik Sense, May 2024 471

8 Script and chart functions

In the following sections, the t-test statistical test functions are grouped according to the sample
student test that applies to each type of function.

Creating a typical t-test report (page 527)

Two independent samples t-tests
The following functions apply to two independent samples student's t-tests.

ttest_conf
TTest_conf returns the aggregated t-test confidence interval value for two independent samples.

TTest_conf returns the aggregated t-test confidence interval value for two
independent samples. (grp, value [, sig[, eq_var]])

ttest_df
TTest_df() returns the aggregated student's t-test value (degrees of freedom) for two independent
series of values.

TTest_df() returns the aggregated student's t-test value (degrees of freedom)
for two independent series of values. (grp, value [, eq_var)

ttest_dif
TTest_dif() is a numeric function that returns the aggregated student's t-test mean difference for
two independent series of values.

TTest_dif() is a numeric function that returns the aggregated student's t-
test mean difference for two independent series of values. (grp, value)

ttest_lower
TTest_lower() returns the aggregated value for the lower end of the confidence interval for two
independent series of values.

TTest_lower() returns the aggregated value for the lower end of the
confidence interval for two independent series of values. (grp, value [, sig

[, eq_var]])

ttest_sig
TTest_sig() returns the aggregated student's t-test 2-tailed level of significance for two
independent series of values.

TTest_sig() returns the aggregated student's t-test 2-tailed level of
significance for two independent series of values. (grp, value [, eq_var])

ttest_sterr
TTest_sterr() returns the aggregated student's t-test standard error of the mean difference for two
independent series of values.

TTest_sterr() returns the aggregated student's t-test standard error of the
mean difference for two independent series of values. (grp, value [, eq_var])

Script syntax and chart functions - Qlik Sense, May 2024 472

8 Script and chart functions

ttest_t
TTest_t() returns the aggregated t value for two independent series of values.

TTest_t() returns the aggregated t value for two independent series of
values. (grp, value [, eq_var])

ttest_upper
TTest_upper() returns the aggregated value for the upper end of the confidence interval for two
independent series of values.

TTest_upper() returns the aggregated value for the upper end of the
confidence interval for two independent series of values. (grp, value [, sig

[, eq_var]])

Two independent weighted samples t-tests
The following functions apply to two independent samples student's t-tests where the input data
series is given in weighted two-column format.

ttestw_conf
TTestw_conf() returns the aggregated t value for two independent series of values.

TTestw_conf() returns the aggregated t value for two independent series of
values. (weight, grp, value [, sig[, eq_var]])

ttestw_df
TTestw_df() returns the aggregated student's t-test df value (degrees of freedom) for two
independent series of values.

TTestw_df() returns the aggregated student's t-test df value (degrees of
freedom) for two independent series of values. (weight, grp, value [, eq_

var])

ttestw_dif
TTestw_dif() returns the aggregated student's t-test mean difference for two independent series
of values.

TTestw_dif() returns the aggregated student's t-test mean difference for two
independent series of values. (weight, grp, value)

ttestw_lower
TTestw_lower() returns the aggregated value for the lower end of the confidence interval for two
independent series of values.

TTestw_lower() returns the aggregated value for the lower end of the
confidence interval for two independent series of values. (weight, grp, value

[, sig[, eq_var]])

ttestw_sig
TTestw_sig() returns the aggregated student's t-test 2-tailed level of significance for two
independent series of values.

Script syntax and chart functions - Qlik Sense, May 2024 473

8 Script and chart functions

TTestw_sig() returns the aggregated student's t-test 2-tailed level of
significance for two independent series of values. (weight, grp, value [,

eq_var])

ttestw_sterr
TTestw_sterr() returns the aggregated student's t-test standard error of the mean difference for
two independent series of values.

TTestw_sterr() returns the aggregated student's t-test standard error of the
mean difference for two independent series of values. (weight, grp, value [,

eq_var])

ttestw_t
TTestw_t() returns the aggregated t value for two independent series of values.

TTestw_t() returns the aggregated t value for two independent series of
values. (weight, grp, value [, eq_var])

ttestw_upper
TTestw_upper() returns the aggregated value for the upper end of the confidence interval for two
independent series of values.

TTestw_upper() returns the aggregated value for the upper end of the
confidence interval for two independent series of values. (weight, grp, value

[, sig [, eq_var]])

One sample t-tests
The following functions apply to one-sample student's t-tests.

ttest1_conf
TTest1_conf() returns the aggregated confidence interval value for a series of values.

TTest1_conf() returns the aggregated confidence interval value for a series
of values. (value [, sig])

ttest1_df
TTest1_df() returns the aggregated student's t-test df value (degrees of freedom) for a series of
values.

TTest1_df() returns the aggregated student's t-test df value (degrees of
freedom) for a series of values. (value)

ttest1_dif
TTest1_dif() returns the aggregated student's t-test mean difference for a series of values.

TTest1_dif() returns the aggregated student's t-test mean difference for a
series of values. (value)

Script syntax and chart functions - Qlik Sense, May 2024 474

8 Script and chart functions

ttest1_lower
TTest1_lower() returns the aggregated value for the lower end of the confidence interval for a
series of values.

TTest1_lower() returns the aggregated value for the lower end of the
confidence interval for a series of values. (value [, sig])

ttest1_sig
TTest1_sig() returns the aggregated student's t-test 2-tailed level of significance for a series of
values.

TTest1_sig() returns the aggregated student's t-test 2-tailed level of
significance for a series of values. (value)

ttest1_sterr
TTest1_sterr() returns the aggregated student's t-test standard error of the mean difference for a
series of values.

TTest1_sterr() returns the aggregated student's t-test standard error of the
mean difference for a series of values. (value)

ttest1_t
TTest1_t() returns the aggregated t value for a series of values.

TTest1_t() returns the aggregated t value for a series of values. (value)

ttest1_upper
TTest1_upper() returns the aggregated value for the upper end of the confidence interval for a
series of values.

TTest1_upper() returns the aggregated value for the upper end of the
confidence interval for a series of values. (value [, sig])

One weighted sample t-tests
The following functions apply to one-sample student's t-tests where the input data series is given
in weighted two-column format.

ttest1w_conf
TTest1w_conf() is a numeric function that returns the aggregated confidence interval value for a
series of values.

TTest1w_conf() is a numeric function that returns the aggregated confidence
interval value for a series of values. (weight, value [, sig])

ttest1w_df
TTest1w_df() returns the aggregated student's t-test df value (degrees of freedom) for a series of
values.

TTest1w_df() returns the aggregated student's t-test df value (degrees of
freedom) for a series of values. (weight, value)

Script syntax and chart functions - Qlik Sense, May 2024 475

8 Script and chart functions

ttest1w_dif
TTest1w_dif() returns the aggregated student's t-test mean difference for a series of values.

TTest1w_dif() returns the aggregated student's t-test mean difference for a
series of values. (weight, value)

ttest1w_lower
TTest1w_lower() returns the aggregated value for the lower end of the confidence interval for a
series of values.

TTest1w_lower() returns the aggregated value for the lower end of the
confidence interval for a series of values. (weight, value [, sig])

ttest1w_sig
TTest1w_sig() returns the aggregated student's t-test 2-tailed level of significance for a series of
values.

TTest1w_sig() returns the aggregated student's t-test 2-tailed level of
significance for a series of values. (weight, value)

ttest1w_sterr
TTest1w_sterr() returns the aggregated student's t-test standard error of the mean difference for
a series of values.

TTest1w_sterr() returns the aggregated student's t-test standard error of the
mean difference for a series of values. (weight, value)

ttest1w_t
TTest1w_t() returns the aggregated t value for a series of values.

TTest1w_t() returns the aggregated t value for a series of values. (weight,

value)

ttest1w_upper
TTest1w_upper() returns the aggregated value for the upper end of the confidence interval for a
series of values.

TTest1w_upper() returns the aggregated value for the upper end of the
confidence interval for a series of values. (weight, value [, sig])

TTest_conf
TTest_conf returns the aggregated t-test confidence interval value for two independent samples.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest_conf (grp, value [, sig [, eq_var]])

Script syntax and chart functions - Qlik Sense, May 2024 476

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped
as specified by exactly two values in group. If a field name for the sample values
is not provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name
for the group is not provided in the load script, the field will automatically be given
the name Type.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to
0.025, resulting in a 95% confidence interval.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be
assumed. If eq_var is specified as True (1), equal variances between the samples
will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

TTest_conf(Group, Value)

TTest_conf(Group, Value, Sig, false)

See also:
p Creating a typical t-test report (page 527)

TTest_df
TTest_df() returns the aggregated student's t-test value (degrees of freedom) for two independent
series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest_df (grp, value [, eq_var])

Script syntax and chart functions - Qlik Sense, May 2024 477

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped
as specified by exactly two values in group. If a field name for the sample values
is not provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name
for the group is not provided in the load script, the field will automatically be given
the name Type.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be
assumed. If eq_var is specified as True (1), equal variances between the samples
will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

TTest_df(Group, Value)

TTest_df(Group, Value, false)

See also:
p Creating a typical t-test report (page 527)

TTest_dif
TTest_dif() is a numeric function that returns the aggregated student's t-test mean difference for
two independent series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest_dif (grp, value [, eq_var])

Script syntax and chart functions - Qlik Sense, May 2024 478

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped
as specified by exactly two values in group. If a field name for the sample values
is not provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name
for the group is not provided in the load script, the field will automatically be given
the name Type.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be
assumed. If eq_var is specified as True (1), equal variances between the samples
will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

TTest_dif(Group, Value)

TTest_dif(Group, Value, false)

See also:
p Creating a typical t-test report (page 527)

TTest_lower
TTest_lower() returns the aggregated value for the lower end of the confidence interval for two
independent series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest_lower (grp, value [, sig [, eq_var]])

Script syntax and chart functions - Qlik Sense, May 2024 479

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped
as specified by exactly two values in group. If a field name for the sample values
is not provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name
for the group is not provided in the load script, the field will automatically be given
the name Type.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to
0.025, resulting in a 95% confidence interval.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be
assumed. If eq_var is specified as True (1), equal variances between the samples
will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

TTest_lower(Group, Value)

TTest_lower(Group, Value, Sig, false)

See also:
p Creating a typical t-test report (page 527)

TTest_sig
TTest_sig() returns the aggregated student's t-test 2-tailed level of significance for two
independent series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest_sig (grp, value [, eq_var])

Script syntax and chart functions - Qlik Sense, May 2024 480

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped
as specified by exactly two values in group. If a field name for the sample values
is not provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name
for the group is not provided in the load script, the field will automatically be given
the name Type.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be
assumed. If eq_var is specified as True (1), equal variances between the samples
will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

TTest_sig(Group, Value)

TTest_sig(Group, Value, false)

See also:
p Creating a typical t-test report (page 527)

TTest_sterr
TTest_sterr() returns the aggregated student's t-test standard error of the mean difference for two
independent series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest_sterr (grp, value [, eq_var])

Script syntax and chart functions - Qlik Sense, May 2024 481

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped
as specified by exactly two values in group. If a field name for the sample values
is not provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name
for the group is not provided in the load script, the field will automatically be given
the name Type.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be
assumed. If eq_var is specified as True (1), equal variances between the samples
will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

TTest_sterr(Group, Value)

TTest_sterr(Group, Value, false)

See also:
p Creating a typical t-test report (page 527)

TTest_t
TTest_t() returns the aggregated t value for two independent series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest_t(grp, value[, eq_var])

Script syntax and chart functions - Qlik Sense, May 2024 482

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped
as specified by exactly two values in group. If a field name for the sample values
is not provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name
for the group is not provided in the load script, the field will automatically be given
the name Type.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be
assumed. If eq_var is specified as True (1), equal variances between the samples
will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Example:

TTest_t(Group, Value, false)

See also:
p Creating a typical t-test report (page 527)

TTest_upper
TTest_upper() returns the aggregated value for the upper end of the confidence interval for two
independent series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest_upper (grp, value [, sig [, eq_var]])

Script syntax and chart functions - Qlik Sense, May 2024 483

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped
as specified by exactly two values in group. If a field name for the sample values
is not provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name
for the group is not provided in the load script, the field will automatically be given
the name Type.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to
0.025, resulting in a 95% confidence interval.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be
assumed. If eq_var is specified as True (1), equal variances between the samples
will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

TTest_upper(Group, Value)

TTest_upper(Group, Value, sig, false)

See also:
p Creating a typical t-test report (page 527)

TTestw_conf
TTestw_conf() returns the aggregated t value for two independent series of values.

This function applies to two independent samples student's t-tests where the input data series is
given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTestw_conf (weight, grp, value [, sig [, eq_var]])

Script syntax and chart functions - Qlik Sense, May 2024 484

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped
as specified by exactly two values in group. If a field name for the sample values
is not provided in the load script, the field will automatically be named Value.

weight Each value in value can be counted one or more times according to a
corresponding weight value in weight.

grp The field containing the names of each of the two sample groups. If a field name
for the group is not provided in the load script, the field will automatically be given
the name Type.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to
0.025, resulting in a 95% confidence interval.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be
assumed. If eq_var is specified as True (1), equal variances between the samples
will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

TTestw_conf(Weight, Group, Value)

TTestw_conf(Weight, Group, Value, sig, false)

See also:
p Creating a typical t-test report (page 527)

TTestw_df
TTestw_df() returns the aggregated student's t-test df value (degrees of freedom) for two
independent series of values.

This function applies to two independent samples student's t-tests where the input data series is
given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Script syntax and chart functions - Qlik Sense, May 2024 485

8 Script and chart functions

Syntax:
TTestw_df (weight, grp, value [, eq_var])

Return data type: numeric

Arguments:

Argument Description

weight Each value in value can be counted one or more times according to a
corresponding weight value in weight.

grp The field containing the names of each of the two sample groups. If a field name
for the group is not provided in the load script, the field will automatically be given
the name Type.

value The sample values to be evaluated. The sample values must be logically grouped
as specified by exactly two values in group. If a field name for the sample values
is not provided in the load script, the field will automatically be named Value.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be
assumed. If eq_var is specified as True (1), equal variances between the samples
will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

TTestw_df(Weight, Group, Value)

TTestw_df(Weight, Group, Value, false)

See also:
p Creating a typical t-test report (page 527)

TTestw_dif
TTestw_dif() returns the aggregated student's t-test mean difference for two independent series
of values.

This function applies to two independent samples student's t-tests where the input data series is
given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Script syntax and chart functions - Qlik Sense, May 2024 486

8 Script and chart functions

Syntax:
TTestw_dif (weight, grp, value)

Return data type: numeric

Arguments:

Argument Description

weight Each value in value can be counted one or more times according to a
corresponding weight value in weight.

grp The field containing the names of each of the two sample groups. If a field name
for the group is not provided in the load script, the field will automatically be given
the name Type.

value The sample values to be evaluated. The sample values must be logically grouped
as specified by exactly two values in group. If a field name for the sample values
is not provided in the load script, the field will automatically be named Value.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

TTestw_dif(Weight, Group, Value)

TTestw_dif(Weight, Group, Value, false)

See also:
p Creating a typical t-test report (page 527)

TTestw_lower
TTestw_lower() returns the aggregated value for the lower end of the confidence interval for two
independent series of values.

This function applies to two independent samples student's t-tests where the input data series is
given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTestw_lower (weight, grp, value [, sig [, eq_var]])

Script syntax and chart functions - Qlik Sense, May 2024 487

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

weight Each value in value can be counted one or more times according to a
corresponding weight value in weight.

grp The field containing the names of each of the two sample groups. If a field name
for the group is not provided in the load script, the field will automatically be given
the name Type.

value The sample values to be evaluated. The sample values must be logically grouped
as specified by exactly two values in group. If a field name for the sample values
is not provided in the load script, the field will automatically be named Value.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to
0.025, resulting in a 95% confidence interval.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be
assumed. If eq_var is specified as True (1), equal variances between the samples
will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

TTestw_lower(Weight, Group, Value)

TTestw_lower(Weight, Group, Value, sig, false)

See also:
p Creating a typical t-test report (page 527)

TTestw_sig
TTestw_sig() returns the aggregated student's t-test 2-tailed level of significance for two
independent series of values.

This function applies to two independent samples student's t-tests where the input data series is
given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Script syntax and chart functions - Qlik Sense, May 2024 488

8 Script and chart functions

Syntax:
TTestw_sig (weight, grp, value [, eq_var])

Return data type: numeric

Arguments:

Argument Description

weight Each value in value can be counted one or more times according to a
corresponding weight value in weight.

grp The field containing the names of each of the two sample groups. If a field name
for the group is not provided in the load script, the field will automatically be given
the name Type.

value The sample values to be evaluated. The sample values must be logically grouped
as specified by exactly two values in group. If a field name for the sample values
is not provided in the load script, the field will automatically be named Value.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be
assumed. If eq_var is specified as True (1), equal variances between the samples
will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

TTestw_sig(Weight, Group, Value)

TTestw_sig(Weight, Group, Value, false)

See also:
p Creating a typical t-test report (page 527)

TTestw_sterr
TTestw_sterr() returns the aggregated student's t-test standard error of the mean difference for
two independent series of values.

This function applies to two independent samples student's t-tests where the input data series is
given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Script syntax and chart functions - Qlik Sense, May 2024 489

8 Script and chart functions

Syntax:
TTestw_sterr (weight, grp, value [, eq_var])

Return data type: numeric

Arguments:

Argument Description

weight Each value in value can be counted one or more times according to a
corresponding weight value in weight.

grp The field containing the names of each of the two sample groups. If a field name
for the group is not provided in the load script, the field will automatically be given
the name Type.

value The sample values to be evaluated. The sample values must be logically grouped
as specified by exactly two values in group. If a field name for the sample values
is not provided in the load script, the field will automatically be named Value.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be
assumed. If eq_var is specified as True (1), equal variances between the samples
will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

TTestw_sterr(Weight, Group, Value)

TTestw_sterr(Weight, Group, Value, false)

See also:
p Creating a typical t-test report (page 527)

TTestw_t
TTestw_t() returns the aggregated t value for two independent series of values.

This function applies to two independent samples student's t-tests where the input data series is
given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Script syntax and chart functions - Qlik Sense, May 2024 490

8 Script and chart functions

Syntax:
ttestw_t (weight, grp, value [, eq_var])

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped
as specified by exactly two values in group. If a field name for the sample values
is not provided in the load script, the field will automatically be named Value.

weight Each value in value can be counted one or more times according to a
corresponding weight value in weight.

grp The field containing the names of each of the two sample groups. If a field name
for the group is not provided in the load script, the field will automatically be given
the name Type.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be
assumed. If eq_var is specified as True (1), equal variances between the samples
will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

TTestw_t(Weight, Group, Value)

TTestw_t(Weight, Group, Value, false)

See also:
p Creating a typical t-test report (page 527)

TTestw_upper
TTestw_upper() returns the aggregated value for the upper end of the confidence
interval for two independent series of values.

This function applies to two independent samples student's t-tests where the input data series is
given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Script syntax and chart functions - Qlik Sense, May 2024 491

8 Script and chart functions

Syntax:
TTestw_upper (weight, grp, value [, sig [, eq_var]])

Return data type: numeric

Arguments:

Argument Description

weight Each value in value can be counted one or more times according to a
corresponding weight value in weight.

grp The field containing the names of each of the two sample groups. If a field name
for the group is not provided in the load script, the field will automatically be given
the name Type.

value The sample values to be evaluated. The sample values must be logically grouped
as specified by exactly two values in group. If a field name for the sample values
is not provided in the load script, the field will automatically be named Value.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to
0.025, resulting in a 95% confidence interval.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be
assumed. If eq_var is specified as True (1), equal variances between the samples
will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

TTestw_upper(Weight, Group, Value)

TTestw_upper(Weight, Group, Value, sig, false)

See also:
p Creating a typical t-test report (page 527)

TTest1_conf
TTest1_conf() returns the aggregated confidence interval value for a series of values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Script syntax and chart functions - Qlik Sense, May 2024 492

8 Script and chart functions

Syntax:
TTest1_conf (value [, sig])

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided
in the load script, the field will automatically be named Value.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to
0.025, resulting in a 95% confidence interval.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

TTest1_conf(Value)

TTest1_conf(Value, 0.005)

See also:
p Creating a typical t-test report (page 527)

TTest1_df
TTest1_df() returns the aggregated student's t-test df value (degrees of freedom) for a series of
values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1_df (value)

Script syntax and chart functions - Qlik Sense, May 2024 493

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided
in the load script, the field will automatically be named Value.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Example:

TTest1_df(Value)

See also:
p Creating a typical t-test report (page 527)

TTest1_dif
TTest1_dif() returns the aggregated student's t-test mean difference for a series of values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1_dif (value)

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided
in the load script, the field will automatically be named Value.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 494

8 Script and chart functions

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Example:

TTest1_dif(Value)

See also:
p Creating a typical t-test report (page 527)

TTest1_lower
TTest1_lower() returns the aggregated value for the lower end of the confidence interval for a
series of values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1_lower (value [, sig])

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided
in the load script, the field will automatically be named Value.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to
0.025, resulting in a 95% confidence interval.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

TTest1_lower(Value)

TTest1_lower(Value, 0.005)

Script syntax and chart functions - Qlik Sense, May 2024 495

8 Script and chart functions

See also:
p Creating a typical t-test report (page 527)

TTest1_sig
TTest1_sig() returns the aggregated student's t-test 2-tailed level of significance for a series of
values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1_sig (value)

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided
in the load script, the field will automatically be named Value.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Example:

TTest1_sig(Value)

See also:
p Creating a typical t-test report (page 527)

TTest1_sterr
TTest1_sterr() returns the aggregated student's t-test standard error of the mean difference for a
series of values.

This function applies to one-sample student's t-tests.

Script syntax and chart functions - Qlik Sense, May 2024 496

8 Script and chart functions

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1_sterr (value)

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided
in the load script, the field will automatically be named Value.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Example:

TTest1_sterr(Value)

See also:
p Creating a typical t-test report (page 527)

TTest1_t
TTest1_t() returns the aggregated t value for a series of values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1_t (value)

Script syntax and chart functions - Qlik Sense, May 2024 497

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided
in the load script, the field will automatically be named Value.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Example:

TTest1_t(Value)

See also:
p Creating a typical t-test report (page 527)

TTest1_upper
TTest1_upper() returns the aggregated value for the upper end of the confidence interval for a
series of values.

This function applies to one-sample student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1_upper (value [, sig])

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided
in the load script, the field will automatically be named Value.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to
0.025, resulting in a 95% confidence interval.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 498

8 Script and chart functions

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

TTest1_upper(Value)

TTest1_upper(Value, 0.005)

See also:
p Creating a typical t-test report (page 527)

TTest1w_conf
TTest1w_conf() is a numeric function that returns the aggregated confidence interval value for a
series of values.

This function applies to one-sample student's t-tests where the input data series is given in
weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1w_conf (weight, value [, sig])

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided
in the load script, the field will automatically be named Value.

weight Each value in value can be counted one or more times according to a
corresponding weight value in weight.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to
0.025, resulting in a 95% confidence interval.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Script syntax and chart functions - Qlik Sense, May 2024 499

8 Script and chart functions

Examples:

TTest1w_conf(Weight, Value)

TTest1w_conf(Weight, Value, 0.005)

See also:
p Creating a typical t-test report (page 527)

TTest1w_df
TTest1w_df() returns the aggregated student's t-test df value (degrees of freedom) for a series of
values.

This function applies to one-sample student's t-tests where the input data series is given in
weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1w_df (weight, value)

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided
in the load script, the field will automatically be named Value.

weight Each value in value can be counted one or more times according to a
corresponding weight value in weight.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Example:

TTest1w_df(Weight, Value)

See also:
p Creating a typical t-test report (page 527)

Script syntax and chart functions - Qlik Sense, May 2024 500

8 Script and chart functions

TTest1w_dif
TTest1w_dif() returns the aggregated student's t-test mean difference for a series of values.

This function applies to one-sample student's t-tests where the input data series is given in
weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1w_dif (weight, value)

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided
in the load script, the field will automatically be named Value.

weight Each value in value can be counted one or more times according to a
corresponding weight value in weight.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Example:

TTest1w_dif(Weight, Value)

See also:
p Creating a typical t-test report (page 527)

TTest1w_lower
TTest1w_lower() returns the aggregated value for the lower end of the confidence interval for a
series of values.

This function applies to one-sample student's t-tests where the input data series is given in
weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

Script syntax and chart functions - Qlik Sense, May 2024 501

8 Script and chart functions

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1w_lower (weight, value [, sig])

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided
in the load script, the field will automatically be named Value.

weight Each value in value can be counted one or more times according to a
corresponding weight value in weight.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to
0.025, resulting in a 95% confidence interval.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

TTest1w_lower(Weight, Value)

TTest1w_lower(Weight, Value, 0.005)

See also:
p Creating a typical t-test report (page 527)

TTest1w_sig
TTest1w_sig() returns the aggregated student's t-test 2-tailed level of significance for a series of
values.

This function applies to one-sample student's t-tests where the input data series is given in
weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1w_sig (weight, value)

Script syntax and chart functions - Qlik Sense, May 2024 502

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided
in the load script, the field will automatically be named Value.

weight Each value in value can be counted one or more times according to a
corresponding weight value in weight.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Example:

TTest1w_sig(Weight, Value)

See also:
p Creating a typical t-test report (page 527)

TTest1w_sterr
TTest1w_sterr() returns the aggregated student's t-test standard error of the mean difference for
a series of values.

This function applies to one-sample student's t-tests where the input data series is given in
weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1w_sterr (weight, value)

Script syntax and chart functions - Qlik Sense, May 2024 503

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided
in the load script, the field will automatically be named Value.

weight Each value in value can be counted one or more times according to a
corresponding weight value in weight.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Example:

TTest1w_sterr(Weight, Value)

See also:
p Creating a typical t-test report (page 527)

TTest1w_t
TTest1w_t() returns the aggregated t value for a series of values.

This function applies to one-sample student's t-tests where the input data series is given in
weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1w_t (weight, value)

Script syntax and chart functions - Qlik Sense, May 2024 504

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided
in the load script, the field will automatically be named Value.

weight Each value in value can be counted one or more times according to a
corresponding weight value in weight.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Example:

TTest1w_t(Weight, Value)

See also:
p Creating a typical t-test report (page 527)

TTest1w_upper
TTest1w_upper() returns the aggregated value for the upper end of the confidence interval for a
series of values.

This function applies to one-sample student's t-tests where the input data series is given in
weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
TTest1w_upper (weight, value [, sig])

Script syntax and chart functions - Qlik Sense, May 2024 505

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The samples to be evaluated. If a field name for the sample values is not provided
in the load script, the field will automatically be named Value.

weight Each value in value can be counted one or more times according to a
corresponding weight value in weight.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to
0.025, resulting in a 95% confidence interval.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

TTest1w_upper(Weight, Value)

TTest1w_upper(Weight, Value, 0.005)

See also:
p Creating a typical t-test report (page 527)

Z-test functions
A statistical examination of two population means. A two sample z-test examines
whether two samples are different and is commonly used when two normal
distributions have known variances and when an experiment uses a large sample size.

The z-test statistical test functions are grouped according the type of input data series that applies
to the function.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Examples of how to use z-test functions (page 531)

One column format functions
The following functions apply to z-tests with simple input data series.

Script syntax and chart functions - Qlik Sense, May 2024 506

8 Script and chart functions

ztest_conf
ZTest_conf() returns the aggregated z value for a series of values.

ZTest_conf() returns the aggregated z value for a series of values. (value [,

sigma [, sig])

ztest_dif
ZTest_dif() returns the aggregated z-test mean difference for a series of values.

ZTest_dif() returns the aggregated z-test mean difference for a series of
values. (value [, sigma])

ztest_sig
ZTest_sig() returns the aggregated z-test 2-tailed level of significance for a series of values.

ZTest_sig() returns the aggregated z-test 2-tailed level of significance for
a series of values. (value [, sigma])

ztest_sterr
ZTest_sterr() returns the aggregated z-test standard error of the mean difference for a series of
values.

ZTest_sterr() returns the aggregated z-test standard error of the mean
difference for a series of values. (value [, sigma])

ztest_z
ZTest_z() returns the aggregated z value for a series of values.

ZTest_z() returns the aggregated z value for a series of values. (value [,

sigma])

ztest_lower
ZTest_lower() returns the aggregated value for the lower end of the confidence interval for two
independent series of values.

ZTest_lower() returns the aggregated value for the lower end of the
confidence interval for two independent series of values. (grp, value [, sig

[, eq_var]])

ztest_upper
ZTest_upper() returns the aggregated value for the upper end of the confidence interval for two
independent series of values.

ZTest_upper() returns the aggregated value for the upper end of the
confidence interval for two independent series of values. (grp, value [, sig

[, eq_var]])

Weighted two-column format functions
The following functions apply to z-tests where the input data series is given in weighted two-
column format.

Script syntax and chart functions - Qlik Sense, May 2024 507

8 Script and chart functions

ztestw_conf
ZTestw_conf() returns the aggregated z confidence interval value for a series of values.

ZTestw_conf() returns the aggregated z confidence interval value for a series
of values. (weight, value [, sigma [, sig]])

ztestw_dif
ZTestw_dif() returns the aggregated z-test mean difference for a series of values.

ZTestw_dif() returns the aggregated z-test mean difference for a series of
values. (weight, value [, sigma])

ztestw_lower
ZTestw_lower() returns the aggregated value for the lower end of the confidence interval for two
independent series of values.

ZTestw_lower() returns the aggregated value for the lower end of the
confidence interval for two independent series of values. (weight, value [,

sigma])

ztestw_sig
ZTestw_sig() returns the aggregated z-test 2-tailed level of significance for a series of values.

ZTestw_sig() returns the aggregated z-test 2-tailed level of significance for
a series of values. (weight, value [, sigma])

ztestw_sterr
ZTestw_sterr() returns the aggregated z-test standard error of the mean difference for a series of
values.

ZTestw_sterr() returns the aggregated z-test standard error of the mean
difference for a series of values. (weight, value [, sigma])

ztestw_upper
ZTestw_upper() returns the aggregated value for the upper end of the confidence interval for two
independent series of values.

ZTestw_upper() returns the aggregated value for the upper end of the
confidence interval for two independent series of values. (weight, value [,

sigma])

ztestw_z
ZTestw_z() returns the aggregated z value for a series of values.

ZTestw_z() returns the aggregated z value for a series of values. (weight,
value [, sigma])

ZTest_z
ZTest_z() returns the aggregated z value for a series of values.

Script syntax and chart functions - Qlik Sense, May 2024 508

8 Script and chart functions

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTest_z(value[, sigma])

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. A population mean of 0 is assumed. If you
want the test to be performed around another mean, subtract that mean from the
sample values.

sigma If known, the standard deviation can be stated in sigma. If sigma is omitted the
actual sample standard deviation will be used.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Example:

ZTest_z(Value-TestValue)

See also:
p Examples of how to use z-test functions (page 531)

ZTest_sig
ZTest_sig() returns the aggregated z-test 2-tailed level of significance for a series of
values.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTest_sig(value[, sigma])

Script syntax and chart functions - Qlik Sense, May 2024 509

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. A population mean of 0 is assumed. If you
want the test to be performed around another mean, subtract that mean from the
sample values.

sigma If known, the standard deviation can be stated in sigma. If sigma is omitted the
actual sample standard deviation will be used.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Example:

ZTest_sig(Value-TestValue)

See also:
p Examples of how to use z-test functions (page 531)

ZTest_dif
ZTest_dif() returns the aggregated z-test mean difference for a series of values.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTest_dif(value[, sigma])

Script syntax and chart functions - Qlik Sense, May 2024 510

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. A population mean of 0 is assumed. If you
want the test to be performed around another mean, subtract that mean from the
sample values.

sigma If known, the standard deviation can be stated in sigma. If sigma is omitted the
actual sample standard deviation will be used.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Example:

ZTest_dif(Value-TestValue)

See also:
p Examples of how to use z-test functions (page 531)

ZTest_sterr
ZTest_sterr() returns the aggregated z-test standard error of the mean difference for
a series of values.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTest_sterr(value[, sigma])

Script syntax and chart functions - Qlik Sense, May 2024 511

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. A population mean of 0 is assumed. If you
want the test to be performed around another mean, subtract that mean from the
sample values.

sigma If known, the standard deviation can be stated in sigma. If sigma is omitted the
actual sample standard deviation will be used.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Example:

ZTest_sterr(Value-TestValue)

See also:
p Examples of how to use z-test functions (page 531)

ZTest_conf
ZTest_conf() returns the aggregated z value for a series of values.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTest_conf(value[, sigma[, sig]])

Script syntax and chart functions - Qlik Sense, May 2024 512

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. A population mean of 0 is assumed. If you
want the test to be performed around another mean, subtract that mean from the
sample values.

sigma If known, the standard deviation can be stated in sigma. If sigma is omitted the
actual sample standard deviation will be used.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to
0.025, resulting in a 95% confidence interval.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Example:

ZTest_conf(Value-TestValue)

See also:
p Examples of how to use z-test functions (page 531)

ZTest_lower
ZTest_lower() returns the aggregated value for the lower end of the confidence
interval for two independent series of values.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTest_lower (grp, value [, sig [, eq_var]])

Script syntax and chart functions - Qlik Sense, May 2024 513

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped
as specified by exactly two values in group. If a field name for the sample values
is not provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name
for the group is not provided in the load script, the field will automatically be given
the name Type.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to
0.025, resulting in a 95% confidence interval.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be
assumed. If eq_var is specified as True (1), equal variances between the samples
will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

ZTest_lower(Group, Value)

ZTest_lower(Group, Value, sig, false)

See also:
p Examples of how to use z-test functions (page 531)

ZTest_upper
ZTest_upper() returns the aggregated value for the upper end of the confidence
interval for two independent series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTest_upper (grp, value [, sig [, eq_var]])

Script syntax and chart functions - Qlik Sense, May 2024 514

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped
as specified by exactly two values in group. If a field name for the sample values
is not provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name
for the group is not provided in the load script, the field will automatically be given
the name Type.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to
0.025, resulting in a 95% confidence interval.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be
assumed. If eq_var is specified as True (1), equal variances between the samples
will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

ZTest_upper(Group, Value)

ZTest_upper(Group, Value, sig, false)

See also:
p Examples of how to use z-test functions (page 531)

ZTestw_z
ZTestw_z() returns the aggregated z value for a series of values.

This function applies to z-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTestw_z (weight, value [, sigma])

Script syntax and chart functions - Qlik Sense, May 2024 515

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The values should be returned by value. A sample mean of 0 is assumed. If you
want the test to be performed around another mean, subtract that value from the
sample values.

weight Each sample value in value can be counted one or more times according to a
corresponding weight value in weight.

sigma If known, the standard deviation can be stated in sigma. If sigma is omitted the
actual sample standard deviation will be used.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Example:

ZTestw_z(Weight, Value-TestValue)

See also:
p Examples of how to use z-test functions (page 531)

ZTestw_sig
ZTestw_sig() returns the aggregated z-test 2-tailed level of significance for a series of
values.

This function applies to z-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTestw_sig (weight, value [, sigma])

Script syntax and chart functions - Qlik Sense, May 2024 516

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The values should be returned by value. A sample mean of 0 is assumed. If you
want the test to be performed around another mean, subtract that value from the
sample values.

weight Each sample value in value can be counted one or more times according to a
corresponding weight value in weight.

sigma If known, the standard deviation can be stated in sigma. If sigma is omitted the
actual sample standard deviation will be used.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Example:

ZTestw_sig(Weight, Value-TestValue)

See also:
p Examples of how to use z-test functions (page 531)

ZTestw_dif
ZTestw_dif() returns the aggregated z-test mean difference for a series of values.

This function applies to z-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTestw_dif (weight, value [, sigma])

Script syntax and chart functions - Qlik Sense, May 2024 517

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The values should be returned by value. A sample mean of 0 is assumed. If you
want the test to be performed around another mean, subtract that value from the
sample values.

weight Each sample value in value can be counted one or more times according to a
corresponding weight value in weight.

sigma If known, the standard deviation can be stated in sigma. If sigma is omitted the
actual sample standard deviation will be used.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Example:

ZTestw_dif(Weight, Value-TestValue)

See also:
p Examples of how to use z-test functions (page 531)

ZTestw_sterr
ZTestw_sterr() returns the aggregated z-test standard error of the mean difference
for a series of values.

This function applies to z-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTestw_sterr (weight, value [, sigma])

Script syntax and chart functions - Qlik Sense, May 2024 518

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The values should be returned by value. A sample mean of 0 is assumed. If you
want the test to be performed around another mean, subtract that value from the
sample values.

weight Each sample value in value can be counted one or more times according to a
corresponding weight value in weight.

sigma If known, the standard deviation can be stated in sigma. If sigma is omitted the
actual sample standard deviation will be used.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Example:

ZTestw_sterr(Weight, Value-TestValue)

See also:
p Examples of how to use z-test functions (page 531)

ZTestw_conf
ZTestw_conf() returns the aggregated z confidence interval value for a series of
values.

This function applies to z-tests where the input data series is given in weighted two-column format.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTest_conf(weight, value[, sigma[, sig]])

Script syntax and chart functions - Qlik Sense, May 2024 519

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. A population mean of 0 is assumed. If you
want the test to be performed around another mean, subtract that mean from the
sample values.

weight Each sample value in value can be counted one or more times according to a
corresponding weight value in weight.

sigma If known, the standard deviation can be stated in sigma. If sigma is omitted the
actual sample standard deviation will be used.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to
0.025, resulting in a 95% confidence interval.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Example:

ZTestw_conf(Weight, Value-TestValue)

See also:
p Examples of how to use z-test functions (page 531)

ZTestw_lower
ZTestw_lower() returns the aggregated value for the lower end of the confidence
interval for two independent series of values.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTestw_lower (grp, value [, sig [, eq_var]])

Script syntax and chart functions - Qlik Sense, May 2024 520

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped
as specified by exactly two values in group. If a field name for the sample values
is not provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name
for the group is not provided in the load script, the field will automatically be given
the name Type.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to
0.025, resulting in a 95% confidence interval.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be
assumed. If eq_var is specified as True (1), equal variances between the samples
will be assumed.

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

ZTestw_lower(Group, Value)

ZTestw_lower(Group, Value, sig, false)

See also:
p Examples of how to use z-test functions (page 531)

ZTestw_upper
ZTestw_upper() returns the aggregated value for the upper end of the confidence
interval for two independent series of values.

This function applies to independent samples student's t-tests.

If the function is used in the data load script, the values are iterated over a number of records as
defined by a group by clause.

If the function is used in a chart expression, the values are iterated over the chart dimensions.

Syntax:
ZTestw_upper (grp, value [, sig [, eq_var]])

Script syntax and chart functions - Qlik Sense, May 2024 521

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

value The sample values to be evaluated. The sample values must be logically grouped
as specified by exactly two values in group. If a field name for the sample values
is not provided in the load script, the field will automatically be named Value.

grp The field containing the names of each of the two sample groups. If a field name
for the group is not provided in the load script, the field will automatically be given
the name Type.

sig The two-tailed level of significance can be specified in sig. If omitted, sig is set to
0.025, resulting in a 95% confidence interval.

eq_var If eq_var is specified as False (0), separate variances of the two samples will be
assumed. If eq_var is specified as True (1), equal variances between the samples
will be assumed.

Arguments

Limitations:

Text values, NULL values and missing values in the expression value will result in the function
returning NULL.

Examples:

ZTestw_upper(Group, Value)

ZTestw_upper(Group, Value, sig, false)

See also:
p Examples of how to use z-test functions (page 531)

Statistical test function examples
This section includes examples of statistical test functions as applied to charts and the
data load script.

Examples of how to use chi2-test functions in charts
The chi2-test functions are used to find values associated with chi squared statistical
analysis.

This section describes how to build visualizations using sample data to find the values of the chi-
squared distribution test functions available in Qlik Sense. Please refer to the individual chi2-test
chart function topics for descriptions of syntax and arguments.

Script syntax and chart functions - Qlik Sense, May 2024 522

8 Script and chart functions

Loading the data for the samples
There are three sets of sample data describing three different statistical samples to be loaded into
the script.

Do the following:

1. Create a new app.
2. In the data load, enter the following:

// Sample_1 data is pre-aggregated... Note: make sure you set your DecimalSep='.' at the

top of the script.

Sample_1:

LOAD * inline [

Grp,Grade,Count

I,A,15

I,B,7

I,C,9

I,D,20

I,E,26

I,F,19

II,A,10

II,B,11

II,C,7

II,D,15

II,E,21

II,F,16

];

// Sample_2 data is pre-aggregated: If raw data is used, it must be aggregated using

count()...

Sample_2:

LOAD * inline [

Sex,Opinion,OpCount

1,2,58

1,1,11

1,0,10

2,2,35

2,1,25

2,0,23] (delimiter is ',');

// Sample_3a data is transformed using the crosstable statement...

Sample_3a:

crosstable(Gender, Actual) LOAD

Description,

[Men (Actual)] as Men,

[Women (Actual)] as Women;

LOAD * inline [

Men (Actual),Women (Actual),Description

58,35,Agree

11,25,Neutral

10,23,Disagree] (delimiter is ',');

// Sample_3b data is transformed using the crosstable statement...

Sample_3b:

crosstable(Gender, Expected) LOAD

Description,

[Men (Expected)] as Men,

[Women (Expected)] as Women;

LOAD * inline [

Men (Expected),Women (Expected),Description

Script syntax and chart functions - Qlik Sense, May 2024 523

8 Script and chart functions

45.35,47.65,Agree

17.56,18.44,Neutral

16.09,16.91,Disagree] (delimiter is ',');

// Sample_3a and Sample_3b will result in a (fairly harmless) Synthetic Key...

3. Click to load data.

Creating the chi2-test chart function visualizations

Example: Sample 1

Do the following:

1. In the data load editor, click to go to the app view and then click the sheet you created
before.
The sheet view is opened.

2. Click Edit sheet to edit the sheet.

3. From Charts add a table, and from Fields add Grp, Grade, and Count as dimensions.
This table shows the sample data.

4. Add another table with the following expression as a dimension.
ValueList('p','df','Chi2')

This uses the synthetic dimensions function to create labels for the dimensions with the
names of the three chi2-test functions.

5. Add the following expression to the table as a measure.
IF(ValueList('p','df','Chi2')='p',Chi2Test_p(Grp,Grade,Count),

IF(ValueList('p','df','Chi2')='df',Chi2Test_df(Grp,Grade,Count),

Chi2Test_Chi2(Grp,Grade,Count)))

This has the effect of putting the resulting value of each chi2-test function in the table next
to its associated synthetic dimension.

6. Set the Number formatting of the measure to Number and 3Significant figures.

In the expression for the measure, you could use the following expression instead: Pick
(Match(ValueList('p','df','Chi2'),'p','df','Chi2'),Chi2Test_p

(Grp,Grade,Count),Chi2Test_df(Grp,Grade,Count),Chi2Test_Chi2(Grp,Grade,Count))

Result:

The resulting table for the chi2-test functions for the Sample 1 data will contain the following
values:

p df Chi2

0.820 5 2.21

Results table

Example: Sample 2

Do the following:

Script syntax and chart functions - Qlik Sense, May 2024 524

8 Script and chart functions

1. In the sheet you were editing in the example Sample 1, from Charts add a table, and from
Fields add Sex, Opinion, and OpCount as dimensions.

2. Make a copy of the results table from Sample 1 using the Copy and Paste commands. Edit
the expression in the measure and replace the arguments in all three chi2-test functions with
the names of the fields used in the Sample 2 data, for example: Chi2Test_p
(Sex,Opinion,OpCount).

Result:

The resulting table for the chi2-test functions for the Sample 2 data will contain the following
values:

p df Chi2

0.000309 2 16.2

Results table

Example: Sample 3

Do the following:

1. Create two more tables in the same way as in the examples for Sample 1 and Sample 2 data.
In the dimensions table, use the following fields as dimensions: Gender, Description, Actual,
and Expected.

2. In the results table, use the names of the fields used in the Sample 3 data, for example:
Chi2Test_p(Gender,Description,Actual,Expected).

Result:

The resulting table for the chi2-test functions for the Sample 3 data will contain the following
values:

p df Chi2

0.000308 2 16.2

Results table

Examples of how to use chi2-test functions in the data load script
The chi2-test functions are used to find values associated with chi squared statistical
analysis. This section describes how to use the chi-squared distribution test functions
available in Qlik Sense in the data load script. Please refer to the individual chi2-test
script function topics for descriptions of syntax and arguments.

This example uses a table containing the number of students achieving a grade (A-F) for two
groups of students (I and II).

Script syntax and chart functions - Qlik Sense, May 2024 525

8 Script and chart functions

Group A B C D E F

I 15 7 9 20 26 19

II 10 11 7 15 21 16

Data table

Loading the sample data
Do the following:

1. Create a new app.
2. In the data load editor, enter the following:

// Sample_1 data is pre-aggregated... Note: make sure you set your DecimalSep='.' at the

top of the script.

Sample_1:

LOAD * inline [

Grp,Grade,Count

I,A,15

I,B,7

I,C,9

I,D,20

I,E,26

I,F,19

II,A,10

II,B,11

II,C,7

II,D,15

II,E,21

II,F,16

];

3. Click to load data.

You have now loaded the sample data.

Loading the chi2-test function values
Now we will load the chi2-test values based on the sample data in a new table, grouped by Grp.

Do the following:

1. In the data load editor, add the following at the end of the script:
// Sample_1 data is pre-aggregated... Note: make sure you set your DecimalSep='.' at the

top of the script.

Chi2_table:

LOAD Grp,

Chi2Test_chi2(Grp, Grade, Count) as chi2,

Chi2Test_df(Grp, Grade, Count) as df,

Chi2Test_p(Grp, Grade, Count) as p

resident Sample_1 group by Grp;

2. Click to load data.

You have now loaded the chi2-test values in a table named Chi2_table.

Script syntax and chart functions - Qlik Sense, May 2024 526

8 Script and chart functions

Results
You can view the resulting chi2-test values in the data model viewer under Preview, they should
look like this:

Grp chi2 df p

I 16.00 5 0.007

II 9.40 5 0.094

Results

Creating a typical t-test report
A typical student t-test report can include tables with Group Statistics and
Independent Samples Test results.

In the following sections we will build these tables using Qlik Senset-test functions applied to two
independent groups of samples, Observation and Comparison. The corresponding tables for these
samples would look like this:

Type N Mean Standard Deviation Standard Error Mean

Comparison 20 11.95 14.61245 3.2674431

Observation 20 27.15 12.507997 2.7968933

Group statistics

Type conf t df

Sig.
(2-
taile
d)

Mean
Differen
ce

Standar
d Error
Differen
ce

95%
Confide
nce
Interval
(Lower)

95%
Confide
nce
Interval
(Upper)

Equal
Varian
ce not
Assum
ed

0 3.53
4

37.11671733
5823

0.001 15.2 4.30101 6.48625 23.9137

Equal
Varian
ce
Assum
ed

8.7069
39

3.53
4

38 0.001 15.2 4.30101 6.49306 23.9069

Independent sample test

Loading the sample data
Do the following:

Script syntax and chart functions - Qlik Sense, May 2024 527

8 Script and chart functions

1. Create a new app with a new sheet.
2. Enter the following in the data load editor:

Table1:

Crosstable (Type, Value)

Load recno() as ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is '|');

In this load script, recno() is included because crosstable requires three arguments. So,
recno() simply provides an extra argument, in this case an ID for each row. Without it,
Comparison sample values would not be loaded.

3. Click to load data.

Creating the Group statistics table
Do the following:

1. In the data load editor, click to go to app view, and then click the sheet you created
before.
This opens the sheet view.

2. Click Edit sheet to edit the sheet.

3. From Charts, add a table, and from Fields, add Type as a dimension to the table.

Script syntax and chart functions - Qlik Sense, May 2024 528

8 Script and chart functions

4. Add the following expressions as measures.

Label Expression

N Count(Value)

Mean Avg(Value)

Standard Deviation Stdev(Value)

Standard Error Mean Sterr(Value)

Example expressions

5. Click Sorting and make sure Type is at the top of the sorting list.

Result:

A Group statistics table for these samples would look like this:

Type N Mean Standard Deviation Standard Error Mean

Comparison 20 11.95 14.61245 3.2674431

Observation 20 27.15 12.507997 2.7968933

Group statistics

Creating the Independent sample test table
Do the following:

1. Click Edit sheet to edit the sheet.

2. From Charts add a table with the following expression as a dimension to the table. =ValueList
(Dual('Equal Variance not Assumed', 0), Dual('Equal Variance Assumed', 1)) and give it the
label Type.

Script syntax and chart functions - Qlik Sense, May 2024 529

8 Script and chart functions

3. Add the following expressions as measures:

Label Expression

conf if(ValueList (Dual('Equal Variance not Assumed', 0), Dual('Equal Variance
Assumed', 1)),TTest_conf(Type, Value),TTest_conf(Type, Value, 0))

t if(ValueList (Dual('Equal Variance not Assumed', 0), Dual('Equal Variance
Assumed', 1)),TTest_t(Type, Value),TTest_t(Type, Value, 0))

df if(ValueList (Dual('Equal Variance not Assumed', 0), Dual('Equal Variance
Assumed', 1)),TTest_df(Type, Value),TTest_df(Type, Value, 0))

Sig. (2-tailed) if(ValueList (Dual('Equal Variance not Assumed', 0), Dual('Equal Variance
Assumed', 1)),TTest_sig(Type, Value),TTest_sig(Type, Value, 0))

Mean
Difference

TTest_dif(Type, Value)

Standard
Error
Difference

if(ValueList (Dual('Equal Variance not Assumed', 0), Dual('Equal Variance
Assumed', 1)),TTest_sterr(Type, Value),TTest_sterr(Type, Value, 0))

95%
Confidence
Interval
(Lower)

if(ValueList (Dual('Equal Variance not Assumed', 0), Dual('Equal Variance
Assumed', 1)),TTest_lower(Type, Value,(1-(95)/100)/2),TTest_lower
(Type, Value,(1-(95)/100)/2, 0))

95%
Confidence
Interval
(Upper)

if(ValueList (Dual('Equal Variance not Assumed', 0), Dual('Equal Variance
Assumed', 1)),TTest_upper(Type, Value,(1-(95)/100)/2),TTest_upper
(Type, Value,(1-(95)/100)/2, 0))

Example expressions

Result:

Type conf t df

Sig.
(2-
taile
d)

Mean
Differe
nce

Standa
rd Error
Differe
nce

95%
Confide
nce
Interval
(Lower)

95%
Confide
nce
Interval
(Upper)

Equal
Varian
ce not
Assum
ed

0 3.5
34

37.11671733
5823

0.00
1

15.2 4.30101 6.48625 23.9137

Independent sample test

Script syntax and chart functions - Qlik Sense, May 2024 530

8 Script and chart functions

Type conf t df

Sig.
(2-
taile
d)

Mean
Differe
nce

Standa
rd Error
Differe
nce

95%
Confide
nce
Interval
(Lower)

95%
Confide
nce
Interval
(Upper)

Equal
Varian
ce
Assum
ed

8.7069
39

3.5
34

38 0.00
1

15.2 4.30101 6.49306 23.9069

Examples of how to use z-test functions
The z-test functions are used to find values associated with z-test statistical analysis
for large data samples, usually greater than 30, and where the variance is known.

This section describes how to build visualizations using sample data to find the values of the z-test
functions available in Qlik Sense. Please refer to the individual z-test chart function topics for
descriptions of syntax and arguments.

Loading the sample data
The sample data used here is the same as that used in the t-test function examples. The sample
data size would normally be considered too small for z-test analysis, but is sufficient for the
purposes of illustrating the use of the different z-test functions in Qlik Sense.

Do the following:

1. Create a new app with a new sheet.

If you created an appfor the t-test functions, you could use that and create a new
sheetfor these functions.

2. In the data load editor, enter the following:
Table1:

Crosstable (Type, Value)

Load recno() as ID, * inline [

Observation|Comparison

35|2

40|27

12|38

15|31

21|1

14|19

46|1

10|34

28|3

48|1

16|2

Script syntax and chart functions - Qlik Sense, May 2024 531

8 Script and chart functions

30|3

32|2

48|1

31|2

22|1

12|3

39|29

19|37

25|2] (delimiter is '|');

In this load script, recno() is included because crosstable requires three arguments. So,
recno() simply provides an extra argument, in this case an ID for each row. Without it,
Comparison sample values would not be loaded.

3. Click to load data.

Creating the z-test table
Do the following:

1. In the data load editor, click to go to app view, and then click the sheet you created
above.
The sheet view is opened.

2. Click Edit sheet to edit the sheet.

3. From Charts add a table, and from Fields add Type as a dimension.
4. Add the following expressions to the table as measures

Label Expression

ZTest Conf ZTest_conf(Value)

ZTest Dif ZTest_dif(Value)

ZTest Sig ZTest_sig(Value)

ZTest Sterr ZTest_sterr(Value)

ZTest Z ZTest_z(Value)

Example expressions

You might wish to adjust the number formatting of the measures to see meaningful
values. The table will be easier to read if you set number formatting on most of the
measures to Number>Simple, instead of Auto. But for ZTest Sig, for example, use the
number formatting: Custom, and then adjust the format pattern to #.######.

Result:

The resulting table for the z-test functions for the sample data will contain the following values:

Type ZTest Conf ZTest Dif ZTest Sig ZTest Sterr ZTest Z

Comparison 6.40 11.95 0.000123 3.27 3.66

z-test results table

Script syntax and chart functions - Qlik Sense, May 2024 532

8 Script and chart functions

Type ZTest Conf ZTest Dif ZTest Sig ZTest Sterr ZTest Z

Observation 5.48 27.15 0.000000 2.80 9.71

Creating the z-testw table
The z-testw functions are for use when the input data series occurs in weighted two-column
format. The expressions require a value for the argument weight.

The examples here use the value 2 throughout, but you could use an expression, which would
define a value for weight for each observation.

Do the following:

1. In the data load editor, click to go to app view, and then click the sheet you created
above.
The sheet view is opened.

2. Click Edit sheet to edit the sheet.

3. From Charts add a table, and from Fields add Type as a dimension.
4. Add the following expressions to the table as measures.

Label Expression

ZTestw Conf ZTestw_conf(2,Value)

ZTestw Dif ZTestw_dif(2,Value)

ZTestw Sig ZTestw_sig(2,Value)

ZTestw Sterr ZTestw_sterr(2,Value)

ZTestw Z ZTestw_z(2,Value)

Example expressions

Use the same number formatting as in the z-test functions example.

Result:

The resulting table for the z-testw functions will contain the following values:

Type ZTestw Conf ZTestw Dif ZTestw Sig ZTestw Sterr ZTestw Z

Comparison 4.47 11.95 8.037185e-08 2.28 5.24

Observation 3.83 27.15 0 1.95 13.91

z-testw results table

String aggregation functions
This section describes string-related aggregation functions.

Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

Script syntax and chart functions - Qlik Sense, May 2024 533

8 Script and chart functions

String aggregation functions in the data load script
Concat
Concat() is used to combine string values. The script function returns the aggregated string
concatenation of all values of the expression iterated over a number of records as defined by a
group by clause.

Concat ([distinct] expression [, delimiter [, sort-weight]])

FirstValue
FirstValue() returns the value that was loaded first from the records defined by the expression,
sorted by a group by clause.

This function is only available as a script function.

FirstValue (expression)

LastValue
LastValue() returns the value that was loaded last from the records defined by the expression,
sorted by a group by clause.

This function is only available as a script function.

LastValue (expression)

MaxString
MaxString() finds string values in the expression and returns the last text value sorted
alphabetically over a number of records, as defined by a group by clause.

MaxString (expression)

MinString
MinString() finds string values in the expression and returns the first text value sorted
alphabetically over a number of records, as defined by a group by clause.

MinString (expression)

String aggregation functions in charts
The following chartfunctions are available for aggregating strings in charts

Concat
Concat() is used to combine string values. The function returns the aggregated string
concatenation of all the values of the expression evaluated over each dimension.

Concat - chart function({[SetExpression] [DISTINCT] [TOTAL [<fld{, fld}>]]

string[, delimiter[, sort_weight]])

Script syntax and chart functions - Qlik Sense, May 2024 534

8 Script and chart functions

MaxString
MaxString() finds string values in the expression or field and returns the last text value in
alphabetical sort order.

MaxString - chart function({[SetExpression] [TOTAL [<fld{, fld}>]]} expr)

MinString
MinString() finds string values in the expression or field and returns the first text value in
alphabetical sort order.

MinString - chart function({[SetExpression] [TOTAL [<fld {, fld}>]]} expr)

Concat
Concat() is used to combine string values. The script function returns the aggregated
string concatenation of all values of the expression iterated over a number of records
as defined by a group by clause.

Syntax:
Concat ([distinct] string [, delimiter [, sort-weight]])

Return data type: string

Arguments:

The expression or field containing the string to be processed.

Argument Description

string The expression or field containing the string to be processed.

delimiter Each value may be separated by the string found in delimiter.

sort-weight The order of concatenation may be determined by the value of the dimension
sort-weight, if present, with the string corresponding to the lowest value
appearing first in the concatenation.

distinct If the word distinct occurs before the expression, all duplicates are disregarded.

Arguments

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Script syntax and chart functions - Qlik Sense, May 2024 535

8 Script and chart functions

Example Result Results once added to a sheet

TeamData:

LOAD * inline [

SalesGroup|Team|Date|Amount

East|Gamma|01/05/2013|20000

East|Gamma|02/05/2013|20000

West|Zeta|01/06/2013|19000

East|Alpha|01/07/2013|25000

East|Delta|01/08/2013|14000

West|Epsilon|01/09/2013|17000

West|Eta|01/10/2013|14000

East|Beta|01/11/2013|20000

West|Theta|01/12/2013|23000

] (delimiter is '|');

Concat1:

LOAD SalesGroup,Concat(Team) as

TeamConcat1 Resident TeamData Group By

SalesGroup;

SalesGroup

East

West

TeamConcat1

AlphaBetaDeltaGammaGamma

EpsilonEtaThetaZeta

Given that the TeamData table is loaded as
in the previous example:

LOAD SalesGroup,Concat(distinct Team,'-')

as TeamConcat2 Resident TeamData Group By

SalesGroup;

SalesGroup

East

West

TeamConcat2

Alpha-Beta-Delta-Gamma

Epsilon-Eta-Theta-Zeta

Given that the TeamData table is loaded as
in the previous example. Because the
argument for sort-weight is added, the
results are ordered by the value of the
dimension Amount:

LOAD SalesGroup,Concat(distinct Team,'-

',Amount) as TeamConcat2 Resident TeamData

Group By SalesGroup;

SalesGroup

East

West

TeamConcat2

Delta-Beta-Gamma-Alpha

Eta-Epsilon-Zeta-Theta

Examples and results

Concat - chart function
Concat() is used to combine string values. The function returns the aggregated string
concatenation of all the values of the expression evaluated over each dimension.

Syntax:
Concat({[SetExpression] [DISTINCT] [TOTAL [<fld{, fld}>]]} string[, delimiter

[, sort_weight]])

Script syntax and chart functions - Qlik Sense, May 2024 536

8 Script and chart functions

Return data type: string

Arguments:

Argument Description

string The expression or field containing the string to be processed.

delimiter Each value may be separated by the string found in delimiter.

sort-weight The order of concatenation may be determined by the value of the dimension
sort-weight, if present, with the string corresponding to the lowest value
appearing first in the concatenation.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

DISTINCT If the word DISTINCT occurs before the function arguments, duplicates
resulting from the evaluation of the function arguments are disregarded.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Arguments

Examples and results:

SalesGroup Amount Concat(Team) Concat(TOTAL <SalesGroup> Team)

East 25000 Alpha AlphaBetaDeltaGammaGamma

East 20000 BetaGammaGamma AlphaBetaDeltaGammaGamma

East 14000 Delta AlphaBetaDeltaGammaGamma

West 17000 Epsilon EpsilonEtaThetaZeta

West 14000 Eta EpsilonEtaThetaZeta

West 23000 Theta EpsilonEtaThetaZeta

West 19000 Zeta EpsilonEtaThetaZeta

Results table

Script syntax and chart functions - Qlik Sense, May 2024 537

8 Script and chart functions

Example Result

Concat(Team) The table is constructed from the dimensions SalesGroup and Amount, and
variations on the measure Concat(Team). Ignoring the Totals result, note that
even though there is data for eight values of Team spread across two values of
SalesGroup, the only result of the measure Concat(Team) that concatenates
more than one Team string value in the table is the row containing the
dimension Amount 20000, which gives the result BetaGammaGamma. This is
because there are three values for the Amount 20000 in the input data. All
other results remain unconcatenated when the measure is spanned across the
dimensions because there is only one value of Team for each combination of
SalesGroup and Amount.

Concat

(DISTINCT

Team,', ')

Beta, Gamma. because the DISTINCT qualifier means the duplicate Gamma
result is disregarded. Also, the delimiter argument is defined as a comma
followed by a space.

Concat (TOTAL

<SalesGroup>

Team)

All the string values for all values of Team are concatenated if the
TOTAL qualifier is used. With the fieldselection <SalesGroup> specified, this
divides the results into the two values of the dimension SalesGroup. For the
SalesGroupEast, the results are AlphaBetaDeltaGammaGamma. For the
SalesGroupWest, the results are EpsilonEtaThetaZeta.

Concat (TOTAL

<SalesGroup>

Team,';',

Amount)

By adding the argument for sort-weight: Amount, the results are ordered by
the value of the dimension Amount. The results becomes
DeltaBetaGammaGammaAlpha and EtaEpsilonZEtaTheta.

Function examples

Data used in example:

TeamData:

LOAD * inline [

SalesGroup|Team|Date|Amount

East|Gamma|01/05/2013|20000

East|Gamma|02/05/2013|20000

West|Zeta|01/06/2013|19000

East|Alpha|01/07/2013|25000

East|Delta|01/08/2013|14000

West|Epsilon|01/09/2013|17000

West|Eta|01/10/2013|14000

East|Beta|01/11/2013|20000

West|Theta|01/12/2013|23000

] (delimiter is '|');

FirstValue
FirstValue() returns the value that was loaded first from the records defined by the
expression, sorted by a group by clause.

This function is only available as a script function.

Script syntax and chart functions - Qlik Sense, May 2024 538

8 Script and chart functions

Syntax:
FirstValue (expr)

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

Arguments

Limitations:

If no text value is found, NULL is returned.

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Example Result Results on a sheet

TeamData:

LOAD * inline [

SalesGroup|Team|Date|Amount

East|Gamma|01/05/2013|20000

East|Gamma|02/05/2013|20000

West|Zeta|01/06/2013|19000

East|Alpha|01/07/2013|25000

East|Delta|01/08/2013|14000

West|Epsilon|01/09/2013|17000

West|Eta|01/10/2013|14000

East|Beta|01/11/2013|20000

West|Theta|01/12/2013|23000

] (delimiter is '|');

FirstValue1:

LOAD SalesGroup,FirstValue(Team) as FirstTeamLoaded

Resident TeamData Group By SalesGroup;

SalesGroup

East

West

FirstTeamLoaded

Gamma

Zeta

Resulting data

LastValue
LastValue() returns the value that was loaded last from the records defined by the
expression, sorted by a group by clause.

This function is only available as a script function.

Script syntax and chart functions - Qlik Sense, May 2024 539

8 Script and chart functions

Syntax:
LastValue (expr)

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

Arguments

Limitations:

If no text value is found, NULL is returned.

Examples and results:

Add the example script to your app and run it. Then add, at least, the fields listed in the results
column to a sheet in our app to see the result.

To get the same look as in the result column below, in the properties panel, under Sorting, switch
from Auto to Custom, then deselect numerical and alphabetical sorting.

Example Result
Result with
custom sorting

TeamData:

LOAD * inline [

SalesGroup|Team|Date|Amount

East|Gamma|01/05/2013|20000

East|Gamma|02/05/2013|20000

West|Zeta|01/06/2013|19000

East|Alpha|01/07/2013|25000

East|Delta|01/08/2013|14000

West|Epsilon|01/09/2013|17000

West|Eta|01/10/2013|14000

East|Beta|01/11/2013|20000

West|Theta|01/12/2013|23000

] (delimiter is '|');

LastValue1:

LOAD SalesGroup,LastValue(Team) as LastTeamLoaded

Resident TeamData Group By SalesGroup;

SalesGroup

East

West

LastTeamLoaded

Beta

Theta

MaxString
MaxString() finds string values in the expression and returns the last text value sorted
alphabetically over a number of records, as defined by a group by clause.

Syntax:
MaxString (expr)

Script syntax and chart functions - Qlik Sense, May 2024 540

8 Script and chart functions

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

Limitations:

If no text value is found, NULL is returned.

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Example Result

TeamData:

LOAD * inline [

SalesGroup|Team|Date|Amount

East|Gamma|01/05/2013|20000

East|Gamma|02/05/2013|20000

West|Zeta|01/06/2013|19000

East|Alpha|01/07/2013|25000

East|Delta|01/08/2013|14000

West|Epsilon|01/09/2013|17000

West|Eta|01/10/2013|14000

East|Beta|01/11/2013|20000

West|Theta|01/12/2013|23000

] (delimiter is '|');

Concat1:

LOAD SalesGroup,MaxString(Team) as MaxString1 Resident

TeamData Group By SalesGroup;

SalesGroup

East

West

MaxString1

Gamma

Zeta

Given that the TeamData table is loaded as in the previous
example, and your data load scripthas the SET statement:
SET DateFormat='DD/MM/YYYY';':

LOAD SalesGroup,MaxString(Date) as MaxString2 Resident

TeamData Group By SalesGroup;

SalesGroup

East

West

MaxString2

01/11/2013

01/12/2013

MaxString - chart function
MaxString() finds string values in the expression or field and returns the last text value
in alphabetical sort order.

Syntax:
MaxString({[SetExpression] [TOTAL [<fld{, fld}>]]} expr)

Script syntax and chart functions - Qlik Sense, May 2024 541

8 Script and chart functions

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Arguments

Limitations:

If the expression contains no values with a string representation NULL is returned.

Examples and results:

SalesGroup Amount MaxString(Team) MaxString(Date)

East 14000 Delta 2013/08/01

East 20000 Gamma 2013/11/01

East 25000 Alpha 2013/07/01

West 14000 Eta 2013/10/01

West 17000 Epsilon 2013/09/01

West 19000 Zeta 2013/06/01

West 23000 Theta 2013/12/01

Results table

Script syntax and chart functions - Qlik Sense, May 2024 542

8 Script and chart functions

Example Result

MaxString

(Team)
There are three values of 20000 for the dimension Amount: two of Gamma (on
different dates), and one of Beta. The result of the measure MaxString (Team) is
therefore Gamma, because this is the highest value in the sorted strings.

MaxString

(Date)
2013/11/01 is the greatest Date value of the three associated with the dimension
Amount. This assumes your script has the SET statement SET
DateFormat='YYYY-MM-DD';'

Function examples

Data used in example:

TeamData:

LOAD * inline [

SalesGroup|Team|Date|Amount

East|Gamma|01/05/2013|20000

East|Gamma|02/05/2013|20000

West|Zeta|01/06/2013|19000

East|Alpha|01/07/2013|25000

East|Delta|01/08/2013|14000

West|Epsilon|01/09/2013|17000

West|Eta|01/10/2013|14000

East|Beta|01/11/2013|20000

West|Theta|01/12/2013|23000

] (delimiter is '|');

MinString
MinString() finds string values in the expression and returns the first text value sorted
alphabetically over a number of records, as defined by a group by clause.

Syntax:
MinString (expr)

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

Arguments

Limitations:

If no text value is found, NULL is returned.

Script syntax and chart functions - Qlik Sense, May 2024 543

8 Script and chart functions

Examples and results:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Example Result

TeamData:

LOAD * inline [

SalesGroup|Team|Date|Amount

East|Gamma|01/05/2013|20000

East|Gamma|02/05/2013|20000

West|Zeta|01/06/2013|19000

East|Alpha|01/07/2013|25000

East|Delta|01/08/2013|14000

West|Epsilon|01/09/2013|17000

West|Eta|01/10/2013|14000

East|Beta|01/11/2013|20000

West|Theta|01/12/2013|23000

] (delimiter is '|');

Concat1:

LOAD SalesGroup,MinString(Team) as MinString1 Resident

TeamData Group By SalesGroup;

SalesGroup

East

West

MinString1

Alpha

Epsilon

Given that the TeamData table is loaded as in the previous
example, and your data load scripthas the SET statement:
SET DateFormat='DD/MM/YYYY';':

LOAD SalesGroup,MinString(Date) as MinString2 Resident

TeamData Group By SalesGroup;

SalesGroup

East

West

MinString2

01/05/2013

01/06/2013

Resulting data

MinString - chart function
MinString() finds string values in the expression or field and returns the first text value
in alphabetical sort order.

Syntax:
MinString({[SetExpression] [TOTAL [<fld {, fld}>]]} expr)

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 544

8 Script and chart functions

Argument Description

SetExpression By default, the aggregation function will aggregate over the set of possible
records defined by the selection. An alternative set of records can be defined
by a set analysis expression.

TOTAL If the word TOTAL occurs before the function arguments, the calculation is
made over all possible values given the current selections, and not just those
that pertain to the current dimensional value, that is, it disregards the chart
dimensions.

By using TOTAL [<fld {.fld}>], where the TOTAL qualifier is followed by a list
of one or more field names as a subset of the chart dimension variables, you
create a subset of the total possible values.

Examples and results:

SalesGroup Amount MinString(Team) MinString(Date)

East 14000 Delta 2013/08/01

East 20000 Beta 2013/05/01

East 25000 Alpha 2013/07/01

West 14000 Eta 2013/10/01

West 17000 Epsilon 2013/09/01

West 19000 Zeta 2013/06/01

West 23000 Theta 2013/12/01

Sample data

Examples Results

MinString

(Team)
There are three values of 20000 for the dimension Amount: two of Gamma (on
different dates), and one of Beta. The result of the measure MinString (Team) is
therefore Beta, because this is the first value in the sorted strings.

MinString

(Date)
2013/11/01 is the earliest Date value of the three associated with the dimension
Amount. This assumes your script has the SET statement SET
DateFormat='YYYY-MM-DD';'

Function examples

Data used in example:

TeamData:

LOAD * inline [

SalesGroup|Team|Date|Amount

East|Gamma|01/05/2013|20000

East|Gamma|02/05/2013|20000

West|Zeta|01/06/2013|19000

East|Alpha|01/07/2013|25000

Script syntax and chart functions - Qlik Sense, May 2024 545

8 Script and chart functions

East|Delta|01/08/2013|14000

West|Epsilon|01/09/2013|17000

West|Eta|01/10/2013|14000

East|Beta|01/11/2013|20000

West|Theta|01/12/2013|23000

] (delimiter is '|');

Synthetic dimension functions
A synthetic dimension is created in the app from values generated from the synthetic dimension
functions and not directly from fields in the data model. When values generated by a synthetic
dimension function are used in a chart as a calculated dimension, this creates a synthetic
dimension. Synthetic dimensions allow you to create, for example, charts with dimensions with
values arising from your data, that is, dynamic dimensions.

Synthetic dimensions are not affected by selections.

The following synthetic dimension functions can be used in charts.

ValueList
ValueList() returns a set of listed values, which, when used in a calculated dimension, will form a
synthetic dimension.
ValueList - chart function (v1 {, Expression})

ValueLoop
ValueLoop() returns a set of iterated values which, when used in a calculated dimension, will form a
synthetic dimension.
ValueLoop - chart function(from [, to [, step]])

ValueList - chart function
ValueList() returns a set of listed values, which, when used in a calculated dimension,
will form a synthetic dimension.

In charts with a synthetic dimension created with the ValueList function it is possible to
reference the dimension value corresponding to a specific expression cell by restating
the ValueList function with the same parameters in the chart expression. The function
may of course be used anywhere in the layout, but apart from when used for synthetic
dimensions it will only be meaningful inside an aggregation function.

Synthetic dimensions are not affected by selections.

Syntax:
ValueList(v1 {,...})

Script syntax and chart functions - Qlik Sense, May 2024 546

8 Script and chart functions

Return data type: dual

Arguments:

Argument Description

v1 Static value (usually a string, but can be a number).

{,...} Optional list of static values.

Arguments

Examples and results:

Example Result

ValueList

('Number of

Orders',

'Average Order

Size', 'Total

Amount')

When used to create a dimension in a table, for example, this results in the
three string values as row labels in the table. These can then be referenced in
an expression.

=IF(ValueList

('Number of

Orders',

'Average Order

Size', 'Total

Amount') =

'Number of

Orders', count

(SaleID), IF(

ValueList

('Number of

Orders',

'Average Order

Size', 'Total

Amount') =

'Average Order

Size', avg

(Amount), sum

(Amount)))

This expression takes the values from the created dimension and references
them in a nested IF statement as input to three aggregation functions:

Function examples

Data used in examples:

SalesPeople:

LOAD * INLINE [

SaleID|SalesPerson|Amount|Year

1|1|12|2013

2|1|23|2013

3|1|17|2013

4|2|9|2013

5|2|14|2013

6|2|29|2013

Script syntax and chart functions - Qlik Sense, May 2024 547

8 Script and chart functions

7|2|4|2013

8|1|15|2012

9|1|16|2012

10|2|11|2012

11|2|17|2012

12|2|7|2012

] (delimiter is '|');

ValueLoop - chart function
ValueLoop() returns a set of iterated values which, when used in a calculated dimension, will form a
synthetic dimension.
The values generated will start with the from value and end with the to value including intermediate
values in increments of step.

In charts with a synthetic dimension created with the ValueLoop function it is possible to
reference the dimension value corresponding to a specific expression cell by restating
the ValueLoop function with the same parameters in the chart expression. The function
may of course be used anywhere in the layout, but apart from when used for synthetic
dimensions it will only be meaningful inside an aggregation function.

Synthetic dimensions are not affected by selections.

Syntax:
ValueLoop(from [, to [, step]])

Return data type: dual

Arguments:

Arguments Description

from Start value in the set of values to be generated.

to End value in the set of values to be generated.

step Size of increment between values.

Arguments

Examples and results:

Example Result

ValueLoop

(1, 10)
This creates a dimension in a table, for example, that can be used for purposes
such as numbered labeling. The example here results in values numbered 1 to 10.
These values can then be referenced in an expression.

ValueLoop

(2, 10,2)
This example results in values numbered 2, 4, 6, 8, and 10 because the argument
step has a value of 2.

Function examples

Script syntax and chart functions - Qlik Sense, May 2024 548

8 Script and chart functions

Nested aggregations
You may come across situations where you need to apply an aggregation to the result of another
aggregation. This is referred to as nesting aggregations.

You cannot nest aggregations in most chart expressions. You can, however, nest aggregations if
you use the TOTAL qualifier in the inner aggregation function.

No more than 100 levels of nesting is allowed.

Nested aggregations with the TOTAL qualifier

Example:

You want to calculate the sum of the field Sales, but only include transactions with an OrderDate
equal to the last year. The last year can be obtained via the aggregation function Max(TOTAL Year

(OrderDate)).

The following aggregation would return the desired result:

Sum(If(Year(OrderDate)=Max(TOTAL Year(OrderDate)), Sales))

Qlik Sense requires the inclusion of the TOTAL qualifier this type of nesting. It is necessary for the
desired comparison. This type of nesting need is quite common and is a good practice.

See also:
p Aggr - chart function (page 549)

8.3 Aggr - chart function
Aggr() returns an array of values for the expression calculated over the stated dimension or
dimensions. For example, the maximum value of sales, per customer, per region.

The Aggr function is used for nested aggregations, in which its first parameter (the inner
aggregation) is calculated once per dimensional value. The dimensions are specified in the second
parameter (and subsequent parameters).

In addition, the Aggr function should be enclosed in an outer aggregation function, using the array
of results from the Aggr function as input to the aggregation in which it is nested.

Syntax:
Aggr({SetExpression}[DISTINCT] [NODISTINCT] expr, StructuredParameter{,

StructuredParameter})

Script syntax and chart functions - Qlik Sense, May 2024 549

8 Script and chart functions

Return data type: dual

Arguments:

Argument Description

expr An expression consisting of an aggregation function. By default, the
aggregation function will aggregate over the set of possible records
defined by the selection.

StructuredParameter StructuredParameter consists of a dimension and optionally, sorting
criteria in the format: (Dimension(Sort-type, Ordering))

The dimension is a single field and cannot be an expression. The
dimension is used to determine the array of values the Aggr expression
is calculated for.

If sorting criteria are included, the array of values created by the Aggr
function, calculated for the dimension, is sorted. This is important
when the sort order affects the result of the expression the Aggr
function is enclosed in.

For details of how to use sorting criteria, see Adding sorting criteria to
the dimension in the structured parameter.

SetExpression By default, the aggregation function will aggregate over the set of
possible records defined by the selection. An alternative set of records
can be defined by a set analysis expression.

DISTINCT If the expression argument is preceded by the distinct qualifier or if no
qualifier is used at all, each distinct combination of dimension values
will generate only one return value. This is the normal way
aggregations are made – each distinct combination of dimension
values will render one line in the chart.

NODISTINCT If the expression argument is preceded by the nodistinct qualifier,
each combination of dimension values may generate more than one
return value, depending on underlying data structure. If there is only
one dimension, the aggr function will return an array with the same
number of elements as there are rows in the source data.

Arguments

Basic aggregation functions, such as Sum, Min, and Avg, return a single numerical value, whereas
the Aggr() function can be compared to creating a temporary staged result set (a virtual table), over
which another aggregation can be made. For example, by computing an average sales value by
summing the sales by customer in an Aggr() statement, and then calculating the average of the
summed results: Avg(TOTAL Aggr(Sum(Sales),Customer)).

Script syntax and chart functions - Qlik Sense, May 2024 550

8 Script and chart functions

Use the Aggr() function in calculated dimensions if you want to create nested chart
aggregations on multiple levels.

Limitations:

Each dimension in an Aggr() function must be a single field, and cannot be an expression
(calculated dimension).

Adding sorting criteria to the dimension in the structured parameter

In its basic form, the argument StructuredParameter in the Aggr function syntax is a single
dimension. The expression: Aggr(Sum(Sales, Month)) finds the total value of sales for each month.
However, when enclosed in another aggregation function, there can be unexpected results unless
sorting criteria are used. This is because some dimensions can be sorted numerically or
alphabetically, and so on.

In the StructuredParameter argument in the Aggr function, you can specify sorting criteria on the
dimension in your expression. This way, you impose a sort order on the virtual table that is
produced by the Aggr function.

The argument StructuredParameter has the following syntax:

(FieldName, (Sort-type, Ordering))

Structured parameters can be nested:

(FieldName, (FieldName2, (Sort-type, Ordering)))

Sort-type can be: NUMERIC, TEXT, FREQUENCY, or LOAD_ORDER.

The Ordering types associated with each Sort-type are as follows:

Sort-type Allowed Ordering types

NUMERIC ASCENDING, DESCENDING, or REVERSE

TEXT ASCENDING, A2Z, DESCENDING, REVERSE, or Z2A

FREQUENCY DESCENDING, REVERSE or ASCENDING

LOAD_ORDER ASCENDING, ORIGINAL, DESCENDING, or REVERSE

Allowed ordering types

The ordering types REVERSE and DESCENDING are equivalent.

For Sort-type TEXT, the ordering types ASCENDING and A2Z are equivalent, and DESCENDING,
REVERSE, and Z2A are equivalent.

For Sort-type LOAD_ORDER, the ordering types ASCENDING and ORIGINAL are equivalent.

Script syntax and chart functions - Qlik Sense, May 2024 551

8 Script and chart functions

Examples: Chart expressions using Aggr
Examples - chart expressions

Chart expression example 1

Load script
Load the following data as an inline load in the data load editor to create the chart expression
example below.

ProductData:

LOAD * inline [

Customer|Product|UnitSales|UnitPrice

Astrida|AA|4|16

Astrida|AA|10|15

Astrida|BB|9|9

Betacab|BB|5|10

Betacab|CC|2|20

Betacab|DD|25|25

Canutility|AA|8|15

Canutility|CC|0|19

] (delimiter is '|');

Chart expression
Create a KPI visualization in a Qlik Sense sheet. Add the following expression to the KPI, as a
measure:

Avg(Aggr(Sum(UnitSales*UnitPrice), Customer))

Result
376.7

Explanation
The expression Aggr(Sum(UnitSales*UnitPrice), Customer) finds the total value of sales by
Customer, and returns an array of values: 295, 715, and 120 for the three Customer values.

Effectively, we have built a temporary list of values without having to create an explicit table or
column containing those values.

These values are used as input to the Avg() function to find the average value of sales, 376.7.

Chart expression example 2

Load script
Load the following data as an inline load in the data load editor to create the chart expression
example below.

ProductData:

LOAD * inline [

Script syntax and chart functions - Qlik Sense, May 2024 552

8 Script and chart functions

Customer|Product|UnitSales|UnitPrice

Astrida|AA|4|16

Astrida|AA|10|15

Astrida|BB|10|15

Astrida|BB|9|9

Betacab|BB|5|10

Betacab|BB|7|12

Betacab|CC|2|22

Betacab|CC|4|20

Betacab|DD|25|25

Canutility|AA|8|15

Canutility|AA|5|11

Canutility|CC|0|19

] (delimiter is '|');

Chart expression
Create a table visualization in a Qlik Sense sheet with Customer, Product, UnitPrice, and
UnitSales as dimensions. Add the following expression to the table, as a measure:

Aggr(NODISTINCT Max(UnitPrice), Customer, Product)

Result

Customer Product UnitPrice UnitSales
Aggr(NODISTINCT Max(UnitPrice),
Customer, Product)

Astrida AA 15 10 16

Astrida AA 16 4 16

Astrida BB 9 9 15

Astrida BB 15 10 15

Betacab BB 10 5 12

Betacab BB 12 7 12

Betacab CC 20 4 22

Betacab CC 22 2 22

Betacab DD 25 25 25

Canutility AA 11 5 15

Canutility AA 15 8 15

Canutility CC 19 0 19

Script syntax and chart functions - Qlik Sense, May 2024 553

8 Script and chart functions

Explanation
An array of values: 16, 16, 15, 15, 12, 12, 22, 22, 25, 15, 15, and 19. The nodistinct qualifier means
that the array contains one element for each row in the source data: each is the maximum UnitPrice
for each Customer and Product.

Chart expression example 3

Load script
Load the following data as an inline load in the data load editor to create the chart expression
example below.

Set vNumberOfOrders = 1000;

OrderLines:

Load

RowNo() as OrderLineID,

OrderID,

OrderDate,

Round((Year(OrderDate)-2005)*1000*Rand()*Rand()*Rand1) as Sales

While Rand()<=0.5 or IterNo()=1;

Load * Where OrderDate<=Today();

Load

Rand() as Rand1,

Date(MakeDate(2013)+Floor((365*4+1)*Rand())) as OrderDate,

RecNo() as OrderID

Autogenerate vNumberOfOrders;

Calendar:

Load distinct

Year(OrderDate) as Year,

Month(OrderDate) as Month,

OrderDate

Resident OrderLines;

Chart expressions
Create a table visualization in a Qlik Sense sheet with Year and Month as dimensions. Add the
following expressions to the table as measures:

l Sum(Sales)

l Sum(Aggr(Rangesum(Above(Sum(Sales),0,12)), (Year, (Numeric, Ascending)), (Month,

(Numeric, Ascending)))) labeled as Structured Aggr() in the table.

Result

Year Month Sum(Sales) Structured Aggr()

2013 Jan 53495 53495

2013 Feb 48580 102075

Script syntax and chart functions - Qlik Sense, May 2024 554

8 Script and chart functions

Year Month Sum(Sales) Structured Aggr()

2013 Mar 25651 127726

2013 Apr 36585 164311

2013 May 61211 225522

2013 Jun 23689 249211

2013 Jul 42311 291522

2013 Aug 41913 333435

2013 Sep 28886 362361

2013 Oct 25977 388298

2013 Nov 44455 432753

2013 Dec 64144 496897

2014 Jan 67775 67775

Explanation
This example displays the aggregated values over a twelve month period for each year in
chronological ascending order, hence the structured parameters (Numeric, Ascending) part of the
Aggr() expression. Two specific dimensions are required as structured parameters: Year and
Month, sorted (1) Year (numeric) and (2) Month (numeric). These two dimensions must be used in
the table or chart visualization. This is necessary for the dimension list of the Aggr() function to
correspond with the dimensions of the object used in the visualization.

You can compare the difference between these measures in a table or in separate line charts:

l Sum(Aggr(Rangesum(Above(Sum(Sales),0,12)), (Year), (Month)))

l Sum(Aggr(Rangesum(Above(Sum(Sales),0,12)), (Year, (Numeric, Ascending)), (Month,

(Numeric, Ascending))))

It should be clear to see that only the latter expression performs the desired accumulation of
aggregated values.

See also:
p Basic aggregation functions (page 331)

8.4 Color functions
These functions can be used in expressions associated with setting and evaluating the color
properties of chart objects, as well as in data load scripts.

Script syntax and chart functions - Qlik Sense, May 2024 555

8 Script and chart functions

Qlik Sense supports the color functions Color(), qliktechblue, and qliktechgray for
backwards compatibility reasons, but use of them is not recommended.

ARGB
ARGB() is used in expressions to set or evaluate the color properties of a chart object, where the
color is defined by a red component r, a green component g, and a blue component b, with an alpha
factor (opacity) of alpha.

ARGB(alpha, r, g, b)

HSL
HSL() is used in expressions to set or evaluate the color properties of a chart object, where the
color is defined by values of hue, saturation, and luminosity between 0 and 1.

HSL (hue, saturation, luminosity)

RGB
RGB() returns an integer corresponding to the color code of the color defined by the three
parameters: the red component r, the green component g, and the blue component b. These
components must have integer values between 0 and 255. The function can be used in expressions
to set or evaluate the color properties of a chart object.

RGB (r, g, b)

Colormix1
Colormix1() is used in expressions to return an ARGB color representation from a two color
gradient, based on a value between 0 and 1.

Colormix1 (Value , ColorZero , ColorOne)

Value is a real number between 0 and 1.

l If Value = 0 ColorZero is returned.
l If Value = 1 ColorOne is returned.
l If 0 < Value< 1 the appropriate intermediate shading is returned.

ColorZero is a valid RGB color representation for the color to be associated with the low end of the
interval.

ColorOne is a valid RGB color representation for the color to be associated with the high end of the
interval.

Example:

Colormix1(0.5, red(), blue())

returns:

ARGB(255,64,0,64) (purple)

Script syntax and chart functions - Qlik Sense, May 2024 556

8 Script and chart functions

Colormix2
Colormix2() is used in expressions to return an ARGB color representation from a two color
gradient, based on a value between -1 and 1, with the possibility to specify an intermediate color for
the center (0) position.

Colormix2 (Value ,ColorMinusOne , ColorOne[, ColorZero])

Value is a real number between -1 and 1.

l If Value = -1 the first color is returned.
l If Value = 1 the second color is returned.
l If -1 < Value< 1 the appropriate color mix is returned.

ColorMinusOne is a valid RGB color representation for the color to be associated with the low end of
the interval.

ColorOne is a valid RGB color representation for the color to be associated with the high end of the
interval.

ColorZero is an optional valid RGB color representation for the color to be associated with the
center of the interval.

SysColor
SysColor() returns the ARGB color representation for the Windows system color nr, where nr
corresponds to the parameter to the Windows API function GetSysColor(nr).

SysColor (nr)

Script syntax and chart functions - Qlik Sense, May 2024 557

8 Script and chart functions

ColorMapHue
ColorMapHue() returns an ARGB value of a color from a colormap that varies the hue component of
the HSV color model. The colormap starts with red, passes through yellow, green, cyan, blue,
magenta, and returns to red. x must be specified as a value between 0 and 1.

ColorMapHue (x)

ColorMapJet
ColorMapJet() returns an ARGB value of a color from a colormap that starts with blue, passes
through cyan, yellow and orange, and returns to red. x must be specified as a value between 0 and
1.

ColorMapJet (x)

Pre-defined color functions
The following functions can be used in expressions for pre-defined colors. Each function returns an
RGB color representation.

Optionally a parameter for alpha factor can be given, in which case an ARGB color representation is
returned. An alpha factor of 0 corresponds to full transparency, and an alpha factor of 255
corresponds to full opacity. If a value for alpha is not entered, it is assumed to be 255.

Color function RGB value

black ([alpha]) (0,0,0)

blue([alpha]) (0,0,128)

brown([alpha]) (128,128,0)

cyan([alpha]) (0,128,128)

darkgray([alpha]) (128,128,128)

green([alpha]) (0,128,0)

lightblue([alpha]) (0,0,255)

lightcyan([alpha]) (0,255,255)

lightgray([alpha]) (192,192,192)

lightgreen([alpha]) (0,255,0)

lightmagenta([alpha]) (255,0,255)

lightred([alpha]) (255,0,0)

magenta([alpha]) (128,0,128)

red([alpha]) (128,0,0)

white([alpha]) (255,255,255)

yellow([alpha]) (255,255,0)

Pre-defined color functions

Script syntax and chart functions - Qlik Sense, May 2024 558

8 Script and chart functions

Examples and results:

Examples Results

Blue() RGB(0,0,128)

Blue(128) ARGB(128,0,0,128)

Examples and results

ARGB
ARGB() is used in expressions to set or evaluate the color properties of a chart object, where the
color is defined by a red component r, a green component g, and a blue component b, with an alpha
factor (opacity) of alpha.

Syntax:
ARGB(alpha, r, g, b)

Return data type: dual

Arguments:

Argument Description

alpha Transparency value in the range 0 - 255. 0 corresponds to full transparency and
255 corresponds to full opacity.

r, g, b Red, green, and blue component values. A color component of 0 corresponds to
no contribution and one of 255 to full contribution.

Arguments

All arguments must be expressions that resolve to integers in the range 0 to 255.

If interpreting the numeric component and formatting it in hexadecimal notation, the values of the
color components are easier to see. For example, light green has the number 4 278 255 360, which
in hexadecimal notation is FF00FF00. The first two positions ‘FF’ (255) denote the alpha channel.
The next two positions ‘00’ denote the amount of red, the next two positions ‘FF’ denote the amount
of green, and the final two positions ‘00’ denote the amount of blue.

RGB
RGB() returns an integer corresponding to the color code of the color defined by the three
parameters: the red component r, the green component g, and the blue component b. These
components must have integer values between 0 and 255. The function can be used in expressions
to set or evaluate the color properties of a chart object.

Syntax:
RGB (r, g, b)

Script syntax and chart functions - Qlik Sense, May 2024 559

8 Script and chart functions

Return data type: dual

Arguments:

Argument Description

r, g, b Red, green, and blue component values. A color component of 0 corresponds to
no contribution and one of 255 to full contribution.

Arguments

All arguments must be expressions that resolve to integers in the range 0 to 255.

If interpreting the numeric component and formatting it in hexadecimal notation, the values of the
color components are easier to see. For example, light green has the number 4 278 255 360, which
in hexadecimal notation is FF00FF00. The first two positions ‘FF’ (255) denote the alpha channel. In
the functions RGB and HSL, this is always ‘FF’ (opaque). The next two positions ‘00’ denote the
amount of red, the next two positions ‘FF’ denote the amount of green, and the final two positions
‘00’ denote the amount of blue.

Example: Chart expression
This example applies a custom color to a chart.

Data used in this example:

ProductSales:

Load * Inline

[Country,Sales,Budget

Sweden,100000,50000

Germany, 125000, 175000

Norway, 74850, 68500

Ireland, 45000, 48000

Sweden,98000,50000

Germany, 115000, 175000

Norway, 71850, 68500

Ireland, 31000, 48000

] (delimiter is ',');

Enter the following expression in the Colors and legend propertiespanel:

If (Sum(Sales)>Sum(Budget),RGB(255,0,0),RGB(100,80,120))

Result:

Script syntax and chart functions - Qlik Sense, May 2024 560

8 Script and chart functions

Example: Load script
The following example displays the equivalent RGB values for values in hex format:

Load

Text(R & G & B) as Text,

RGB(R,G,B) as Color;

Load

Num#(R,'(HEX)') as R,

Num#(G,'(HEX)') as G,

Num#(B,'(HEX)') as B

Inline

[R,G,B

01,02,03

AA,BB,CC];

Result:

Text Color

010203 RGB(1,2,3)

AABBCC RGB(170,187,204)

HSL
HSL() is used in expressions to set or evaluate the color properties of a chart object, where the
color is defined by values of hue, saturation, and luminosity between 0 and 1.

Syntax:
HSL (hue, saturation, luminosity)

Script syntax and chart functions - Qlik Sense, May 2024 561

8 Script and chart functions

Return data type: dual

Arguments:

Argument Description

hue, saturation,
luminosity

hue, saturation, and luminosity component values ranging between 0
and 1.

Arguments

All arguments must be expressions that resolve to integers in the range 0 to 1.

If interpreting the numeric component and formatting it in hexadecimal notation, the RGB values of
the color components are easier to see. For example, light green has the number 4 278 255 360,
which in hexadecimal notation is FF00FF00 and RGB (0,255,0). This is equivalent to HSL (80/240,
240/240, 120/240) - a HSL value of (0.33, 1, 0.5).

8.5 Conditional functions
The conditional functions all evaluate a condition and then return different answers
depending on the condition value. The functions can be used in the data load script
and in chart expressions.

Conditional functions overview
Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

alt
The alt function returns the first of the parameters that has a valid number representation. If no
such match is found, the last parameter will be returned. Any number of parameters can be used.

alt (expr1[, expr2 , expr3 , ...] , else)

class
The class function assigns the first parameter to a class interval. The result is a dual value with
a<=x<b as the textual value, where a and b are the upper and lower limits of the bin, and the lower
bound as numeric value.

class (expression, interval [, label [, offset]])

coalesce
The coalesce function returns the first of the parameters that has a valid non-NULL representation.
Any number of parameters can be used.

coalesce(expr1[, expr2 , expr3 , ...])

Script syntax and chart functions - Qlik Sense, May 2024 562

8 Script and chart functions

if
The if function returns a value depending on whether the condition provided with the function
evaluates as True or False.

if (condition , then , else)

match
The match function compares the first parameter with all the following ones and returns the
numeric location of the expressions that match. The comparison is case sensitive.

match (str, expr1 [, expr2,...exprN])

mixmatch
The mixmatch function compares the first parameter with all the following ones and returns the
numeric location of the expressions that match. The comparison is case insensitive and insensitive
to the Japanese Hiragana and Katakana character systems.

mixmatch (str, expr1 [, expr2,...exprN])

pick
The pick function returns the n:th expression in the list.

pick (n, expr1[, expr2,...exprN])

wildmatch
The wildmatch function compares the first parameter with all the following ones and returns the
number of the expression that matches. It permits the use of wildcard characters (* and ?) in the
comparison strings. * matches any sequence of characters. ? matches any single character. The
comparison is case insensitive and insensitive to the Japanese Hiragana and Katakana character
systems.

wildmatch (str, expr1 [, expr2,...exprN])

alt
The alt function returns the first of the parameters that has a valid number
representation. If no such match is found, the last parameter will be returned. Any
number of parameters can be used.

Syntax:
alt(expr1[, expr2 , expr3 , ...] , else)

Arguments:

Argument Description

expr1 The first expression to check for a valid number representation.

expr2 The second expression to check for a valid number representation.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 563

8 Script and chart functions

Argument Description

expr3 The third expression to check for a valid number representation.

else Value to return if none of the previous parameters has a valid number
representation.

The alt function is often used with number or date interpretation functions. This way, Qlik Sense can
test different date formats in a prioritized order. It can also be used to handle NULL values in
numerical expressions.

Examples:

Example Result

alt(date#(dat , 'YYYY/MM/DD'),

date#(dat , 'MM/DD/YYYY'),

date#(dat , 'MM/DD/YY'),

'No valid date')

This expression will test if the field date contains a date
according to any of the three specified date formats. If so,
it will return a dual value containing the original string and a
valid number representation of a date. If no match is found,
the text 'No valid date' will be returned (without any valid
number representation).

alt(Sales,0) + alt(Margin,0) This expression adds the fields Sales and Margin, replacing
any missing value (NULL) with a 0.

Examples

class
The class function assigns the first parameter to a class interval. The result is a dual
value with a<=x<b as the textual value, where a and b are the upper and lower limits of
the bin, and the lower bound as numeric value.

Syntax:
class(expression, interval [, label [, offset]])

Arguments:

Argument Description

interval A number that specifies the bin width.

label An arbitrary string that can replace the 'x' in the result text.

offset A number that can be used as offset from the default starting point of the
classification. The default starting point is normally 0.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 564

8 Script and chart functions

Examples:

Example Result

class(var,10) with var = 23 returns '20<=x<30'

class(var,5,'value') with var = 23 returns '20<= value <25'

class(var,10,'x',5) with var = 23 returns '15<=x<25'

Examples

Example - Load script using class
Example: load script

Load script

In this example, we load a table containing name and age of people. We want to add a field that
classifies each person according to an age group with a ten year interval. The original source table
looks like the following.

Name Age

John 25

Karen 42

Yoshi 53

Results

To add the age group classification field, you can add a preceding load statement using the class
function.

Create a new tab in the data load editor, and then load the following data as an inline load. Create
the table below in Qlik Sense to see the results.

LOAD *,

class(Age, 10, 'age') As Agegroup;

LOAD * INLINE

[Age, Name

25, John

42, Karen

53, Yoshi];

Script syntax and chart functions - Qlik Sense, May 2024 565

8 Script and chart functions

Results

Name Age Agegroup

John 25 20 <= age < 30

Karen 42 40 <= age < 50

Yoshi 53 50 <= age < 60

Results

coalesce
The coalesce function returns the first of the parameters that has a valid non-NULL
representation. Any number of parameters can be used.

Syntax:
coalesce(expr1[, expr2 , expr3 , ...])

Arguments:

Argument Description

expr1 The first expression to check for a valid non-NULL representation.

expr2 The second expression to check for a valid non-NULL representation.

expr3 The third expression to check for a valid non-NULL representation.

Arguments

Examples:

Example Result

This expression changes all the NULL values of a field to
'N/A'.

Coalesce(ProductDescription,

ProductName, ProductCode, 'no

description available')

This expression will select between three different product
description fields, for when some fields may not have
values for the product. The first of the fields, in the order
given, with a non-null value will be returned. If none of the
fields contain a value, the result will be 'no description
available'.

Examples

Script syntax and chart functions - Qlik Sense, May 2024 566

8 Script and chart functions

Example Result

Coalesce(TextBetween(FileName,

'"', '"'), FileName)
This expression will trim potential enclosing quotes from
the field FileName. If the FileName given is quoted, these
are removed, and the enclosed, unquoted FileName is
returned. If the TextBetween function doesn't find the
delimiters it returns null, which the Coalesce rejects,
returning instead the raw FileName.

if
The if function returns a value depending on whether the condition provided with the
function evaluates as True or False.

Syntax:
if(condition , then [, else])

Argument Description

condition Expression that is interpreted logically.

then Expression that can be of any type. If the condition is True, then the if function
returns the value of the then expression.

else Expression that can be of any type. If the condition is False, then the if function
returns the value of the else expression.

This parameter is optional. If the condition is False, NULL is returned if you have
not specified else.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 567

8 Script and chart functions

Example Result

if(Amount>= 0,

'OK', 'Alarm')
This expression tests if the amount is a positive number (0 or larger) and
return 'OK' if it is. If the amount is less than 0, 'Alarm' is returned.

Example

Example - Load script using if
Example: Load script

Load script

If can be used in load script with other methods and objects, including variables. For example, if
you set a variable threshold and want to include a field in the data model based on that threshold,
you can do the following.

Create a new tab in the data load editor, and then load the following data as an inline load. Create
the table below in Qlik Sense to see the results.

Transactions:

Load * Inline [

transaction_id, transaction_date, transaction_amount, transaction_quantity, customer_id, size,

color_code

3750, 20180830, 23.56, 2, 2038593, L, Red

3751, 20180907, 556.31, 6, 203521, m, orange

3752, 20180916, 5.75, 1, 5646471, S, blue

3753, 20180922, 125.00, 7, 3036491, l, Black

3754, 20180922, 484.21, 13, 049681, xs, Red

3756, 20180922, 59.18, 2, 2038593, M, Blue

3757, 20180923, 177.42, 21, 203521, XL, Black

];

set threshold = 100;

/* Create new table called Transaction_Buckets

Compare transaction_amount field from Transaction table to threshold of 100.

Output results into a new field called Compared to Threshold

*/

Transaction_Buckets:

Load

transaction_id,

If(transaction_amount > $(threshold),'Greater than $(threshold)','Less than $(threshold)')

as [Compared to Threshold]

Resident Transactions;

Script syntax and chart functions - Qlik Sense, May 2024 568

8 Script and chart functions

Results

transaction_id Compared to Threshold

3750 Less than 100

3751 Greater than 100

3752 Less than 100

3753 Greater than 100

3754 Greater than 100

3756 Less than 100

3757 Greater than 100

Qlik Sense table showing the output from
using the if function in the load script.

Examples - Chart expressions using if
Examples: Chart expressions

Chart expression 1

Load script

Create a new tab in the data load editor, and then load the following data as an inline load. After
loading the data, create the chart expression examples below in a Qlik Sense table.

MyTable:

LOAD * inline [Date, Location, Incidents

1/3/2016, Beijing, 0

1/3/2016, Boston, 12

1/3/2016, Stockholm, 3

1/3/2016, Toronto, 0

1/4/2016, Beijing, 0

1/4/2016, Boston, 8];

Date Location Incidents
if(Incidents>=10,
'Critical', 'Ok')

if(Incidents>=10, 'Critical', If(
Incidents>=1 and
Incidents<10, 'Warning', 'Ok'))

1/3/2016 Beijing 0 Ok Ok

1/3/2016 Boston 12 Critical Critical

1/3/2016 Stockholm 3 Ok Warning

1/3/2016 Toronto 0 Ok Ok

Qlik Sense table showing examples of the if function in a chart expression.

Script syntax and chart functions - Qlik Sense, May 2024 569

8 Script and chart functions

Date Location Incidents
if(Incidents>=10,
'Critical', 'Ok')

if(Incidents>=10, 'Critical', If(
Incidents>=1 and
Incidents<10, 'Warning', 'Ok'))

1/4/2016 Beijing 0 Ok Ok

1/4/2016 Boston 8 Ok Warning

Chart expression 2

In a new app, add the following script in a new tab in the data load editor, and then load the data.
You can then create the table with the chart expressions below.

SET FirstWeekDay=0;

Load

Date(MakeDate(2022)+RecNo()-1) as Date

Autogenerate 14;

Date WeekDay(Date)
If(WeekDay
(Date)>=5,'WeekEnd','Normal
Day')

1/1/2022 Sat WeekEnd

1/2/2022 Sun WeekEnd

1/3/2022 Mon Normal Day

1/4/2022 Tue Normal Day

1/5/2022 Wed Normal Day

1/6/2022 Thu Normal Day

1/7/2022 Fri Normal Day

1/8/2022 Sat WeekEnd

1/9/2022 Sun WeekEnd

1/10/2022 Mon Normal Day

1/11/2022 Tue Normal Day

1/12/2022 Wed Normal Day

1/13/2022 Thu Normal Day

1/14/2022 Fri Normal Day

Qlik Sense table showing an example of the if function in a chart expression.

match
The match function compares the first parameter with all the following ones and
returns the numeric location of the expressions that match. The comparison is case
sensitive.

Script syntax and chart functions - Qlik Sense, May 2024 570

8 Script and chart functions

Syntax:
match(str, expr1 [, expr2,...exprN])

If you want to use case insensitive comparison, use the mixmatch function. If you want
to use case insensitive comparison and wildcards, use the wildmatch function.

Example: Load script using match
Example: Load script

Load script

You can use match to load a subset of data. For example, you can return a numeric value for an
expression in the function. You can then limit the data loaded based on the numeric value. Match
returns 0 if there is no match. All expressions that are not matched in this example will therefore
return 0 and will be excluded from the data load by the WHERE statement.

Create a new tab in the data load editor, and then load the following data as an inline load. Create
the table below in Qlik Sense to see the results.

Transactions:

Load * Inline [

transaction_id, transaction_date, transaction_amount, transaction_quantity, customer_id, size,

color_code

3750, 20180830, 23.56, 2, 2038593, L, Red

3751, 20180907, 556.31, 6, 203521, m, orange

3752, 20180916, 5.75, 1, 5646471, S, blue

3753, 20180922, 125.00, 7, 3036491, l, Black

3754, 20180922, 484.21, 13, 049681, xs, Red

3756, 20180922, 59.18, 2, 2038593, M, Blue

3757, 20180923, 177.42, 21, 203521, XL, Black

];

/*

Create new table called Transaction_Buckets

Create new fields called Customer, and Color code - Blue and Black

Load Transactions table.

Match returns 1 for 'Blue', 2 for 'Black'.

Does not return a value for 'blue' because match is case sensitive.

Only values that returned numeric value greater than 0

are loaded by WHERE statment into Transactions_Buckets table.

*/

Transaction_Buckets:

Load

customer_id,

customer_id as [Customer],

color_code as [Color Code Blue and Black]

Resident Transactions

Where match(color_code,'Blue','Black') > 0;

Script syntax and chart functions - Qlik Sense, May 2024 571

8 Script and chart functions

Results

Color Code Blue and Black Customer

Black 203521

Black 3036491

Blue 2038593

Qlik Sense table showing the output from
using the match function in the load script

Examples - Chart expressions using match
Examples: Chart expressions

Chart expression 1

Load script

Create a new tab in the data load editor, and then load the following data as an inline load. After
loading the data, create the chart expression examples below in a Qlik Sense table.

MyTable:

Load * inline [Cities, Count

Toronto, 123

Toronto, 234

Toronto, 231

Boston, 32

Boston, 23

Boston, 1341

Beijing, 234

Beijing, 45

Beijing, 235

Stockholm, 938

Stockholm, 39

Stockholm, 189

zurich, 2342

zurich, 9033

zurich, 0039];

The first expression in the table below returns 0 for Stockholm because 'Stockholm' is not included
in the list of expressions in the match function. It also returns 0 for 'Zurich' because the match
comparison is case-sensitive.

Script syntax and chart functions - Qlik Sense, May 2024 572

8 Script and chart functions

Cities
match(
Cities,'Toronto','Boston','Beijing','
Zurich')

match(
Cities,'Toronto','Boston','Beijing','Stockholm
','zurich')

Beijing 3 3

Boston 2 2

Stockhol
m

0 4

Toronto 1 1

zurich 0 5

Qlik Sense table showing examples of the match function in a chart expression

Chart expression 2

You can use match to perform a custom sort for an expression.

By default, columns sort numerically or alphabetically, depending on the data.

Cities

Beijing

Boston

Stockholm

Toronto

zurich

Qlik Sense table showing an example of the default sort order

To change the order, do the following:

1. Open the Sorting section for your chart in the Properties panel.
2. Turn off auto sorting for the column on which you want to do a custom sort.
3. Deselect Sort numerically and Sort alphabetically.
4. Select Sort by expression, and then enter an expression similar to the following:

=match(Cities, 'Toronto','Boston','Beijing','Stockholm','zurich')

The sort order on the Cities column changes.

Cities

Toronto

Boston

Beijing

Qlik Sense table showing an example of changing the sort order using the match function

Script syntax and chart functions - Qlik Sense, May 2024 573

8 Script and chart functions

Cities

Stockholm

zurich

You can also view the numeric value that is returned.

Cities Cities & ' - ' & match (Cities, 'Toronto','Boston', 'Beijing','Stockholm','zurich')

Toronto Toronto - 1

Boston Boston - 2

Beijing Beijing - 3

Stockholm Stockholm - 4

zurich zurich - 5

Qlik Sense table showing an example of the numeric values that are returned from the match
function

mixmatch
The mixmatch function compares the first parameter with all the following ones and
returns the numeric location of the expressions that match. The comparison is case
insensitive and insensitive to the Japanese Hiragana and Katakana character systems.

Syntax:
mixmatch(str, expr1 [, expr2,...exprN])

If you instead want to use case sensitive comparison, use the match function. If you want to use
case insensitive comparison and wildcards, use the wildmatch function.

Example - Load script using mixmatch
Example: Load script

Load script

You can use mixmatch to load a subset of data. For example, you can return a numeric value for an
expression in the function. You can then limit the data loaded based on the numeric value.
Mixmatch returns 0 if there is no match. All expressions that are not matched in this example will
therefore return 0 and will be excluded from the data load by the WHERE statement.

Create a new tab in the data load editor, and then load the following data as an inline load. Create
the table below in Qlik Sense to see the results.

Load * Inline [

transaction_id, transaction_date, transaction_amount, transaction_quantity, customer_id, size,

color_code

3750, 20180830, 23.56, 2, 2038593, L, Red

Script syntax and chart functions - Qlik Sense, May 2024 574

8 Script and chart functions

3751, 20180907, 556.31, 6, 203521, m, orange

3752, 20180916, 5.75, 1, 5646471, S, blue

3753, 20180922, 125.00, 7, 3036491, l, Black

3754, 20180922, 484.21, 13, 049681, xs, Red

3756, 20180922, 59.18, 2, 2038593, M, Blue

3757, 20180923, 177.42, 21, 203521, XL, Black

];

/*

Create new table called Transaction_Buckets

Create new fields called Customer, and Color code - Black, Blue, blue

Load Transactions table.

Mixmatch returns 1 for 'Black', 2 for 'Blue'.

Also returns 3 for 'blue' because mixmatch is not case sensitive.

Only values that returned numeric value greater than 0

are loaded by WHERE statement into Transactions_Buckets table.

*/

Transaction_Buckets:

Load

customer_id,

customer_id as [Customer],

color_code as [Color Code - Black, Blue, blue]

Resident Transactions

Where mixmatch(color_code,'Black','Blue') > 0;

Results

Color Code Black, Blue, blue Customer

Black 203521

Black 3036491

Blue 2038593

blue 5646471

Qlik Sense table showing the output from using
the mixmatch function in the load script.

Examples - Chart expressions using mixmatch
Examples: Chart expressions
Create a new tab in the data load editor, and then load the following data as an inline load. After
loading the data, create the chart expression examples below in a Qlik Sense table.

Chart expression 1

MyTable:

Load * inline [Cities, Count

Toronto, 123

Toronto, 234

Toronto, 231

Script syntax and chart functions - Qlik Sense, May 2024 575

8 Script and chart functions

Boston, 32

Boston, 23

Boston, 1341

Beijing, 234

Beijing, 45

Beijing, 235

Stockholm, 938

Stockholm, 39

Stockholm, 189

zurich, 2342

zurich, 9033

zurich, 0039];

The first expression in the table below returns 0 for Stockholm because 'Stockholm' is not included
in the list of expressions in the mixmatch function. It returns 4 for 'Zurich' because the mixmatch
comparison is not case-sensitive.

Cities
mixmatch(
Cities,'Toronto','Boston','Beijing','
Zurich')

mixmatch(
Cities,'Toronto','Boston','Beijing','Stockholm
','Zurich')

Beijing 3 3

Boston 2 2

Stockhol
m

0 4

Toronto 1 1

zurich 4 5

Qlik Sense table showing examples of the mixmatch function in a chart expression

Chart expression 2

You can use mixmatch to perform a custom sort for an expression.

By default, columns sort alphabetically or numerically, depending on the data.

Cities

Beijing

Boston

Stockholm

Toronto

zurich

Qlik Sense table showing an example of the default sort order

To change the order, do the following:

Script syntax and chart functions - Qlik Sense, May 2024 576

8 Script and chart functions

1. Open the Sorting section for your chart in the Properties panel.
2. Turn off auto sorting for the column on which you want to do a custom sort.
3. Deselect Sort numerically and Sort alphabetically.
4. Select Sort by expression, and then enter the following expression:

=mixmatch(Cities, 'Toronto','Boston','Beijing','Stockholm','Zurich')

The sort order on the Cities column changes.

Cities

Toronto

Boston

Beijing

Stockholm

zurich

Qlik Sense table showing an example of changing the sort order using the mixmatch function.

You can also view the numeric value that is returned.

Cities
Cities & ' - ' & mixmatch (Cities, 'Toronto','Boston',
'Beijing','Stockholm','Zurich')

Toronto Toronto - 1

Boston Boston - 2

Beijing Beijing - 3

Stockholm Stockholm - 4

zurich zurich - 5

Qlik Sense table showing an example of the numeric values that are returned from the mixmatch
function.

pick
The pick function returns the n:th expression in the list.

Syntax:
pick(n, expr1[, expr2,...exprN])

Arguments:

Argument Description

n n is an integer between 1 and N.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 577

8 Script and chart functions

Example:

Example Result

pick(N, 'A','B',4, 6) returns 'B' if N = 2
returns 4 if N = 3

Example

wildmatch
The wildmatch function compares the first parameter with all the following ones and
returns the number of the expression that matches. It permits the use of wildcard
characters (* and ?) in the comparison strings. * matches any sequence of
characters. ? matches any single character. The comparison is case insensitive and
insensitive to the Japanese Hiragana and Katakana character systems.

Syntax:
wildmatch(str, expr1 [, expr2,...exprN])

If you want to use comparison without wildcards, use the match or mixmatch functions.

Example: Load script using wildmatch
Example: Load script

Load script

You can use wildmatch to load a subset of data. For example, you can return a numeric value for an
expression in the function. You can then limit the data loaded based on the numeric value.
Wildmatch returns 0 if there is no match. All expressions that are not matched in this example will
therefore return 0 and will be excluded from the data load by the WHERE statement.

Create a new tab in the data load editor, and then load the following data as an inline load. Create
the table below in Qlik Sense to see the results.

Transactions:

Load * Inline [

transaction_id, transaction_date, transaction_amount, transaction_quantity, customer_id, size,

color_code

3750, 20180830, 23.56, 2, 2038593, L, Red

3751, 20180907, 556.31, 6, 203521, m, orange

3752, 20180916, 5.75, 1, 5646471, S, blue

3753, 20180922, 125.00, 7, 3036491, l, Black

3754, 20180922, 484.21, 13, 049681, xs, Red

3756, 20180922, 59.18, 2, 2038593, M, Blue

3757, 20180923, 177.42, 21, 203521, XL, Black

];

/*

Create new table called Transaction_Buckets

Script syntax and chart functions - Qlik Sense, May 2024 578

8 Script and chart functions

Create new fields called Customer, and Color code - Black, Blue, blue, red

Load Transactions table.

Wildmatch returns 1 for 'Black', 'Blue', and 'blue', and 2 for 'Red'.

Only values that returned numeric value greater than 0

are loaded by WHERE statement into Transactions_Buckets table.

*/

Transaction_Buckets:

Load

customer_id,

customer_id as [Customer],

color_code as [Color Code Black, Blue, blue, Red]

Resident Transactions

Where wildmatch(color_code,'Bl*','R??') > 0;

Results

Color Code Black, Blue, blue, Red Customer

Black 203521

Black 3036491

Blue 2038593

blue 5646471

Red 049681

Red 2038593

Qlik Sense table showing the output from using the
wildmatch function in the load script

Examples: Chart expressions using wildmatch
Example: Chart expression

Chart expression 1

Create a new tab in the data load editor, and then load the following data as an inline load. After
loading the data, create the chart expression examples below in a Qlik Sense table.

MyTable:

Load * inline [Cities, Count

Toronto, 123

Toronto, 234

Toronto, 231

Boston, 32

Boston, 23

Boston, 1341

Beijing, 234

Beijing, 45

Beijing, 235

Stockholm, 938

Script syntax and chart functions - Qlik Sense, May 2024 579

8 Script and chart functions

Stockholm, 39

Stockholm, 189

zurich, 2342

zurich, 9033

zurich, 0039];

The first expression in the table below returns 0 for Stockholm because 'Stockholm' is not included
in the list of expressions in the wildmatch function. It also returns 0 for 'Boston' because ? only
matches on a single character.

Cities
wildmatch(
Cities,'Tor*','?ton','Beijing','*uric
h')

wildmatch(
Cities,'Tor*','???ton','Beijing','Stockholm','*ur
ich')

Beijing 3 3

Boston 0 2

Stockholm 0 4

Toronto 1 1

zurich 4 5

Qlik Sense table showing examples of the wildmatch function in a chart expression

Chart expression 2

You can use wildmatch to perform a custom sort for an expression.

By default, columns sort numerically or alphabetically, depending on the data.

Cities

Beijing

Boston

Stockholm

Toronto

zurich

Qlik Sense table showing an example of the default sort order

To change the order, do the following:

1. Open the Sorting section for your chart in the Properties panel.
2. Turn off auto sorting for the column on which you want to do a custom sort.
3. Deselect Sort numerically and Sort alphabetically.
4. Select Sort by expression, and then enter an expression similar to the following:

=wildmatch(Cities, 'Tor*','???ton','Beijing','Stockholm','*urich')

The sort order on the Cities column changes.

Script syntax and chart functions - Qlik Sense, May 2024 580

8 Script and chart functions

Cities

Toronto

Boston

Beijing

Stockholm

zurich

Qlik Sense table showing an example of changing the sort order using the wildmatch function.

You can also view the numeric value that is returned.

Cities Cities & ' - ' & wildmatch (Cities, 'Tor*','???ton','Beijing','Stockholm','*urich')

Toronto Toronto - 1

Boston Boston - 2

Beijing Beijing - 3

Stockholm Stockholm - 4

zurich zurich - 5

Qlik Sense table showing an example of the numeric values that are returned from the wildmatch
function

8.6 Counter functions
This section describes functions related to record counters during LOAD statement evaluation in
the data load script. The only function that can be used in chart expressions is RowNo().

Some counter functions do not have any parameters, but the trailing parentheses are however still
required.

Counter functions overview
Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

autonumber
This script function returns a unique integer value for each distinct evaluated value of expression
encountered during the script execution. This function can be used e.g. for creating a compact
memory representation of a complex key.

autonumber (expression[, AutoID])

autonumberhash128
This script function calculates a 128-bit hash of the combined input expression values and the
returns a unique integer value for each distinct hash value encountered during the script execution.
This function can be used for example for creating a compact memory representation of a complex

Script syntax and chart functions - Qlik Sense, May 2024 581

8 Script and chart functions

key.
autonumberhash128 (expression {, expression})

autonumberhash256
This script function calculates a 256-bit hash of the combined input expression values and returns
a unique integer value for each distinct hash value encountered during the script execution. This
function can be used e.g. for creating a compact memory representation of a complex key.
autonumberhash256 (expression {, expression})

IterNo
This script function returns an integer indicating for which time one single record is evaluated in a
LOAD statement with a while clause. The first iteration has number 1. The IterNo function is only
meaningful if used together with a while clause.

IterNo ()

RecNo
This script functions returns an integer for the number of the currently read row of the current table.
The first record is number 1.

RecNo ()

RowNo - script function
This function returns an integer for the position of the current row in the resulting Qlik Sense
internal table. The first row is number 1.

RowNo ()

RowNo - chart function
RowNo() returns the number of the current row within the current column segment in a table. For
bitmap charts, RowNo() returns the number of the current row within the chart's straight table
equivalent.

RowNo - chart function([TOTAL])

autonumber
This script function returns a unique integer value for each distinct evaluated value of
expression encountered during the script execution. This function can be used e.g. for
creating a compact memory representation of a complex key.

You can only connect autonumber keys that have been generated in the same data
load, as the integer is generated according to the order the table is read. If you need to
use keys that are persistent between data loads, independent of source data sorting,
you should use the hash128, hash160 or hash256 functions.

Syntax:
autonumber(expression[, AutoID])

Script syntax and chart functions - Qlik Sense, May 2024 582

8 Script and chart functions

Arguments:

Argument Description

AutoID In order to create multiple counter instances if the autonumber function is used
on different keys within the script, the optional parameter AutoID can be used for
naming each counter.

Example: Creating a composite key

In this example we create a composite key using the autonumber function to conserve memory.
The example is brief for demonstration purpose, but would be meaningful with a table containing a
large number of rows.

Region Year Month Sales

North 2014 May 245

North 2014 May 347

North 2014 June 127

South 2014 June 645

South 2013 May 367

South 2013 May 221

Example data

The source data is loaded using inline data. Then we add a preceding load, which creates a
composite key from the Region, Year and Month fields.

RegionSales:

LOAD *,

AutoNumber(Region&Year&Month) as RYMkey;

LOAD * INLINE

[Region, Year, Month, Sales

North, 2014, May, 245

North, 2014, May, 347

North, 2014, June, 127

South, 2014, June, 645

South, 2013, May, 367

South, 2013, May, 221

];

The resulting table looks like this:

Script syntax and chart functions - Qlik Sense, May 2024 583

8 Script and chart functions

Region Year Month Sales RYMkey

North 2014 May 245 1

North 2014 May 347 1

North 2014 June 127 2

South 2014 June 645 3

South 2013 May 367 4

South 2013 May 221 4

Results table

In this example you can refer to the RYMkey, for example 1, instead of the string 'North2014May' if
you need to link to another table.

Now we load a source table of costs in a similar way. The Region, Year and Month fields are
excluded in the preceding load to avoid creating a synthetic key, we are already creating a
composite key with the autonumber function, linking the tables.

RegionCosts:

LOAD Costs,

AutoNumber(Region&Year&Month) as RYMkey;

LOAD * INLINE

[Region, Year, Month, Costs

South, 2013, May, 167

North, 2014, May, 56

North, 2014, June, 199

South, 2014, June, 64

South, 2013, May, 172

South, 2013, May, 126

];

Now we can add a table visualization to a sheet, and add the Region, Year and Month fields, as well
as Sum measures for the sales and the costs. The table will look like this:

Region Year Month Sum([Sales]) Sum([Costs])

Totals - - 1952 784

North 2014 June 127 199

North 2014 May 592 56

South 2014 June 645 64

South 2013 May 588 465

Results table

Script syntax and chart functions - Qlik Sense, May 2024 584

8 Script and chart functions

autonumberhash128
This script function calculates a 128-bit hash of the combined input expression values
and the returns a unique integer value for each distinct hash value encountered during
the script execution. This function can be used for example for creating a compact
memory representation of a complex key.

You can only connect autonumberhash128 keys that have been generated in the same
data load, as the integer is generated according to the order the table is read. If you
need to use keys that are persistent between data loads, independent of source data
sorting, you should use the hash128, hash160 or hash256 functions.

Syntax:
autonumberhash128(expression {, expression})

Example: Creating a composite key

In this example we create a composite key using the autonumberhash128 function to conserve
memory. The example is brief for demonstration purpose, but would be meaningful with a table
containing a large number of rows.

Region Year Month Sales

North 2014 May 245

North 2014 May 347

North 2014 June 127

South 2014 June 645

South 2013 May 367

South 2013 May 221

Example data

The source data is loaded using inline data. Then we add a preceding load, which creates a
composite key from the Region, Year and Month fields.

RegionSales:

LOAD *,

AutoNumberHash128(Region, Year, Month) as RYMkey;

LOAD * INLINE

[Region, Year, Month, Sales

North, 2014, May, 245

North, 2014, May, 347

North, 2014, June, 127

South, 2014, June, 645

South, 2013, May, 367

Script syntax and chart functions - Qlik Sense, May 2024 585

8 Script and chart functions

South, 2013, May, 221

];

The resulting table looks like this:

Region Year Month Sales RYMkey

North 2014 May 245 1

North 2014 May 347 1

North 2014 June 127 2

South 2014 June 645 3

South 2013 May 367 4

South 2013 May 221 4

Results table

In this example you can refer to the RYMkey, for example 1, instead of the string 'North2014May' if
you need to link to another table.

Now we load a source table of costs in a similar way. The Region, Year and Month fields are
excluded in the preceding load to avoid creating a synthetic key, we are already creating a
composite key with the autonumberhash128 function, linking the tables.

RegionCosts:

LOAD Costs,

AutoNumberHash128(Region, Year, Month) as RYMkey;

LOAD * INLINE

[Region, Year, Month, Costs

South, 2013, May, 167

North, 2014, May, 56

North, 2014, June, 199

South, 2014, June, 64

South, 2013, May, 172

South, 2013, May, 126

];

Now we can add a table visualization to a sheet, and add the Region, Year and Month fields, as well
as Sum measures for the sales and the costs. The table will look like this:

Region Year Month Sum([Sales]) Sum([Costs])

Totals - - 1952 784

North 2014 June 127 199

North 2014 May 592 56

Results table

Script syntax and chart functions - Qlik Sense, May 2024 586

8 Script and chart functions

Region Year Month Sum([Sales]) Sum([Costs])

South 2014 June 645 64

South 2013 May 588 465

autonumberhash256
This script function calculates a 256-bit hash of the combined input expression values
and returns a unique integer value for each distinct hash value encountered during the
script execution. This function can be used e.g. for creating a compact memory
representation of a complex key.

You can only connect autonumberhash256 keys that have been generated in the same
data load, as the integer is generated according to the order the table is read. If you
need to use keys that are persistent between data loads, independent of source data
sorting, you should use the hash128, hash160 or hash256 functions.

Syntax:
autonumberhash256(expression {, expression})

Example: Creating a composite key

In this example we create a composite key using the autonumberhash256 function to conserve
memory. The example is brief for demonstration purpose, but would be meaningful with a table
containing a large number of rows.

Region Year Month Sales

North 2014 May 245

North 2014 May 347

North 2014 June 127

South 2014 June 645

South 2013 May 367

South 2013 May 221

Example table

The source data is loaded using inline data. Then we add a preceding load, which creates a
composite key from the Region, Year and Month fields.

RegionSales:

LOAD *,

AutoNumberHash256(Region, Year, Month) as RYMkey;

LOAD * INLINE

Script syntax and chart functions - Qlik Sense, May 2024 587

8 Script and chart functions

[Region, Year, Month, Sales

North, 2014, May, 245

North, 2014, May, 347

North, 2014, June, 127

South, 2014, June, 645

South, 2013, May, 367

South, 2013, May, 221

];

The resulting table looks like this:

Region Year Month Sales RYMkey

North 2014 May 245 1

North 2014 May 347 1

North 2014 June 127 2

South 2014 June 645 3

South 2013 May 367 4

South 2013 May 221 4

Results table

In this example you can refer to the RYMkey, for example 1, instead of the string 'North2014May' if
you need to link to another table.

Now we load a source table of costs in a similar way. The Region, Year and Month fields are
excluded in the preceding load to avoid creating a synthetic key, we are already creating a
composite key with the autonumberhash256 function, linking the tables.

RegionCosts:

LOAD Costs,

AutoNumberHash256(Region, Year, Month) as RYMkey;

LOAD * INLINE

[Region, Year, Month, Costs

South, 2013, May, 167

North, 2014, May, 56

North, 2014, June, 199

South, 2014, June, 64

South, 2013, May, 172

South, 2013, May, 126

];

Now we can add a table visualization to a sheet, and add the Region, Year and Month fields, as well
as Sum measures for the sales and the costs. The table will look like this:

Script syntax and chart functions - Qlik Sense, May 2024 588

8 Script and chart functions

Region Year Month Sum([Sales]) Sum([Costs])

Totals - - 1952 784

North 2014 June 127 199

North 2014 May 592 56

South 2014 June 645 64

South 2013 May 588 465

Results table

IterNo
This script function returns an integer indicating for which time one single record is
evaluated in a LOAD statement with a while clause. The first iteration has number 1.
The IterNo function is only meaningful if used together with a while clause.

Syntax:
IterNo()

Examples and results:

Example:

LOAD

 IterNo() as Day,

 Date(StartDate + IterNo() - 1) as Date

 While StartDate + IterNo() - 1 <= EndDate;

LOAD * INLINE

[StartDate, EndDate

2014-01-22, 2014-01-26

];

This LOAD statement will generate one record per date within the range defined by StartDate and
EndDate.

In this example, the resulting table will look like this:

Day Date

1 2014-01-22

2 2014-01-23

3 2014-01-24

Results table

Script syntax and chart functions - Qlik Sense, May 2024 589

8 Script and chart functions

Day Date

4 2014-01-25

5 2014-01-26

RecNo
This script functions returns an integer for the number of the currently read row of the
current table. The first record is number 1.

Syntax:
RecNo()

In contrast to RowNo(), which counts rows in the resulting Qlik Sense table, RecNo(), counts the
records in the raw data table and is reset when a raw data table is concatenated to another.

Example: Data load script

Raw data table load:

Tab1:

LOAD * INLINE

[A, B

1, aa

2,cc

3,ee];

Tab2:

LOAD * INLINE

[C, D

5, xx

4,yy

6,zz];

Loading record and row numbers for selected rows:

QTab:

LOAD *,

RecNo(),

RowNo()

resident Tab1 where A<>2;

LOAD

C as A,

D as B,

RecNo(),

RowNo()

resident Tab2 where A<>5;

//We don't need the source tables anymore, so we drop them

Drop tables Tab1, Tab2;

The resulting Qlik Sense internal table:

Script syntax and chart functions - Qlik Sense, May 2024 590

8 Script and chart functions

A B RecNo() RowNo()

1 aa 1 1

3 ee 3 2

4 yy 2 3

6 zz 3 4

Results table

RowNo
This function returns an integer for the position of the current row in the resulting Qlik
Sense internal table. The first row is number 1.

Syntax:
RowNo([TOTAL])

In contrast to RecNo(), which counts the records in the raw data table, the RowNo() function does
not count records that are excluded by where clauses and is not reset when a raw data table is
concatenated to another.

If you use preceding load, that is, a number of stacked LOAD statements reading from
the same table, you can only use RowNo() in the top LOAD statement. If you use
RowNo() in subsequent LOAD statements, 0 is returned.

Example: Data load script

Raw data table load:

Tab1:

LOAD * INLINE

[A, B

1, aa

2,cc

3,ee];

Tab2:

LOAD * INLINE

[C, D

5, xx

4,yy

6,zz];

Loading record and row numbers for selected rows:

QTab:

LOAD *,

RecNo(),

RowNo()

Script syntax and chart functions - Qlik Sense, May 2024 591

8 Script and chart functions

resident Tab1 where A<>2;

LOAD

C as A,

D as B,

RecNo(),

RowNo()

resident Tab2 where A<>5;

//We don't need the source tables anymore, so we drop them

Drop tables Tab1, Tab2;

The resulting Qlik Sense internal table:

A B RecNo() RowNo()

1 aa 1 1

3 ee 3 2

4 yy 2 3

6 zz 3 4

Results table

RowNo - chart function
RowNo() returns the number of the current row within the current column segment in a table. For
bitmap charts, RowNo() returns the number of the current row within the chart's straight table
equivalent.

If the table or table equivalent has multiple vertical dimensions, the current column segment will
include only rows with the same values as the current row in all dimension columns, except for the
column showing the last dimension in the inter-field sort order.

Column segments

Sorting on y-values in charts or sorting by expression columns in tables is not allowed
when this chart function is used in any of the chart's expressions. These sort alternatives
are therefore automatically disabled. When you use this chart function in a visualization
or table, the sorting of the visualization will revert back to the sorted input to this
function.

Syntax:
RowNo([TOTAL])

Script syntax and chart functions - Qlik Sense, May 2024 592

8 Script and chart functions

Return data type: integer

Arguments:

Argument Description

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the
current column segment is always equal to the entire column.

Example: Chart expression using RowNo
Example - chart expression

Load script
Load the following data as an inline load in the data load editor to create the chart expression
examples below.

Temp:

LOAD * inline [

Customer|Product|OrderNumber|UnitSales|UnitPrice

Astrida|AA|1|4|16

Astrida|AA|7|10|15

Astrida|BB|4|9|9

Betacab|CC|6|5|10

Betacab|AA|5|2|20

Betacab|BB|1|25| 25

Canutility|AA|3|8|15

Canutility|CC|5|4|19

Divadip|CC|2|4|16

Divadip|DD|3|1|25

] (delimiter is '|');

Chart expression
Create a table visualization in a Qlik Sense sheet with Customer and UnitSales as dimensions. Add
RowNo() and RowNo(TOTAL) as measures labeled Row in Segment and Row Number, respectively.
Add the following expression to the table as a measure.

If(RowNo()=1, 0, UnitSales / Above(UnitSales))

Result

Customer UnitSales
Row in
Segment

Row
Number

If(RowNo()=1, 0, UnitSales / Above(
UnitSales))

Astrida 4 1 1 0

Astrida 9 2 2 2.25

Astrida 10 3 3 1.1111111111111

Script syntax and chart functions - Qlik Sense, May 2024 593

8 Script and chart functions

Customer UnitSales
Row in
Segment

Row
Number

If(RowNo()=1, 0, UnitSales / Above(
UnitSales))

Betacab 2 1 4 0

Betacab 5 2 5 2.5

Betacab 25 3 6 5

Canutility 4 1 7 0

Canutility 8 2 8 2

Divadip 1 1 9 0

Divadip 4 2 10 4

Explanation
The Row in Segment column shows the results 1,2,3 for the column segment containing the values
of UnitSales for customer Astrida. The row numbering then begins at 1 again for the next column
segment, which is Betacab.

The Row Number column disregards the dimensions because of the TOTAL argument for RowNo() and
counts the rows in the table.

This expression returns 0 for the first row in each column segment, so the column shows:

0, 2.25, 1.1111111, 0, 2.5, 5, 0, 2, 0, and 4.

See also:
p Above - chart function (page 1277)

8.7 Date and time functions
Qlik Sense date and time functions are used to transform and convert date and time values. All
functions can be used in both the data load script and in chart expressions.

Functions are based on a date-time serial number that equals the number of days since December
30, 1899. The integer value represents the day and the fractional value represents the time of the
day.

Qlik Sense uses the numerical value of the parameter, so a number is valid as a parameter also
when it is not formatted as a date or a time. If the parameter does not correspond to numerical
value, for example, because it is a string, then Qlik Sense attempts to interpret the string according
to the date and time environment variables.

If the time format used in the parameter does not correspond to the one set in the environment
variables, Qlik Sense will not be able to make a correct interpretation. To resolve this, either change
the settings or use an interpretation function.

Script syntax and chart functions - Qlik Sense, May 2024 594

8 Script and chart functions

In the examples for each function, the default time and date formats hh:mm:ss and YYYY-MM-DD
(ISO 8601) are assumed.

When processing a timestamp with a date or time function, Qlik Sense ignores any
daylight savings time parameters unless the date or time function includes a
geographical position.

For example, ConvertToLocalTime(filetime('Time.qvd'), 'Paris') would use daylight
savings time parameters while ConvertToLocalTime(filetime('Time.qvd'), 'GMT-01:00')

would not use daylight savings time parameters.

Date and time functions overview
Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

Integer expressions of time
second
This function returns an integer representing the second when the fraction of the expression is
interpreted as a time according to the standard number interpretation.

second (expression)

minute
This function returns an integer representing the minute when the fraction of the expression is
interpreted as a time according to the standard number interpretation.

minute (expression)

hour
This function returns an integer representing the hour when the fraction of the expression is
interpreted as a time according to the standard number interpretation.

hour (expression)

day
This function returns an integer representing the day when the fraction of the expression is
interpreted as a date according to the standard number interpretation.

day (expression)

week
This function returns an integer representing the week number according to ISO 8601. The week
number is calculated from the date interpretation of the expression, according to the standard
number interpretation.

week (expression)

Script syntax and chart functions - Qlik Sense, May 2024 595

8 Script and chart functions

month
This function returns a dual value: a month name as defined in the environment variable
MonthNames and an integer between 1-12. The month is calculated from the date interpretation of
the expression, according to the standard number interpretation.

month (expression)

year
This function returns an integer representing the year when the expression is interpreted as a date
according to the standard number interpretation.

year (expression)

weekyear
This function returns the year to which the week number belongs according to the environment
variables. The week number ranges between 1 and approximately 52.

weekyear (expression)

weekday
This function returns a dual value with:

l A day name as defined in the environment variable DayNames.
l An integer between 0-6 corresponding to the nominal day of the week (0-6).

weekday (date)

Timestamp functions
now
This function returns a timestamp of the current time. The function returns values in the
TimeStamp system variable format. The default timer_mode value is 1.

now ([timer_mode])

today
This function returns the current date. The function returns values in the DateFormat system variable
format.

today ([timer_mode])

LocalTime
This function returns a timestamp of the current time for a specified time zone.

localtime ([timezone [, ignoreDST]])

Make functions
makedate
This function returns a date calculated from the year YYYY, the month MM and the day DD.

makedate (YYYY [, MM [, DD]])

Script syntax and chart functions - Qlik Sense, May 2024 596

8 Script and chart functions

makeweekdate
This function returns a date calculated from the year, the week number, and the day of week .

makeweekdate (YYYY [, WW [, D]])

maketime
This function returns a time calculated from the hour hh, the minute mm, and the second ss.

maketime (hh [, mm [, ss [.fff]]])

Other date functions
AddMonths
This function returns the date occurring n months after startdate or, if n is negative, the date
occurring n months before startdate.

addmonths (startdate, n , [, mode])

AddYears
This function returns the date occurring n years after startdate or, if n is negative, the date
occurring n years before startdate.

addyears (startdate, n)

yeartodate
This function finds if the input timestamp falls within the year of the date the script was last loaded,
and returns True if it does, False if it does not.

yeartodate (date [, yearoffset [, firstmonth [, todaydate]]])

Timezone functions
timezone
This function returns the time zone, as defined on the computer where the Qlik engine is running.

timezone ()

GMT
This function returns the current Greenwich Mean Time, as derived from the regional settings.

GMT ()

UTC
Returns the current Coordinated Universal Time.

UTC ()

daylightsaving
Returns the current adjustment for daylight saving time, as defined in Windows.

daylightsaving ()

Script syntax and chart functions - Qlik Sense, May 2024 597

8 Script and chart functions

converttolocaltime
Converts a UTC or GMT timestamp to local time as a dual value. The place can be any of a number
of cities, places and time zones around the world.

converttolocaltime (timestamp [, place [, ignore_dst=false]])

Set time functions
setdateyear
This function takes as input a timestamp and a year and updates the timestamp with the year
specified in input.

setdateyear (timestamp, year)

setdateyearmonth
This function takes as input a timestamp, a month and a year and updates the timestamp with the
year and the month specified in input.

setdateyearmonth (timestamp, year, month)

In... functions
inyear
This function returns True if timestamp lies inside the year containing base_date.

inyear (date, basedate , shift [, first_month_of_year = 1])

inyeartodate
This function returns True if timestamp lies inside the part of year containing base_date up until
and including the last millisecond of base_date.

inyeartodate (date, basedate , shift [, first_month_of_year = 1])

inquarter
This function returns True if timestamp lies inside the quarter containing base_date.

inquarter (date, basedate , shift [, first_month_of_year = 1])

inquartertodate
This function returns True if timestamp lies inside the part of the quarter containing base_date up
until and including the last millisecond of base_date.

inquartertodate (date, basedate , shift [, first_month_of_year = 1])

inmonth
This function returns True if timestamp lies inside the month containing base_date.

inmonth (date, basedate , shift)

inmonthtodate
Returns True if date lies inside the part of month containing basedate up until and including the last
millisecond of basedate.

Script syntax and chart functions - Qlik Sense, May 2024 598

8 Script and chart functions

inmonthtodate (date, basedate , shift)

inmonths
This function finds if a timestamp falls within the same month, bi-month, quarter, four-month
period, or half-year as a base date. It is also possible to find if the timestamp falls within a previous
or following time period.

inmonths (n, date, basedate , shift [, first_month_of_year = 1])

inmonthstodate
This function finds if a timestamp falls within the part a period of the month, bi-month, quarter, four-
month period, or half-year up to and including the last millisecond of base_date. It is also possible to
find if the timestamp falls within a previous or following time period.

inmonthstodate (n, date, basedate , shift [, first_month_of_year = 1])

inweek
This function returns True if timestamp lies inside the week containing base_date.

inweek (date, basedate , shift [, weekstart])

inweektodate
This function returns True if timestamp lies inside the part of week containing base_date up until
and including the last millisecond of base_date.

inweektodate (date, basedate , shift [, weekstart])

inlunarweek
This function determines if timestamp lies inside the lunar week containing base_date. Lunar
weeks in Qlik Sense are defined by counting January 1 as the first day of the week., Apart from the
final week of the year, each week will contain exactly seven days.

inlunarweek (date, basedate , shift [, weekstart])

inlunarweektodate
This function finds if timestamp lies inside the part of the lunar week up to and including the last
millisecond of base_date. Lunar weeks in Qlik Sense are defined by counting January 1 as the first
day of the week and, apart from the final week of the year, will contain exactly seven days.

inlunarweektodate (date, basedate , shift [, weekstart])

inday
This function returns True if timestamp lies inside the day containing base_timestamp.

inday (timestamp, basetimestamp , shift [, daystart])

indaytotime
This function returns True if timestamp lies inside the part of day containing base_timestamp up
until and including the exact millisecond of base_timestamp.

indaytotime (timestamp, basetimestamp , shift [, daystart])

Script syntax and chart functions - Qlik Sense, May 2024 599

8 Script and chart functions

Start ... end functions
yearstart
This function returns a timestamp corresponding to the start of the first day of the year containing
date. The default output format will be the DateFormat set in the script.

yearstart (date [, shift = 0 [, first_month_of_year = 1]])

yearend
This function returns a value corresponding to a timestamp of the last millisecond of the last day of
the year containing date. The default output format will be the DateFormat set in the script.

yearend (date [, shift = 0 [, first_month_of_year = 1]])

yearname
This function returns a four-digit year as display value with an underlying numeric value
corresponding to a timestamp of the first millisecond of the first day of the year containing date.

yearname (date [, shift = 0 [, first_month_of_year = 1]])

quarterstart
This function returns a value corresponding to a timestamp of the first millisecond of the quarter
containing date. The default output format will be the DateFormat set in the script.

quarterstart (date [, shift = 0 [, first_month_of_year = 1]])

quarterend
This function returns a value corresponding to a timestamp of the last millisecond of the quarter
containing date. The default output format will be the DateFormat set in the script.

quarterend (date [, shift = 0 [, first_month_of_year = 1]])

quartername
This function returns a display value showing the months of the quarter (formatted according to the
MonthNames script variable) and year with an underlying numeric value corresponding to a
timestamp of the first millisecond of the first day of the quarter.

quartername (date [, shift = 0 [, first_month_of_year = 1]])

monthstart
This function returns a value corresponding to a timestamp of the first millisecond of the first day of
the month containing date. The default output format will be the DateFormat set in the script.

monthstart (date [, shift = 0])

monthend
This function returns a value corresponding to a timestamp of the last millisecond of the last day of
the month containing date. The default output format will be the DateFormat set in the script.

monthend (date [, shift = 0])

Script syntax and chart functions - Qlik Sense, May 2024 600

8 Script and chart functions

monthname
This function returns a display value showing the month (formatted according to the MonthNames
script variable) and year with an underlying numeric value corresponding to a timestamp of the first
millisecond of the first day of the month.

monthname (date [, shift = 0])

monthsstart
This function returns a value corresponding to the timestamp of the first millisecond of the month,
bi-month, quarter, four-month period, or half-year containing a base date. It is also possible to find
the timestamp for a previous or following time period.The default output format is the DateFormat
set in the script.

monthsstart (n, date [, shift = 0 [, first_month_of_year = 1]])

monthsend
This function returns a value corresponding to a timestamp of the last millisecond of the month, bi-
month, quarter, four-month period, or half-year containing a base date. It is also possible to find the
timestamp for a previous or following time period.

monthsend (n, date [, shift = 0 [, first_month_of_year = 1]])

monthsname
This function returns a display value representing the range of the months of the period (formatted
according to the MonthNames script variable) as well as the year. The underlying numeric value
corresponds to a timestamp of the first millisecond of the month, bi-month, quarter, four-month
period, or half-year containing a base date.

monthsname (n, date [, shift = 0 [, first_month_of_year = 1]])

weekstart
This function returns a value corresponding to a timestamp of the first millisecond of the first day of
the calendar week containing date. The default output format is the DateFormat set in the script.

weekstart (date [, shift = 0 [,weekoffset = 0]])

weekend
This function returns a value corresponding to a timestamp of the last millisecond of the last day of
the calendar week containing date. The default output format will be the DateFormat set in the
script.

weekend (date [, shift = 0 [,weekoffset = 0]])

weekname
This function returns a value showing the year and week number with an underlying numeric value
corresponding to a timestamp of the first millisecond of the first day of the week containing date.

weekname (date [, shift = 0 [,weekoffset = 0]])

Script syntax and chart functions - Qlik Sense, May 2024 601

8 Script and chart functions

lunarweekstart
This function returns a value corresponding to a timestamp of the first millisecond of the first day of
the lunar week containing date. Lunar weeks in Qlik Sense are defined by counting January 1 as the
first day of the week and, apart from the final week of the year, will contain exactly seven days.

lunarweekstart (date [, shift = 0 [,weekoffset = 0]])

lunarweekend
This function returns a value corresponding to a timestamp of the last millisecond of the last day of
the lunar week containing date. Lunar weeks in Qlik Sense are defined by counting January 1 as the
first day of the week and, apart from the final week of the year, will contain exactly seven days.

lunarweekend (date [, shift = 0 [,weekoffset = 0]])

lunarweekname
This function returns a display value showing the year and lunar week number corresponding to a
timestamp of the first millisecond of the first day of the lunar week containing date. Lunar weeks in
Qlik Sense are defined by counting January 1as the first day of the week and, apart from the final
week of the year, will contain exactly seven days.

lunarweekname (date [, shift = 0 [,weekoffset = 0]])

daystart
This function returns a value corresponding to a timestamp with the first millisecond of the day
contained in the time argument. The default output format will be the TimestampFormat set in the
script.

daystart (timestamp [, shift = 0 [, dayoffset = 0]])

dayend
This function returns a value corresponding to a timestamp of the final millisecond of the day
contained in time. The default output format will be the TimestampFormat set in the script.

dayend (timestamp [, shift = 0 [, dayoffset = 0]])

dayname
This function returns a value showing the date with an underlying numeric value corresponding to a
timestamp of the first millisecond of the day containing time.

dayname (timestamp [, shift = 0 [, dayoffset = 0]])

Day numbering functions
age
The age function returns the age at the time of timestamp (in completed years) of somebody born
on date_of_birth.

age (timestamp, date_of_birth)

Script syntax and chart functions - Qlik Sense, May 2024 602

8 Script and chart functions

networkdays
The networkdays function returns the number of working days (Monday-Friday) between and
including start_date and end_date taking into account any optionally listed holiday.

networkdays (start:date, end_date {, holiday})

firstworkdate
The firstworkdate function returns the latest starting date to achieve no_of_workdays (Monday-
Friday) ending no later than end_date taking into account any optionally listed holidays. end_date
and holiday should be valid dates or timestamps.

firstworkdate (end_date, no_of_workdays {, holiday})

lastworkdate
The lastworkdate function returns the earliest ending date to achieve no_of_workdays (Monday-
Friday) if starting at start_date taking into account any optionally listed holiday. start_date and
holiday should be valid dates or timestamps.

lastworkdate (start_date, no_of_workdays {, holiday})

daynumberofyear
This function calculates the day number of the year in which a timestamp falls. The calculation is
made from the first millisecond of the first day of the year, but the first month can be offset.

daynumberofyear (date[,firstmonth])

daynumberofquarter
This function calculates the day number of the quarter in which a timestamp falls. This function is
used when creating a Master Calendar.

daynumberofquarter (date[,firstmonth])

addmonths
This function returns the date occurring n months after startdate or, if n is negative,
the date occurring n months before startdate.

Syntax:
AddMonths(startdate, n , [, mode])

Return data type: dual

The addmonths() function adds or subtracts a defined number of months, n, from a startdate and
returns the resultant date.

The mode argument will impact startdate values on or after the 28th of the month. By setting the
mode argument to 1, the addmonths() function returns a date that is equal in relative distance to the
end of the month as the startdate.

Script syntax and chart functions - Qlik Sense, May 2024 603

8 Script and chart functions

Example diagram of addmonths() function

For example, February 28 is the last day of the month. If the addmonths() function, with a mode of 1, is
used to return the date two months later, the function will return the last date of April, April 30.

Example diagram of addmonths() function, with mode=1

Argument Description

startdate The start date as a time stamp, for example '2012-10-12'.

n Number of months as a positive or negative integer.

mode Specifies if the month is added relative to the beginning or to the end of the
month. Default mode is 0 for additions relative to the beginning of the month. Set
mode to 1 for additions relative to the end of the month. When mode is set to 1
and the input date is the 28th or above, the function checks how many days are
left to reach the end of the month on the startdate. The same number of days to
reach the end of the month are set on the date returned.

Arguments

When to use it
The addmonths() function will commonly be used in an expression to find a date a given number of
months before or after a period of time.

For example, the addmonths() function can be used to identify the end date of mobile phone
contracts.

Example Result

addmonths ('01/29/2003' ,3) Returns '04/29/2003'.

addmonths ('01/29/2003',3,0) Returns '04/29/2003'.

Function examples

Script syntax and chart functions - Qlik Sense, May 2024 604

8 Script and chart functions

Example Result

addmonths ('01/29/2003',3,1) Returns '04/28/2003'.

addmonths ('01/29/2003',1,0) Returns '02/28/2003'.

addmonths ('01/29/2003',1,1) Returns '02/26/2003'.

addmonths ('02/28/2003',1,0) Returns '03/28/2003'.

addmonths ('02/28/2003',1,1) Returns '03/31/2003'.

addmonths ('01/29/2003',-3) Returns '10/29/2002'.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022, which is loaded into a
table called Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, two_months_later, that returns the date for two months after the

transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

addmonths(date,2) as two_months_later

Script syntax and chart functions - Qlik Sense, May 2024 605

8 Script and chart functions

;

Load

*

Inline

[

id,date,amount

8188,'01/10/2020',37.23

8189,'02/28/2020',17.17

8190,'04/09/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'02/02/2022',46.23

8205,'02/26/2022',84.21

8206,'03/07/2022',96.24

8207,'03/11/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l two_months_later

date two_months_later

01/10/2020 03/10/2020

02/28/2020 04/28/2020

04/09/2020 06/09/2020

04/16/2020 06/16/2020

05/21/2020 07/21/2020

08/14/2020 10/14/2020

10/07/2020 12/07/2020

12/05/2020 02/05/2021

Results table

Script syntax and chart functions - Qlik Sense, May 2024 606

8 Script and chart functions

date two_months_later

01/22/2021 03/22/2021

02/03/2021 04/03/2021

03/17/2021 05/17/2021

04/23/2021 06/23/2021

05/04/2021 07/04/2021

06/30/2021 08/30/2021

07/26/2021 09/26/2021

12/27/2021 02/27/2022

02/02/2022 04/02/2022

02/26/2022 04/26/2022

03/07/2022 05/07/2022

03/11/2022 05/11/2022

The two_months_later field is created in the preceding load statement by using the addmonths()

function. The first argument provided identifies which date is being evaluated. The second
argument is the number of months to add or subtract from the startdate. In this instance, the value
of 2 is provided.

Diagram of addmonths() function, example with no additional arguments

Transaction 8193 took place on August 14. Therefore, the addmonths() function returns October 14,
2020 for the two_months_later field.

Example 2 – Relative month end
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2024 607

8 Script and chart functions

l A dataset containing a set of month-end transactions in 2022, which is loaded into a table
called Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, relative_two_months_prior, that returns the relative month-end date

for two months before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

addmonths(date,-2,1) as relative_two_months_prior

;

Load

*

Inline

[

id,date,amount

8188,'01/28/2022',37.23

8189,'01/31/2022',57.54

8190,'02/28/2022',17.17

8191,'04/29/2022',88.27

8192,'04/30/2022',57.42

8193,'05/31/2022',53.80

8194,'08/14/2022',82.06

8195,'10/07/2022',40.39

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l relative_two_months_prior

date relative_two_months_prior

01/28/2022 11/27/2021

01/31/2022 11/30/2021

02/28/2022 12/31/2021

04/29/2022 02/27/2022

04/30/2022 02/28/2022

05/31/2022 03/31/2022

Results table

Script syntax and chart functions - Qlik Sense, May 2024 608

8 Script and chart functions

date relative_two_months_prior

08/14/2022 06/14/2022

10/07/2022 08/07/2022

The relative_two_months_prior field is created in the preceding load statement by using the
addmonths() function. The first argument provided identifies which date is being evaluated. The
second argument is the number of months to add or subtract from the startdate. In this instance,
the value of -2 is provided. The final argument is the mode, with a value of 1, which forces the
function to calculate the relative month-end date for all dates greater than or equal to 28.

Diagram of addmonths() function, example with n=-2

Transaction 8191 takes place on April 29, 2022. Initially, two months prior would set the month to
February. Then, due to the third argument of the function setting the mode to 1 and the day value
being later than the 27th, the function calculates the relative month-end value. The function
identifies that the 29th is the second last day of April and therefore returns the second last day of
February, the 27th.

Example 3– Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation that
returns the date for two months after the transaction took place is created as a measure in a chart
object.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

Script syntax and chart functions - Qlik Sense, May 2024 609

8 Script and chart functions

id,date,amount

8188,'01/10/2020',37.23

8189,'02/28/2020',17.17

8190,'04/09/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'02/02/2022',46.23

8205,'02/26/2022',84.21

8206,'03/07/2022',96.24

8207,'03/11/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Create the following measure:

=addmonths(date,2)

date =addmonths(date,2)

01/10/2020 03/10/2020

02/28/2020 04/28/2020

04/09/2020 06/09/2020

04/16/2020 06/16/2020

05/21/2020 07/21/2020

08/14/2020 10/14/2020

10/07/2020 12/07/2020

12/05/2020 02/05/2021

01/22/2021 03/22/2021

02/03/2021 04/03/2021

03/17/2021 05/17/2021

Results table

Script syntax and chart functions - Qlik Sense, May 2024 610

8 Script and chart functions

date =addmonths(date,2)

04/23/2021 06/23/2021

05/04/2021 07/04/2021

06/30/2021 08/30/2021

07/26/2021 09/26/2021

12/27/2021 02/27/2022

02/02/2022 04/02/2022

02/26/2022 04/26/2022

03/07/2022 05/07/2022

03/11/2022 05/11/2022

The two_months_later measure is created in the chart object by using the addmonths() function. The
first argument provided identifies which date is being evaluated. The second argument is the
number of months to add or subtract from the startdate. In this instance, the value of 2 is provided.

Diagram of addmonths() function, chart object example

Transaction 8193 took place on August 14. Therefore, the addmonths() function returns the October
14, 2020 for the two_months_later field.

Example 4 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called Mobile_Plans.
l Information with the contract ID, start date, contract length, and monthly fee.

The end user would like a chart object that displays, by contract ID, the termination date of each
phone contract.

Script syntax and chart functions - Qlik Sense, May 2024 611

8 Script and chart functions

Load script

Mobile_Plans:

Load

*

Inline

[

contract_id,start_date,contract_length,monthly_fee

8188,'01/13/2020',18,37.23

8189,'02/26/2020',24,17.17

8190,'03/27/2020',36,88.27

8191,'04/16/2020',24,57.42

8192,'05/21/2020',24,53.80

8193,'08/14/2020',12,82.06

8194,'10/07/2020',18,40.39

8195,'12/05/2020',12,87.21

8196,'01/22/2021',12,95.93

8197,'02/03/2021',18,45.89

8198,'03/17/2021',24,36.23

8199,'04/23/2021',24,25.66

8200,'05/04/2021',12,82.77

8201,'06/30/2021',12,69.98

8202,'07/26/2021',12,76.11

8203,'12/27/2021',36,25.12

8204,'06/06/2022',24,46.23

8205,'07/18/2022',12,84.21

8206,'11/14/2022',12,96.24

8207,'12/12/2022',18,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l contract_id

l start_date

l contract_length

Create the following measure to calculate the end date of each contract:

=addmonths(start_date,contract_length, 0)

contract_id start_date contract_length =addmonths(start_date,contract_length,0)

8188 01/13/2020 18 07/13/2021

8189 02/26/2020 24 02/26/2022

8190 03/27/2020 36 03/27/2023

8191 04/16/2020 24 04/16/2022

Results table

Script syntax and chart functions - Qlik Sense, May 2024 612

8 Script and chart functions

contract_id start_date contract_length =addmonths(start_date,contract_length,0)

8192 05/21/2020 24 05/21/2022

8193 08/14/2020 12 08/14/2021

8194 10/07/2020 18 04/07/2022

8195 12/05/2020 12 12/05/2021

8196 01/22/2021 12 01/22/2022

8197 02/03/2021 18 08/03/2022

8198 03/17/2021 24 03/17/2023

8199 04/23/2021 24 04/23/2023

8200 05/04/2021 12 05/04/2022

8201 06/30/2021 12 06/30/2022

8202 07/26/2021 12 07/26/2022

8203 12/27/2021 36 12/27/2024

8204 06/06/2022 24 06/06/2024

8205 07/18/2022 12 07/18/2023

8206 11/14/2022 12 11/14/2023

8207 12/12/2022 18 06/12/2024

addyears
This function returns the date occurring n years after startdate or, if n is negative, the
date occurring n years before startdate.

Syntax:
AddYears(startdate, n)

Return data type: dual

Example diagram of addyears() function

The addyears() function adds or subtracts a defined number of years, n, from a startdate. It then
returns the resulting date.

Script syntax and chart functions - Qlik Sense, May 2024 613

8 Script and chart functions

Argument Description

startdate The start date as a time stamp, for example '2012-10-12'.

n Number of years as a positive or negative integer.

Arguments

Example Result

addyears ('01/29/2010',3) Returns '01/29/2013'.

addyears ('01/29/2010',-1) Returns '01/29/2009'.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – Simple example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022, which is loaded into a
table called Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, two_years_later, that returns the date for two years after the

transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

Script syntax and chart functions - Qlik Sense, May 2024 614

8 Script and chart functions

*,

addyears(date,2) as two_years_later

;

Load

*

Inline

[

id,date,amount

8188,'01/10/2020',37.23

8189,'02/28/2020',17.17

8190,'04/09/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'02/02/2022',46.23

8205,'02/26/2022',84.21

8206,'03/07/2022',96.24

8207,'03/11/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l two_years_later

date two_years_later

01/10/2020 01/10/2022

02/28/2020 02/28/2022

04/09/2020 04/09/2022

04/16/2020 04/16/2022

05/21/2020 05/21/2022

08/14/2020 08/14/2022

10/07/2020 10/07/2022

Results table

Script syntax and chart functions - Qlik Sense, May 2024 615

8 Script and chart functions

date two_years_later

12/05/2020 12/05/2022

01/22/2021 01/22/2023

02/03/2021 02/03/2023

03/17/2021 03/17/2023

04/23/2021 04/23/2023

05/04/2021 05/04/2023

06/30/2021 06/30/2023

07/26/2021 07/26/2023

12/27/2021 12/27/2023

02/02/2022 02/02/2024

02/26/2022 02/26/2024

03/07/2022 03/07/2024

03/11/2022 03/11/2024

The two_years_later field is created in the preceding load statement by using the addyears()

function. The first argument provided identifies which date is being evaluated. The second
argument is the number of years to add or subtract from the start date. In this instance, the value of
2 is provided.

Diagram of addyears() function, basic example

Transaction 8193 took place on August 14, 2020. Therefore, the addyears() function returns August
14, 2022 for the two_years_later field.

Example 2 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2024 616

8 Script and chart functions

l A dataset containing a set of transactions between 2020 and 2022, which is loaded into a
table called Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.

In a chart object, create a measure, prior_year_date, that returns the date one year prior to when
the transaction takes place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'01/10/2020',37.23

8189,'02/28/2020',17.17

8190,'04/09/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'02/02/2022',46.23

8205,'02/26/2022',84.21

8206,'03/07/2022',96.24

8207,'03/11/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Create the following measure to calculate the date one year prior to each transaction:

=addyears(date,-1)

date =addyears(date,-1)

01/10/2020 01/10/2019

Results table

Script syntax and chart functions - Qlik Sense, May 2024 617

8 Script and chart functions

date =addyears(date,-1)

02/28/2020 02/28/2019

04/09/2020 04/09/2019

04/16/2020 04/16/2019

05/21/2020 05/21/2019

08/14/2020 08/14/2019

10/07/2020 10/07/2019

12/05/2020 12/05/2019

01/22/2021 01/22/2020

02/03/2021 02/03/2020

03/17/2021 03/17/2020

04/23/2021 04/23/2020

05/04/2021 05/04/2020

06/30/2021 06/30/2020

07/26/2021 07/26/2020

12/27/2021 12/27/2020

02/02/2022 02/02/2021

02/26/2022 02/26/2021

03/07/2022 03/07/2021

03/11/2022 03/11/2021

The one_year_prior measure is created in the chart object by using the addyears() function. The first
argument provided identifies which date is being evaluated. The second argument is the number of
years to add or subtract from the startdate. In this instance, the value of -1 is provided.

Diagram of addyears() function, chart object example

Transaction 8193 took place on August 14. Therefore, the addyears() function returns August 14,
2019 for the one_year_prior field.

Script syntax and chart functions - Qlik Sense, May 2024 618

8 Script and chart functions

Example 3 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called Warranties.
l Information with the product ID, purchase date, warranty length, and purchase price.

The end user would like a chart object that displays, by product ID, the warranty termination date of
each product.

Load script

Warranties:

Load

*

Inline

[

product_id,purchase_date,warranty_length,purchase_price

8188,'01/13/2020',4,32000

8189,'02/26/2020',2,28000

8190,'03/27/2020',3,41000

8191,'04/16/2020',4,17000

8192,'05/21/2020',2,25000

8193,'08/14/2020',1,59000

8194,'10/07/2020',2,12000

8195,'12/05/2020',3,12000

8196,'01/22/2021',4,24000

8197,'02/03/2021',1,50000

8198,'03/17/2021',2,80000

8199,'04/23/2021',3,10000

8200,'05/04/2021',4,30000

8201,'06/30/2021',3,30000

8202,'07/26/2021',4,20000

8203,'12/27/2021',4,10000

8204,'06/06/2022',2,25000

8205,'07/18/2022',1,32000

8206,'11/14/2022',1,30000

8207,'12/12/2022',4,22000

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 619

8 Script and chart functions

l product_id

l purchase_date

l warranty_length

Create the following measure to calculate the end date of each product's warranty:

=addyears(purchase_date,warranty_length)

product_id
purchase_
date

warranty_
length

=addyears(purchase_date,warranty_
length)

8188 01/13/2020 4 01/13/2024

8189 02/26/2020 2 02/26/2022

8190 03/27/2020 3 03/27/2023

8191 04/16/2020 4 04/16/2024

8192 05/21/2020 2 05/21/2022

8193 08/14/2020 1 08/14/2021

8194 10/07/2020 2 10/07/2022

8195 12/05/2020 3 12/05/2023

8196 01/22/2021 4 01/22/2025

8197 02/03/2021 1 02/03/2022

8198 03/17/2021 2 03/17/2023

8199 04/23/2021 3 04/23/2024

8200 05/04/2021 4 05/04/2025

8201 06/30/2021 3 06/30/2024

8202 07/26/2021 4 07/26/2025

8203 12/27/2021 4 12/27/2025

8204 06/06/2022 2 06/06/2024

8205 07/18/2022 1 07/18/2023

8206 11/14/2022 1 11/14/2023

8207 12/12/2022 4 12/12/2026

Results table

age
The age function returns the age at the time of timestamp (in completed years) of
somebody born on date_of_birth.

Syntax:
age(timestamp, date_of_birth)

Script syntax and chart functions - Qlik Sense, May 2024 620

8 Script and chart functions

Can be an expression.

Return data type: numeric

Arguments:

Argument Description

timestamp The timestamp,or expression resolving to a timestamp, up to which to calculate
the completed number of years.

date_of_
birth

Date of birth of the person whose age is being calculated. Can be an expression.

Arguments

Examples and results:
These examples use the date format DD/MM/YYYY. The date format is specified in the SET
DateFormat statement at the top of your data load script. Change the format in the examples to suit
your requirements.

Example Result

age('25/01/2014', '29/10/2012') Returns 1.

age('29/10/2014', '29/10/2012') Returns 2.

Scripting examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Employees:

LOAD * INLINE [

Member|DateOfBirth

John|28/03/1989

Linda|10/12/1990

Steve|5/2/1992

Birg|31/3/1993

Raj|19/5/1994

Prita|15/9/1994

Su|11/12/1994

Goran|2/3/1995

Sunny|14/5/1996

Ajoa|13/6/1996

Daphne|7/7/1998

Biffy|4/8/2000

] (delimiter is |);

AgeTable:

Load *,

age('20/08/2015', DateOfBirth) As Age

Resident Employees;

Drop table Employees;

Script syntax and chart functions - Qlik Sense, May 2024 621

8 Script and chart functions

The resulting table shows the returned values of age for each of the records in the table.

Member DateOfBirth Age

John 28/03/1989 26

Linda 10/12/1990 24

Steve 5/2/1992 23

Birg 31/3/1993 22

Raj 19/5/1994 21

Prita 15/9/1994 20

Su 11/12/1994 20

Goran 2/3/1995 20

Sunny 14/5/1996 19

Ajoa 13/6/1996 19

Daphne 7/7/1998 17

Biffy 4/8/2000 15

Results table

converttolocaltime
Converts a UTC or GMT timestamp to local time as a dual value. The place can be any
of a number of cities, places and time zones around the world.

Syntax:
ConvertToLocalTime(timestamp [, place [, ignore_dst=false]])

Return data type: dual

Argument Description

timestamp The timestamp, or expression resolving to a timestamp, to convert.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 622

8 Script and chart functions

Argument Description

place A place or timezone from the table of valid places and timezones below.
Alternatively, you can use GMT or UTC to define the local time. The following
values and time offset ranges are valid:

l GMT
l GMT-12:00 - GMT-01:00
l GMT+01:00 - GMT+14:00
l UTC
l UTC-12:00 - UTC-01:00
l UTC+01:00 - UTC+14:00

If you use a DST offset (that is, you specify an ignore_dst argument
value evaluating to False), you must specify a place, rather than a
GMT offset, in the place argument. This is because adjusting for
Daylight Saving Time requires latitudinal information in addition to the
longitudinal information provided by a GMT offset. For information,
see Using GMT offsets in combination with DST (page 626).

You can only use standard time offsets. It's not possible to use an
arbitrary time offset, for example, GMT-04:27.

ignore_dst If this argument evaluates to True, DST (daylight saving time) is ignored. Valid
argument values evaluating to True include -1 and True().

If this argument evaluates to False, the timestamp is adjusted for daylight saving
time. Valid argument values evaluating to False include 0 and False().

If the ignore_dst argument value is invalid, the function evaluates the expression
as if the ignore_dst value evaluates to True. If the ignore_dst argument value is
not specified, the function evaluates the expression as if the ignore_dst value
evaluates to False.

A-C D-K L-R S-Z

Abu Dhabi Darwin La Paz Samoa

Adelaide Dhaka Lima Santiago

Alaska Eastern Time (US &
Canada)

Lisbon Sapporo

Amsterdam Edinburgh Ljubljana Sarajevo

Valid places and time zones

Script syntax and chart functions - Qlik Sense, May 2024 623

8 Script and chart functions

A-C D-K L-R S-Z

Arizona Ekaterinburg London Saskatchewan

Astana Fiji Madrid Seoul

Athens Georgetown Magadan Singapore

Atlantic Time
(Canada)

Greenland Mazatlan Skopje

Auckland Greenwich Mean Time :
Dublin

Melbourne Sofia

Azores Guadalajara Mexico City Solomon Is.

Baghdad Guam Mid-Atlantic Sri
Jayawardenepura

Baku Hanoi Minsk St. Petersburg

Bangkok Harare Monrovia Stockholm

Beijing Hawaii Monterrey Sydney

Belgrade Helsinki Moscow Taipei

Berlin Hobart Mountain Time (US &
Canada)

Tallinn

Bern Hong Kong Mumbai Tashkent

Bogota Indiana (East) Muscat Tbilisi

Brasilia International Date Line
West

Nairobi Tehran

Bratislava Irkutsk New Caledonia Tokyo

Brisbane Islamabad New Delhi Urumqi

Brussels Istanbul Newfoundland Warsaw

Bucharest Jakarta Novosibirsk Wellington

Budapest Jerusalem Nuku'alofa West Central Africa

Buenos Aires Kabul Osaka Vienna

Cairo Kamchatka Pacific Time (US &
Canada)

Vilnius

Canberra Karachi Paris Vladivostok

Cape Verde Is. Kathmandu Perth Volgograd

Caracas Kolkata Port Moresby Yakutsk

Casablanca Krasnoyarsk Prague Yerevan

Script syntax and chart functions - Qlik Sense, May 2024 624

8 Script and chart functions

A-C D-K L-R S-Z

Central America Kuala Lumpur Pretoria Zagreb

Central Time (US &
Canada)

Kuwait Quito -

Chennai Kyiv Riga -

Chihuahua - Riyadh -

Chongqing - Rome -

Copenhagen - - -

Examples and results:

Example Result

ConvertToLocalTime('2023-08-14 08:39:47','Paris') Returns '2023-08-14 10:39:47' and the
corresponding internal timestamp
representation.

ConvertToLocalTime(UTC(), 'Stockholm') Returns the time for Stockholm, adjusting
for daylight saving time.

ConvertToLocalTime(UTC(), 'Stockholm', -1) Returns the time for Stockholm, without
daylight saving time adjustment.

ConvertToLocalTime(UTC(), 'GMT-05:00') Returns the time for the North American
east coast, for example, New York. No
adjustment is made for daylight saving
time because a GMT offset, rather than a
place, is specified.

ConvertToLocalTime(UTC(), 'New York', -1) Returns the time for the North American
east coast (New York), without daylight
saving time adjustment.

ConvertToLocalTime(UTC(), 'New York', True()) Returns the time for the North American
east coast (New York), without daylight
saving time adjustment.

ConvertToLocalTime(UTC(), 'New York', 0) Returns the time for the North American
east coast (New York), adjusting for
daylight saving time.

ConvertToLocalTime(UTC(), 'New York', False()) Returns the time for the North American
east coast (New York), adjusting for
daylight saving time.

Scripting examples

Script syntax and chart functions - Qlik Sense, May 2024 625

8 Script and chart functions

Using GMT offsets in combination with DST
Following the implementation of International Components for Unicode (ICU) libraries in Qlik Sense,
the use of GMT (Greenwich Mean Time) offsets in combination with DST (Daylight Saving Time)
requires additional latitudinal information.

GMT is a longitudinal (east-west) offset, whereas DST is a latitudinal (north-south) offset. For
example, Helsinki (Finland) and Johannesburg (South Africa) share the same GMT+02:00 offset,
but they do not share the same DST offset. This means that, further to the GMT offset, any DST
offset requires information on the latitudinal position of the local time zone (geographical time zone
input) in order to have full information about local DST conditions.

day
This function returns an integer representing the day when the fraction of the
expression is interpreted as a date according to the standard number interpretation.

The function returns the day of the month for a particular date. It is commonly used to derive a day
field as part of a calendar dimension.

Syntax:
day(expression)

Return data type: integer

Example Result

day(1971-10-12) returns 12

day(35648) returns 6, because 35648 = 1997-08-06

Function examples

Example 1 – DateFormat dataset (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates named Master_Calendar. The DateFormat system variable is set to
DD/MM/YYYY.

l A preceding load that creates an additional field, named day_of_month, using the day()

function.
l An additional field, named long_date, using the date() function to express the full month

name.

Script syntax and chart functions - Qlik Sense, May 2024 626

8 Script and chart functions

Load script

SET DateFormat='DD/MM/YYYY';

Master_Calendar:

Load

date,

date(date,'dd-MMMM-YYYY') as long_date,

day(date) as day_of_month

Inline

[

date

03/11/2022

03/12/2022

03/13/2022

03/14/2022

03/15/2022

03/16/2022

03/17/2022

03/18/2022

03/19/2022

03/20/2022

03/21/2022

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l long_date

l day_of_month

date long_date day_of_month

03/11/2022 11-March- 2022 11

03/12/2022 12-March- 2022 12

03/13/2022 13-March- 2022 13

03/14/2022 14-March- 2022 14

03/15/2022 15-March- 2022 15

03/16/2022 16-March- 2022 16

03/17/2022 17-March- 2022 17

03/18/2022 18-March- 2022 18

03/19/2022 19-March- 2022 19

Results table

Script syntax and chart functions - Qlik Sense, May 2024 627

8 Script and chart functions

date long_date day_of_month

03/20/2022 20-March- 2022 20

03/21/2022 21-March- 2022 21

The day of the month is correctly evaluated by the day() function in the script.

Example 2 – ANSI dates (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates named Master_Calendar. The DateFormat system variable DD/MM/YYYY is
used. However, the dates that are included in the dataset are in ANSI standard date format.

l A preceding load that creates an additional field, named day_of_month, using the date()

function.
l An additional field, named long_date, using the date() function to express the date with the

full month name.

Load script

SET DateFormat='DD/MM/YYYY';

Master_Calendar:

Load

date,

date(date,'dd-MMMM-YYYY') as long_date,

day(date) as day_of_month

Inline

[

date

2022-03-11

2022-03-12

2022-03-13

2022-03-14

2022-03-15

2022-03-16

2022-03-17

2022-03-18

2022-03-19

2022-03-20

2022-03-21

];

Script syntax and chart functions - Qlik Sense, May 2024 628

8 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l long_date

l day_of_month

date long_date day_of_month

03/11/2022 11-March- 2022 11

03/12/2022 12-March- 2022 12

03/13/2022 13-March- 2022 13

03/14/2022 14-March- 2022 14

03/15/2022 15-March- 2022 15

03/16/2022 16-March- 2022 16

03/17/2022 17-March- 2022 17

03/18/2022 18-March- 2022 18

03/19/2022 19-March- 2022 19

03/20/2022 20-March- 2022 20

03/21/2022 21-March- 2022 21

Results table

The day of the month is correctly evaluated by the day() function in the script.

Example 3 – Unformatted dates (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates named Master_Calendar. The DateFormat system variable DD/MM/YYYY is
used.

l A preceding load that creates an additional field, named day_of_month, using the day()

function.
l The original unformatted date, named unformatted_date.
l An additional field, named long_date, using the date() is used to convert the numerical date

into a formatted date field.

Script syntax and chart functions - Qlik Sense, May 2024 629

8 Script and chart functions

Load script

SET DateFormat='DD/MM/YYYY';

Master_Calendar:

Load

unformatted_date,

date(unformatted_date,'dd-MMMM-YYYY') as long_date,

day(date) as day_of_month

Inline

[

unformatted_date

44868

44898

44928

44958

44988

45018

45048

45078

45008

45038

45068

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l unformatted_date

l long_date

l day_of_month

unformatted_date long_date day_of_month

44868 03-November- 2022 3

44898 03-December- 2022 3

44928 02-January- 2023 2

44958 01-February- 2023 1

44988 03-March- 2023 3

45008 23-March- 2023 23

45018 02-April- 2023 2

45038 22-April- 2023 22

Results table

Script syntax and chart functions - Qlik Sense, May 2024 630

8 Script and chart functions

unformatted_date long_date day_of_month

45048 02-May- 2023 2

45068 22-May- 2023 22

45078 01-June- 2023 1

The day of the month is correctly evaluated by the day() function in the script.

Example 4 – Calculating expiry month (chart)
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of orders placed in March named Orders. The table contains three fields:
o id
o order_date
o amount

Load script

Orders:

Load

id,

order_date,

amount

Inline

[

id,order_date,amount

1,03/01/2022,231.24

2,03/02/2022,567.28

3,03/03/2022,364.28

4,03/04/2022,575.76

5,03/05/2022,638.68

6,03/06/2022,785.38

7,03/07/2022,967.46

8,03/08/2022,287.67

9,03/09/2022,764.45

10,03/10/2022,875.43

11,03/11/2022,957.35

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: order_date.

Script syntax and chart functions - Qlik Sense, May 2024 631

8 Script and chart functions

To calculate the delivery date, create this measure =day(order_date+5).

order_date =day(order_date+5)

03/11/2022 16

03/12/2022 17

03/13/2022 18

03/14/2022 19

03/15/2022 20

03/16/2022 21

03/17/2022 22

03/18/2022 23

03/19/2022 24

03/20/2022 25

03/21/2022 26

Results table

The day() function correctly determines that an order placed on the 11th of March would be
delivered on the 16th based on a 5 day delivery period.

dayend
This function returns a value corresponding to a timestamp of the final millisecond of
the day contained in time. The default output format will be the TimestampFormat set
in the script.

Syntax:
DayEnd(time[, [period_no[, day_start]])

When to use it

The dayend() function is commonly used as part of an expression when the user would like the
calculation to use the fraction of the day that has not yet occurred. For example, to calculate the
total expenses still to be incurred during the day.

Return data type: dual

Argument Description

time The timestamp to evaluate.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 632

8 Script and chart functions

Argument Description

period_no period_no is an integer, or expression that resolves to an integer, where the value
0 indicates the day that contains time. Negative values in period_no indicate
preceding days and positive values indicate succeeding days.

day_start To specify that days do not starting at midnight, indicate an offset as a fraction of
a day in day_start. For example, 0.125 to denote 3:00 AM.
In other words, to create the offset, divide the start time by 24 hours. For
example, for a day to begin at 7:00 AM, use the fraction 7/24.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example Result

dayend('01/25/2013 16:45:00') Returns 01/25/2013 23:59:59. PM

dayend('01/25/2013 16:45:00', -1) Returns 01/24/2013 23:59:59. PM

dayend('01/25/2013 16:45:00', 0, 0.5) Returns 01/26/2013 11:59:59. PM

Function examples

Example 1 - Basic script
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a list of dates is loaded into a table named "Calendar".
l The default DateFormat system variable (MM/DD/YYYY).
l A preceding load to create an additional field 'EOD_timestamp', using the dayend() function.

Script syntax and chart functions - Qlik Sense, May 2024 633

8 Script and chart functions

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Calendar:

Load

date,

dayend(date) as EOD_timestamp

;

Load

date

Inline

[

date

03/11/2022 1:47:15 AM

03/12/2022 4:34:58 AM

03/13/2022 5:15:55 AM

03/14/2022 9:25:14 AM

03/15/2022 10:06:54 AM

03/16/2022 10:44:42 AM

03/17/2022 11:33:30 AM

03/18/2022 12:58:14 PM

03/19/2022 4:23:12 PM

03/20/2022 6:42:15 PM

03/21/2022 7:41:16 PM

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l EOD_timestamp

date EOD_timestamp

03/11/2022 1:47:15 AM 3/11/2022 11:59:59 PM

03/12/2022 4:34:58 AM 3/12/2022 11:59:59 PM

03/13/2022 5:15:55 AM 3/13/2022 11:59:59 PM

03/14/2022 9:25:14 AM 3/14/2022 11:59:59 PM

03/15/2022 10:06:54 AM 3/15/2022 11:59:59 PM

03/16/2022 10:44:42 AM 3/16/2022 11:59:59 PM

03/17/2022 11:33:30 AM 3/17/2022 11:59:59 PM

03/18/2022 12:58:14 PM 3/18/2022 11:59:59 PM

03/19/2022 4:23:12 PM 3/19/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 634

8 Script and chart functions

date EOD_timestamp

03/20/2022 6:42:15 PM 3/20/2022 11:59:59 PM

03/21/2022 7:41:16 PM 3/21/2022 11:59:59 PM

As you can see in the table above, the end of day timestamp is generated for each date in our
dataset. The timestamp is in the format of the system variable TimestampFormat M/D/YYYY h:mm:ss

[.fff] TT.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

You will load a dataset containing service bookings into a table named 'Services'.

The dataset includes the following fields:

l service_id

l service_date

l amount

You will create two new fields in the table:

l deposit_due_date: The date when the deposit should be received. This is the end of the day
three days before the service_date.

l final_payment_due_date: The date when the final payment should be received. This is the end
of the day seven days after the service_date.

The two fields above are created in a preceding load using the dayend() function and they supply
the first two parameters, time and period_no.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Services:

Load

*,

dayend(service_date,-3) as deposit_due_date,

dayend(service_date,7) as final_payment_due_date

;

Load

service_id,

service_date,

amount

Inline

[

Script syntax and chart functions - Qlik Sense, May 2024 635

8 Script and chart functions

service_id, service_date,amount

1,03/11/2022 9:25:14 AM,231.24

2,03/12/2022 10:06:54 AM,567.28

3,03/13/2022 10:44:42 AM,364.28

4,03/14/2022 11:33:30 AM,575.76

5,03/15/2022 12:58:14 PM,638.68

6,03/16/2022 4:23:12 PM,785.38

7,03/17/2022 6:42:15 PM,967.46

8,03/18/2022 7:41:16 PM,287.67

9,03/19/2022 8:14:15 PM,764.45

10,03/20/2022 9:23:51 PM,875.43

11,03/21/2022 10:04:41 PM,957.35

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l service_date

l deposit_due_date

l final_payment_due_date

service_date deposit_due_date final_payment_due_date

03/11/2022 9:25:14 AM 3/8/2022 11:59:59 PM 3/18/2022 11:59:59 PM

03/12/2022 10:06:54 AM 3/9/2022 11:59:59 PM 3/19/2022 11:59:59 PM

03/13/2022 10:44:42 AM 3/10/2022 11:59:59 PM 3/20/2022 11:59:59 PM

03/14/2022 11:33:30 AM 3/11/2022 11:59:59 PM 3/21/2022 11:59:59 PM

03/15/2022 12:58:14 PM 3/12/2022 11:59:59 PM 3/22/2022 11:59:59 PM

03/16/2022 4:23:12 PM 3/13/2022 11:59:59 PM 3/23/2022 11:59:59 PM

03/17/2022 6:42:15 PM 3/14/2022 11:59:59 PM 3/24/2022 11:59:59 PM

03/18/2022 7:41:16 PM 3/15/2022 11:59:59 PM 3/25/2022 11:59:59 PM

03/19/2022 8:14:15 PM 3/16/2022 11:59:59 PM 3/26/2022 11:59:59 PM

03/20/2022 9:23:51 PM 3/17/2022 11:59:59 PM 3/27/2022 11:59:59 PM

03/21/2022 10:04:41 PM 3/18/2022 11:59:59 PM 3/28/2022 11:59:59 PM

Results table

The values of the new fields are in the TimestampFormat M/D/YYYY h:mm:ss[.fff] TT. Because the
function dayend() was used, the timestamp values are all the last millisecond of the day.

The deposit due date values are three days before the service date because the second argument
passed in the dayend() function is negative.

The final payment due date values are seven days after the service date because the second
argument passed in the dayend() function is positive.

Script syntax and chart functions - Qlik Sense, May 2024 636

8 Script and chart functions

Example 3 – day_start script
Load script and results

Overview

Open the Data load editor and add the load script below in a new tab.

The dataset and scenario used in this example is the same as in the previous example.

As in the previous example, you will create two new fields:

l deposit_due_date: The date when the deposit should be received. This is the end of the day
three days before the service_date.

l final_payment_due_date: The date when the final payment should be received. This is the end
of the day seven days after the service_date.

However, your company would like to operate under a policy where the working day begins at 5 PM
and ends at 5 PM the following day. Your company can then monitor transactions that occur in
those working hours.

To achieve these requirements, the two fields above are created in a preceding load using the
dayend() function and use all three arguments, time, period_no, and day_start.

Load Script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Services:

Load

*,

dayend(service_date,-3,17/24) as deposit_due_date,

dayend(service_date,7,17/24) as final_payment_due_date

;

Load

service_id,

service_date,

amount

Inline

[

service_id, service_date,amount

1,03/11/2022 9:25:14 AM,231.24

2,03/12/2022 10:06:54 AM,567.28

3,03/13/2022 10:44:42 AM,364.28

4,03/14/2022 11:33:30 AM,575.76

5,03/15/2022 12:58:14 PM,638.68

6,03/16/2022 4:23:12 PM,785.38

7,03/17/2022 6:42:15 PM,967.46

8,03/18/2022 7:41:16 PM,287.67

9,03/19/2022 8:14:15 PM,764.45

10,03/20/2022 9:23:51 PM,875.43

Script syntax and chart functions - Qlik Sense, May 2024 637

8 Script and chart functions

11,03/21/2022 10:04:41 PM,957.35

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l service_date

l deposit_due_date

l final_payment_due_date

service_date deposit_due_date final_payment_due_date

03/11/2022 9:25:14 AM 3/8/2022 4:59:59 PM 3/18/2022 4:59:59 PM

03/12/2022 10:06:54 AM 3/9/2022 4:59:59 PM 3/19/2022 4:59:59 PM

03/13/2022 10:44:42 AM 3/10/2022 4:59:59 PM 3/20/2022 4:59:59 PM

03/14/2022 11:33:30 AM 3/11/2022 4:59:59 PM 3/21/2022 4:59:59 PM

03/15/2022 12:58:14 PM 3/12/2022 4:59:59 PM 3/22/2022 4:59:59 PM

03/16/2022 4:23:12 PM 3/13/2022 4:59:59 PM 3/23/2022 4:59:59 PM

03/17/2022 6:42:15 PM 3/14/2022 4:59:59 PM 3/24/2022 4:59:59 PM

03/18/2022 7:41:16 PM 3/15/2022 4:59:59 PM 3/25/2022 4:59:59 PM

03/19/2022 8:14:15 PM 3/16/2022 4:59:59 PM 3/26/2022 4:59:59 PM

03/20/2022 9:23:51 PM 3/17/2022 4:59:59 PM 3/27/2022 4:59:59 PM

03/21/2022 10:04:41 PM 3/18/2022 4:59:59 PM 3/28/2022 4:59:59 PM

Results table

While the dates remain the same as in Example 2, the dates now have a timestamp of the last
millisecond before 5:00 PM because the value of the third argument, day_start, passed into the
dayend() function is 17/24.

Example 4 – Chart example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The dataset and scenario used in this example is the same as in the previous two examples. The
company would like to operate under a policy where the working day begins at 5:00 PM and ends at
5:00 PM the following day.

As in the previous example, you will create two new fields:

Script syntax and chart functions - Qlik Sense, May 2024 638

8 Script and chart functions

l deposit_due_date: The date when the deposit should be received. This is the end of the day
three days before the service_date.

l final_payment_due_date: The date when the final payment should be received. This is the end
of the day seven days after the service_date.

Load Script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Services:

Load

service_id,

service_date,

amount

Inline

[

service_id, service_date,amount

1,03/11/2022 9:25:14 AM,231.24

2,03/12/2022 10:06:54 AM,567.28

3,03/13/2022 10:44:42 AM,364.28

4,03/14/2022 11:33:30 AM,575.76

5,03/15/2022 12:58:14 PM,638.68

6,03/16/2022 4:23:12 PM,785.38

7,03/17/2022 6:42:15 PM,967.46

8,03/18/2022 7:41:16 PM,287.67

9,03/19/2022 8:14:15 PM,764.45

10,03/20/2022 9:23:51 PM,875.43

11,03/21/2022 10:04:41 PM,957.35

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

service_date.

To create the deposit_due_date field, create this measure.

=dayend(service_date,-3,17/24).

Then, to create the final_payment_due_date field, create this measure:

=dayend(service_date,7,17/24).

service_date =dayend(service_date,-3,17/24) =dayend(service_date,7,17/24

03/11/2022 3/8/2022 16:59:59 PM 3/18/2022 16:59:59 PM

03/12/2022 3/9/2022 16:59:59 PM 3/19/2022 16:59:59 PM

03/13/2022 3/10/2022 16:59:59 PM 3/20/2022 16:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 639

8 Script and chart functions

service_date =dayend(service_date,-3,17/24) =dayend(service_date,7,17/24

03/14/2022 3/11/2022 16:59:59 PM 3/21/2022 16:59:59 PM

03/15/2022 3/12/2022 16:59:59 PM 3/22/2022 16:59:59 PM

03/16/2022 3/13/2022 16:59:59 PM 3/23/2022 16:59:59 PM

03/17/2022 3/14/2022 16:59:59 PM 3/24/2022 16:59:59 PM

03/18/2022 3/15/2022 16:59:59 PM 3/25/2022 16:59:59 PM

03/19/2022 3/16/2022 16:59:59 PM 3/26/2022 16:59:59 PM

03/20/2022 3/17/2022 16:59:59 PM 3/27/2022 16:59:59 PM

03/21/2022 3/18/2022 16:59:59 PM 3/28/2022 16:59:59 PM

The values of the new fields are in the TimestampFormat M/D/YYYY h:mm:ss[.fff] TT. Because the
function dayend() was used, the timestamp values are all the last millisecond of the day.

The payment due date values are three days before the service date because the second argument
passed in the dayend() function is negative.

The final payment due date values are seven days after the service date because the second
argument passed in the dayend() function is positive.

The dates have a timestamp of the last millisecond before 5:00 PM because the value of the third
argument, day_start,that passed into the dayend() function is 17/24.

Argument Description

time The timestamp to evaluate.

period_no period_no is an integer, or expression that resolves to an integer, where the value
0 indicates the day that contains time. Negative values in period_no indicate
preceding days and positive values indicate succeeding days.

day_start To specify that days do not starting at midnight, indicate an offset as a fraction of
a day in day_start. For example, 0.125 to denote 3:00 AM.

Arguments

daylightsaving
Returns the current adjustment for daylight saving time, as defined in Windows.

Syntax:
DaylightSaving()

Return data type: dual

Example:

daylightsaving()

Script syntax and chart functions - Qlik Sense, May 2024 640

8 Script and chart functions

dayname
This function returns a value showing the date with an underlying numeric value
corresponding to a timestamp of the first millisecond of the day containing time.

Syntax:
DayName(time[, period_no [, day_start]])

Return data type: dual

Arguments:

Argument Description

time The timestamp to evaluate.

period_no period_no is an integer, or expression that resolves to an integer, where the value
0 indicates the day that contains time. Negative values in period_no indicate
preceding days and positive values indicate succeeding days.

day_start To specify that days do not starting at midnight, indicate an offset as a fraction of
a day in day_start. For example, 0.125 to denote 3:00 AM.

Arguments

Examples and results:
These examples use the date format DD/MM/YYYY. The date format is specified in the SET
DateFormat statement at the top of your data load script. Change the format in the examples to suit
your requirements.

Example Result

dayname('25/01/2013

16:45:00')
Returns 25/01/2013.

dayname('25/01/2013

16:45:00', -1)
Returns 24/01/2013.

dayname('25/01/2013

16:45:00', 0, 0.5)
Returns 25/01/2013.

Displaying the full timestamp shows the underlying numeric value
corresponds to '25/01/2013 12:00:00.000.

Scripting examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Script syntax and chart functions - Qlik Sense, May 2024 641

8 Script and chart functions

In this example, the day name is created from the timestamp that marks the beginning of the day
after each invoice date in the table.

TempTable:

LOAD RecNo() as InvID, * Inline [

InvDate

28/03/2012

10/12/2012

5/2/2013

31/3/2013

19/5/2013

15/9/2013

11/12/2013

2/3/2014

14/5/2014

13/6/2014

7/7/2014

4/8/2014

];

InvoiceData:

LOAD *,

DayName(InvDate, 1) AS DName

Resident TempTable;

Drop table TempTable;

The resulting table contains the original dates and a column with the return value of the dayname()
function. You can display the full timestamp by specifying the formatting in the propertiespanel.

InvDate DName

28/03/2012 29/03/2012 00:00:00

10/12/2012 11/12/2012 00:00:00

5/2/2013 07/02/2013 00:00:00

31/3/2013 01/04/2013 00:00:00

19/5/2013 20/05/2013 00:00:00

15/9/2013 16/09/2013 00:00:00

11/12/2013 12/12/2013 00:00:00

2/3/2014 03/03/2014 00:00:00

14/5/2014 15/05/2014 00:00:00

13/6/2014 14/06/2014 00:00:00

7/7/2014 08/07/2014 00:00:00

4/8/2014 05/08/2014 00:00:00

Results table

Script syntax and chart functions - Qlik Sense, May 2024 642

8 Script and chart functions

daynumberofquarter
This function calculates the day number of the quarter in which a timestamp falls. This
function is used when creating a Master Calendar.

Syntax:
DayNumberOfQuarter(timestamp[,start_month])

Return data type: integer

Argument Description

timestamp The date or timestamp to evaluate.

start_month By specifying a start_month between 2 and 12 (1, if omitted), the beginning of
the year may be moved forward to the first day of any month. For example, if you
want to work with a fiscal year starting March 1, specify start_month = 3.

Arguments

These examples use the date format DD/MM/YYYY. The date format is specified in the SET
DateFormat statement at the top of your data load script. Change the format in the examples to suit
your requirements.

Example Result

DayNumberOfQuarter('12/09/2014') Returns 74, the day number of the current quarter.

DayNumberOfQuarter

('12/09/2014',3)
Returns 12, the day number of the current quarter.
In this case, the first quarter starts with March (because
start_month is specified as 3). This means that the current
quarter is the third quarter, which started on September 1.

Function examples

Example 1 – January start of year (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A simple dataset containing a list of dates, which is loaded into a table named Calendar. The
default DateFormat system variable MM/DD/YYYY is used.

l A preceding load that creates an additional field named DayNrQtr, using the
DayNumberOfQuarter() function.

Aside from the date, no additional parameters are provided to the function.

Script syntax and chart functions - Qlik Sense, May 2024 643

8 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Calendar:

Load

date,

DayNumberOfQuarter(date) as DayNrQtr

;

Load

date

Inline

[

date

01/01/2022

01/10/2022

01/31/2022

02/01/2022

02/10/2022

02/28/2022

03/01/2022

03/31/2022

04/01/2022

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l daynrqtr

date daynrqtr

01/01/2022 1

01/10/2022 10

01/31/2022 31

02/01/2022 32

02/10/2022 41

02/28/2022 59

03/01/2022 61

03/31/2022 91

04/01/2022 1

Results table

The first day of the year is January 1 because no second argument was passed into the
DayNumberOfQuarter() function.

Script syntax and chart functions - Qlik Sense, May 2024 644

8 Script and chart functions

January 1st is the 1st day of the quarter whilst February 1st is the 32nd day of the quarter. The 31st
of March is the 91st and final day of the quarter, whilst the 1st of April is the 1st day of the 2nd
Quarter.

Example 2 – February start of year (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset from the first example.
l The default DateFormat system variable MM/DD/YYYY is used.
l A start_month argument beginning on February 1. This sets the financial year to February 1.

Load script

SET DateFormat='MM/DD/YYYY';

Calendar:

Load

date,

DayNumberOfQuarter(date,2) as DayNrQtr

;

Load

date

Inline

[

date

01/01/2022

01/10/2022

01/31/2022

02/01/2022

02/10/2022

02/28/2022

03/01/2022

03/31/2022

04/01/2022

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l daynrqtr

Script syntax and chart functions - Qlik Sense, May 2024 645

8 Script and chart functions

date daynrqtr

01/01/2022 62

01/10/2022 71

01/31/2022 92

02/01/2022 1

02/10/2022 10

02/28/2022 28

03/01/2022 30

03/31/2022 60

04/01/2022 61

Results table

The first day of the year is the 1st of February because the second argument passed into the
DayNumberOfQuarter() function was 2.

The first quarter of the year operates between February and April whilst the fourth quarter operates
between November and January. This is shown in the results table where February 1st is the 1st day
of the quarter whilst January 31st is the 92nd and last day of the quarter.

Example 3 – January start of year (chart)
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset from the first example.
l The default DateFormat system variable MM/DD/YYYY is used.

However, in this example, the unchanged dataset is loaded into the application. The value of the
day of the quarter is calculated via a measure in a chart object.

Load script

SET DateFormat='MM/DD/YYYY';

Calendar:

Load

date

Inline

[

date

Script syntax and chart functions - Qlik Sense, May 2024 646

8 Script and chart functions

01/01/2022

01/10/2022

01/31/2022

02/01/2022

02/10/2022

02/28/2022

03/01/2022

03/31/2022

04/01/2022

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Create the following measure:

=daynumberofquarter(date)

date =daynumberofquarter(date)

01/01/2022 1

01/10/2022 10

01/31/2022 31

02/01/2022 32

02/10/2022 41

02/28/2022 59

03/01/2022 61

03/31/2022 91

04/01/2022 1

Results table

The first day of the year is the 1st of January because no second argument passed into the
DayNumberOfQuarter() function.

January 1st is the 1st day of the quarter whilst February 1st is the 32nd day of the quarter. The 31st
of March is the 91st and final day of the quarter, whilst the 1st of April is the 1st day of the 2nd
Quarter.

Example 4 – February start of year (chart)
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2024 647

8 Script and chart functions

l The same dataset from the first example.
l The default DateFormat system variable MM/DD/YYYY is used.
l The financial year runs from the 1st of February to the 31st of January.

However, in this example, the unchanged dataset is loaded into the application. The value of the
day of the quarter is calculated via a measure in a chart object.

Load script

SET DateFormat='MM/DD/YYYY';

Calendar:

Load

date

Inline

[

date

01/01/2022

01/10/2022

01/31/2022

02/01/2022

02/10/2022

02/28/2022

03/01/2022

03/31/2022

04/01/2022

];

Chart object

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Create the following measure:

=daynumberofquarter(date,2)

Results

date =daynumberofquarter(date,2)

01/01/2022 62

01/10/2022 71

01/31/2022 92

02/01/2022 1

02/10/2022 10

02/28/2022 28

Results table

Script syntax and chart functions - Qlik Sense, May 2024 648

8 Script and chart functions

date =daynumberofquarter(date,2)

03/01/2022 30

03/31/2022 60

04/01/2022 61

The first day of the year is the 1st of January because the second argument passed into the
DayNumberOfQuarter() function was 2.

The first quarter of the year operates between February and April whilst the fourth quarter operates
between November and January. This is evidenced in the results table where February 1st is the 1st
day of the quarter whilst January 31st is the 92nd and last day of the quarter.

daynumberofyear
This function calculates the day number of the year in which a timestamp falls. The
calculation is made from the first millisecond of the first day of the year, but the first
month can be offset.

Syntax:
DayNumberOfYear(timestamp[,start_month])

Return data type: integer

Argument Description

timestamp The date or timestamp to evaluate.

start_month By specifying a start_month between 2 and 12 (1, if omitted), the beginning of
the year may be moved forward to the first day of any month. For example, if you
want to work with a fiscal year starting March 1, specify start_month = 3.

Arguments

These examples use the date format DD/MM/YYYY. The date format is specified in the SET
DateFormat statement at the top of your data load script. Change the format in the examples to suit
your requirements.

Example Result

DayNumberOfYear('12/09/2014') Returns 256, the day number counted from the first of the
year.

DayNumberOfYear('12/09/2014',3

)
Returns 196, the number of the day, as counted from 1
March.

Function examples

Script syntax and chart functions - Qlik Sense, May 2024 649

8 Script and chart functions

Example 1 – January start of year (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A simple dataset containing a list of dates, which is loaded into a table named Calendar. The
default DateFormat system variable MM/DD/YYYY is used.

l A preceding load that creates an additional field named daynryear, using the DayNumberOfYear

() function.

Aside from the date, no additional parameters are provided to the function.

Load script

SET DateFormat='MM/DD/YYYY';

Calendar:

Load

date,

DayNumberOfYear(date) as daynryear

;

Load

date

Inline

[

date

01/01/2022

01/10/2022

01/31/2022

02/01/2022

02/10/2022

06/30/2022

07/26/2022

10/31/2022

11/01/2022

12/31/2022

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l daynryear

Script syntax and chart functions - Qlik Sense, May 2024 650

8 Script and chart functions

date daynryear

01/01/2022 1

01/10/2022 10

01/31/2022 31

02/01/2022 32

02/10/2022 41

06/30/2022 182

07/26/2022 208

10/31/2022 305

11/01/2022 306

12/31/2022 366

Results table

The first day of the year is the 1st of January because no second argument was passed into the
DayNumberOfYear() function.

January 1st is the 1st day of the quarter whilst February 1st is the 32nd day of the year. The 30th of
June is the 182nd whilst the 31st of December is the 366th and final day of the year.

Example 2 – November start of year (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset from the first example.
l The default DateFormat system variable MM/DD/YYYY is used
l A start_month argument beginning on November 1. This sets the financial year to November

1.

Load script

SET DateFormat='MM/DD/YYYY';

Calendar:

Load

date,

DayNumberOfYear(date,11) as daynryear

;

Load

Script syntax and chart functions - Qlik Sense, May 2024 651

8 Script and chart functions

date

Inline

[

date

01/01/2022

01/10/2022

01/31/2022

02/01/2022

02/10/2022

06/30/2022

07/26/2022

10/31/2022

11/01/2022

12/31/2022

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l daynryear

date daynryear

01/01/2022 62

01/10/2022 71

01/31/2022 92

02/01/2022 93

02/10/2022 102

06/30/2022 243

07/26/2022 269

10/31/2022 366

11/01/2022 1

12/31/2022 61

Results table

The first day of the year is the 1st of November because the second argument passed into the
DayNumberOfYear() function was 11.

January 1st is the 1st day of the quarter whilst February 1st is the 32nd day of the year. The 30th of
June is the 182nd whilst the 31st of December is the 366th and final day of the year.

Script syntax and chart functions - Qlik Sense, May 2024 652

8 Script and chart functions

Example 3 – January start of year (chart)
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset from the first example.
l The default DateFormat system variable MM/DD/YYYY is used.

However, in this example, the unchanged dataset is loaded into the application. The value of the
day of the quarter is calculated via a measure in a chart object.

Load script

SET DateFormat='MM/DD/YYYY';

Calendar:

Load

date

Inline

[

date

01/01/2022

01/10/2022

01/31/2022

02/01/2022

02/10/2022

06/30/2022

07/26/2022

10/31/2022

11/01/2022

12/31/2022

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Create the following measure:

=daynumberofyear(date)

date =daynumberofyear(date)

01/01/2022 1

01/10/2022 10

Results table

Script syntax and chart functions - Qlik Sense, May 2024 653

8 Script and chart functions

date =daynumberofyear(date)

01/31/2022 31

02/01/2022 32

02/10/2022 41

06/30/2022 182

07/26/2022 208

10/31/2022 305

11/01/2022 306

12/31/2022 366

The first day of the year is the 1st of January because no second argument was passed into the
DayNumberOfYear() function.

January 1st is the 1st day of the year whilst February 1st is the 32nd day of the year. The 30th of
June is the 182nd whilst the 31st of December is the 366th and final day of the year.

Example 4 – November start of year (chart)
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset from the first example.
l The default DateFormat system variable MM/DD/YYYY is used.
l The financial year runs from the 1st of November to the 31st of October.

However, in this example, the unchanged dataset is loaded into the application. The value of the
day of the year is calculated via a measure in a chart object.

Load script

SET DateFormat='MM/DD/YYYY';

Calendar:

Load

date

Inline

[

date

01/01/2022

01/10/2022

01/31/2022

02/01/2022

Script syntax and chart functions - Qlik Sense, May 2024 654

8 Script and chart functions

02/10/2022

06/30/2022

07/26/2022

10/31/2022

11/01/2022

12/31/2022

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Create the following measure:

=daynumberofyear(date)

date =daynumberofyear(date,11)

01/01/2022 62

01/10/2022 71

01/31/2022 92

02/01/2022 93

02/10/2022 102

06/30/2022 243

07/26/2022 269

10/31/2022 366

11/01/2022 1

12/31/2022 61

Results table

The first day of the year is the 1st of November because the second argument passed into the
DayNumberOfYear() function was 11.

The financial year operates between November and October. This is shown in the results table
where November 1st is the 1st day of the year whilst October 31st is the 366th and last day of the
year.

daystart
This function returns a value corresponding to a timestamp with the first millisecond of
the day contained in the time argument. The default output format will be the
TimestampFormat set in the script.

Syntax:
DayStart(time[, [period_no[, day_start]])

Script syntax and chart functions - Qlik Sense, May 2024 655

8 Script and chart functions

Return data type: dual

Argument Description

time The timestamp to evaluate.

period_no period_no is an integer, or expression that resolves to an integer, where the value
0 indicates the day that contains time. Negative values in period_no indicate
preceding days and positive values indicate succeeding days.

day_start To specify that days do not starting at midnight, indicate an offset as a fraction of
a day in day_start. For example, 0.125 to denote 3:00 AM.
In other words, to create the offset, divide the start time by 24 hours. For
example, for a day to begin at 7:00 AM, use the fraction 7/24.

Arguments

When to use it
The daystart() function is commonly used as part of an expression when the user would like the
calculation to use the fraction of the day that has elapsed thus far. For example, it could be used to
calculate the total wages earned by employees in the day so far.

These examples use the timestamp format 'M/D/YYYY h:mm:ss[.fff] TT'. The timestamp format is
specified in the SET TimeStamp statement at the top of your data load script. Change the format in
the examples to suit your requirements.

Example Result

daystart('01/25/2013 4:45:00 PM') Returns 1/25/2013 12:00:00 AM.

daystart('1/25/2013 4:45:00 PM', -1) Returns 1/24/2013 12:00:00 AM.

daystart('1/25/2013 16:45:00',0,0.5) Returns 1/25/2013 12:00:00 PM.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Script syntax and chart functions - Qlik Sense, May 2024 656

8 Script and chart functions

Example 1 - Simple example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A simple dataset containing a list of dates, which is loaded into a table named Calendar.
l The default TimeStampFormat system variable (M/D/YYYY h:mm:ss[.fff] TT) is used.
l A preceding load which creates an additional field named SOD_timestamp, using the daystart()

function.

Aside from the date, no additional parameters are provided to the function.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Calendar:

Load

date,

daystart(date) as SOD_timestamp

;

Load

date

Inline

[

date

03/11/2022 1:47:15 AM

03/12/2022 4:34:58 AM

03/13/2022 5:15:55 AM

03/14/2022 9:25:14 AM

03/15/2022 10:06:54 AM

03/16/2022 10:44:42 AM

03/17/2022 11:33:30 AM

03/18/2022 12:58:14 PM

03/19/2022 4:23:12 PM

03/20/2022 6:42:15 PM

03/21/2022 7:41:16 PM

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l SOD_timestamp

Script syntax and chart functions - Qlik Sense, May 2024 657

8 Script and chart functions

date SOD_timestamp

03/11/2022 1:47:15 AM 3/11/2022 12:00:00 AM

03/12/2022 4:34:58 AM 3/12/2022 12:00:00 AM

03/13/2022 5:15:55 AM 3/13/2022 12:00:00 AM

03/14/2022 9:25:14 AM 3/14/2022 12:00:00 AM

03/15/2022 10:06:54 AM 3/15/2022 12:00:00 AM

03/16/2022 10:44:42 AM 3/16/2022 12:00:00 AM

03/17/2022 11:33:30 AM 3/17/2022 12:00:00 AM

03/18/2022 12:58:14 PM 3/18/2022 12:00:00 AM

03/19/2022 4:23:12 PM 3/19/2022 12:00:00 AM

03/20/2022 6:42:15 PM 3/20/2022 12:00:00 AM

03/21/2022 7:41:16 PM 3/21/2022 12:00:00 AM

Results table

As can be seen in the table above, the end of day timestamp is generated for each date in our
dataset. The timestamp is in the format of the system variable TimestampFormat M/D/YYYY h:mm:ss

[.fff] TT.

Example 2 - period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing parking fines, which is loaded into a table named Fines. The dataset
includes the following fields:

l id

l due_date

l number_plate

l amount

l A preceding load using the daystart() function and supplying all three parameters: time,
period_no, and day_start. This preceding load creates the following two new date fields:

l An early_repayment_period date field, beginning seven days before the payment is
due.

l A late_penalty_period date field, beginning 14 days after the payment is due.

Script syntax and chart functions - Qlik Sense, May 2024 658

8 Script and chart functions

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Fines:

Load

*,

daystart(due_date,-7) as early_repayment_period,

daystart(due_date,14) as late_penalty_period

;

Load

*

Inline

[

id, due_date, number_plate,amount

1,02/11/2022, 573RJG,50.00

2,03/25/2022, SC41854,50.00

3,04/14/2022, 8EHZ378,50.00

4,06/28/2022, 8HSS198,50.00

5,08/15/2022, 1221665,50.00

6,11/16/2022, EAK473,50.00

7,01/17/2023, KD6822,50.00

8,03/22/2023, 1GGLB,50.00

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l due_date

l early_repayment_period

l late_penalty_period

due_date early_repayment_period late_penalty_period

02/11/2022 9:25:14 AM 2/4/2022 12:00:00 AM 2/25/2022 12:00:00 AM

03/25/2022 10:06:54 AM 3/18/2022 12:00:00 AM 4/8/2022 12:00:00 AM

04/14/2022 10:44:42 AM 4/7/2022 12:00:00 AM 4/28/2022 12:00:00 AM

06/28/2022 11:33:30 AM 6/21/2022 12:00:00 AM 7/12/2022 12:00:00 AM

08/15/2022 12:58:14 PM 8/8/2022 12:00:00 AM 8/29/2022 12:00:00 AM

11/16/2022 4:23:12 PM 11/9/2022 12:00:00 AM 11/30/2022 12:00:00 AM

01/17/2023 6:42:15 PM 1/10/2023 12:00:00 AM 1/31/2023 12:00:00 AM

03/22/2023 7:41:16 PM 3/15/2023 12:00:00 AM 4/5/2023 12:00:00 AM

Results table

The values of the new fields are in the TimestampFormat M/DD/YYYY tt. Because the function daystart

() was used, the timestamp values are all the first millisecond of the day.

Script syntax and chart functions - Qlik Sense, May 2024 659

8 Script and chart functions

The early repayment period values are seven days before the due date, as a result of the second
argument being passed in the daystart() function being negative.

The late repayment period values are 14 days after the due date, as a result of the second argument
being passed in the daystart() function being positive.

Example 3 - day_start
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the previous example.
l The same preceding load as the previous example.

In this example, we set the working day to begin and end at 7:00 AM each day.

Load script

SET DateFormat='MM/DD/YYYY';

Fines:

Load

*,

daystart(due_date,-7,7/24) as early_repayment_period,

daystart(due_date,14, 7/24) as late_penalty_period

;

Load

*

Inline

[

id, due_date, number_plate,amount

1,02/11/2022, 573RJG,50.00

2,03/25/2022, SC41854,50.00

3,04/14/2022, 8EHZ378,50.00

4,06/28/2022, 8HSS198,50.00

5,08/15/2022, 1221665,50.00

6,11/16/2022, EAK473,50.00

7,01/17/2023, KD6822,50.00

8,03/22/2023, 1GGLB,50.00

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 660

8 Script and chart functions

l due_date

l early_repayment_period

l late_penalty_period

due_date early_repayment_period late_penalty_period

02/11/2022 2/3/2022 7:00:00 AM 2/24/2022 7:00:00 AM

03/25/2022 3/17/2022 7:00:00 AM 4/7/2022 7:00:00 AM

04/14/2022 4/6/2022 7:00:00 AM 4/27/2022 7:00:00 AM

06/28/2022 6/20/2022 7:00:00 AM 7/11/2022 7:00:00 AM

08/15/2022 8/7/2022 7:00:00 AM 8/28/2022 7:00:00 AM

11/16/2022 11/8/2022 7:00:00 AM 11/29/2022 7:00:00 AM

01/17/2023 1/9/2023 7:00:00 AM 1/30/2023 7:00:00 AM

03/22/2023 3/14/2023 7:00:00 AM 4/4/2023 7:00:00 AM

Results table

The dates now have a timestamp of 7:00 AM because the value of the day_start argument which
was passed into the daystart() function was 7/24. This sets the beginning of the day to 7:00 AM.

Because the due_date field does not have a timestamp, it is treated as 12:00 AM, which is thus still
part of the previous day, since the days start and end at 7:00 AM. Therefore, the early repayment
period for a fine due on February 11 begins on February 3 at 7:00 AM.

Example 4 - Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

This example uses the same dataset and scenario as the previous example.

However, only the original Fines table is loaded into the application, with the two additional due
dates values being calculated in a chart object.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Fines:

Load

*

Inline

[

id, due_date, numer_plate,amount

Script syntax and chart functions - Qlik Sense, May 2024 661

8 Script and chart functions

1,02/11/2022 9:25:14 AM, 573RJG,50.00

2,03/25/2022 10:06:54 AM, SC41854,50.00

3,04/14/2022 10:44:42 AM, 8EHZ378,50.00

4,06/28/2022 11:33:30 AM, 8HSS198,50.00

5,08/15/2022 12:58:14 PM, 1221665,50.00

6,11/16/2022 4:23:12 PM, EAK473,50.00

7,01/17/2023 6:42:15 PM, KD6822,50.00

8,03/22/2023 7:41:16 PM, 1GGLB,50.00

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add this field as a dimension: due_
date.

2. To create the early_repayment_period field, create the following measure.
=daystart(due_date,-7,7/24)

3. To create the late_penalty_period field, create the following measure:
=daystart(due_date,14,7/24)

due_date =daystart(due_date,-7,7/24) =daystart(due_date,14,7/24)

02/11/2022 9:25:14 AM 2/4/2022 7:00:00 AM 2/25/2022 7:00:00 AM

03/25/2022 10:06:54 AM 3/18/2022 7:00:00 AM 4/8/2022 7:00:00 AM

04/14/2022 10:44:42 AM 4/7/2022 7:00:00 AM 4/28/2022 7:00:00 AM

06/28/2022 11:33:30 AM 6/21/2022 7:00:00 AM 7/12/2022 7:00:00 AM

08/15/2022 12:58:14 PM 8/8/2022 7:00:00 AM 8/29/2022 7:00:00 AM

11/16/2022 4:23:12 PM 11/9/2022 7:00:00 AM 11/30/2022 7:00:00 AM

01/17/2023 6:42:15 PM 1/10/2023 7:00:00 AM 1/31/2023 7:00:00 AM

03/22/2023 7:41:16 PM 3/15/2023 7:00:00 AM 4/5/2023 7:00:00 AM

Results table

The values of the new fields are in the TimestampFormat M/D/YYYY h:mm:ss[.fff] TT. Because the
daystart() function was used, the timestamp values correspond to the first millisecond of the day.

The early repayment period values are seven days before the due date, since the second argument
passed in the daystart() function was negative.

The late repayment period values are 14 days after the due date, since the second argument
passed in the daystart() function was positive.

The dates have a timestamp of 7:00 AM because the value of the third argument passed into the
daystart() function, day_start, was 7/24.

Script syntax and chart functions - Qlik Sense, May 2024 662

8 Script and chart functions

firstworkdate
The firstworkdate function returns the latest starting date to achieve no_of_workdays
(Monday-Friday) ending no later than end_date taking into account any optionally
listed holidays. end_date and holiday should be valid dates or timestamps.

Syntax:
firstworkdate(end_date, no_of_workdays {, holiday})

Return data type: integer

Arguments:

Argument Description

end_date The timestamp of end date to evaluate.

no_of_
workdays

The number of working days to achieve.

holiday Holiday periods to exclude from working days. A holiday is stated as a string
constant date. You can specify multiple holiday dates, separated by commas.

Example: '12/25/2013', '12/26/2013', '12/31/2013', '01/01/2014'

Arguments

Examples and results:
These examples use the date format DD/MM/YYYY. The date format is specified in the SET
DateFormat statement at the top of your data load script. Change the format in the examples to suit
your requirements.

Example Result

firstworkdate ('29/12/2014', 9) Returns '17/12/2014.

firstworkdate ('29/12/2014', 9,

'25/12/2014', '26/12/2014')
Returns 15/12/2014 because a holiday period of two
days is taken into account.

Scripting examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

ProjectTable:

LOAD *, recno() as InvID, INLINE [

EndDate

28/03/2015

10/12/2015

5/2/2016

Script syntax and chart functions - Qlik Sense, May 2024 663

8 Script and chart functions

31/3/2016

19/5/2016

15/9/2016

] ;

NrDays:

Load *,

FirstWorkDate(EndDate,120) As StartDate

Resident ProjectTable;

Drop table ProjectTable;

The resulting table shows the returned values of FirstWorkDate for each of the records in the table.

InvID EndDate StartDate

1 28/03/2015 13/10/2014

2 10/12/2015 26/06/2015

3 5/2/2016 24/08/2015

4 31/3/2016 16/10/2015

5 19/5/2016 04/12/2015

6 15/9/2016 01/04/2016

Results table

GMT
This function returns the current Greenwich Mean Time, as derived from the regional
settings. The function returns values in the TimestampFormat system variable format.

Whenever the app is reloaded, any load script table, variable or chart object that uses the GMT

function will be adjusted to the latest current Greenwich Mean Time as derived from the system
clock.

Syntax:
GMT()

Return data type: dual

These examples use the timestamp format M/D/YYYY h:mm:ss[.fff] TT. The date format is specified
in the SET TimestampFormat statement at the top of your data load script. Change the format in the
examples to suit your requirements.

Example Result

GMT() 3/28/2022 2:47:36 PM

Function examples

Script syntax and chart functions - Qlik Sense, May 2024 664

8 Script and chart functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 - Variable (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab. This example will set the
current Greenwich Mean Time as a variable in the load script using the GMT function.

Load script

LET vGMT = GMT();

Results

Load the data and create a sheet. Create a text box using the Text & image chart object.

Add this measure to the text box:

=vGMT

The text box should contain a line of text with a date and time, similar to the one shown below:

3/28/2022 2:47:36 PM

Example 2 - November start of year (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2024 665

8 Script and chart functions

l A dataset containing overdue library books, which is loaded into a table named Overdue. The
default DateFormat system variable MM/DD/YYYY is used.

l The creation of a new field called days_overdue, which calculates how many day overdue
each book is.

Load script

SET DateFormat='MM/DD/YYYY';

Overdue:

Load

*,

Floor(GMT()-due_date) as days_overdue

;

Load

*

Inline

[

cust_id,book_id,due_date

1,4,01/01/2021,

2,24,01/10/2021,

6,173,01/31/2021,

31,281,02/01/2021,

86,265,02/10/2021,

52,465,06/30/2021,

26,537,07/26/2021,

92,275,10/31/2021,

27,455,11/01/2021,

27,46,12/31/2021

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l due_date

l book_id

l days_overdue

due_date book_id days_overdue

01/01/2021 4 455

01/10/2021 24 446

01/31/2021 173 425

02/01/2021 281 424

02/10/2021 265 415

Results table

Script syntax and chart functions - Qlik Sense, May 2024 666

8 Script and chart functions

due_date book_id days_overdue

06/30/2021 465 275

07/26/2021 537 249

10/31/2021 275 152

11/01/2021 455 151

12/31/2021 46 91

The values in the days_overdue field are calculated by finding the difference between the current
Greenwich Mean Time, using the GMT() function, and the original due date. In order to calculate only
the days, the results are rounded off to the nearest whole number using the Floor() function.

Example 3 - chart object (chart)
Load script and chart expression

Overview

Open the Data load editor, and add the load script below to a new tab. The load script contains the
same dataset as the previous example. The default DateFormat system variable MM/DD/YYYY is
used.

However, in this example, the unchanged dataset is loaded into the application. The value of the
number of days overdue is calculated via a measure in a chart object.

Load script

SET DateFormat='MM/DD/YYYY';

Overdue:

Load

*

Inline

[

cust_id,book_id,due_date

1,4,01/01/2021,

2,24,01/10/2021,

6,173,01/31/2021,

31,281,02/01/2021,

86,265,02/10/2021,

52,465,06/30/2021,

26,537,07/26/2021,

92,275,10/31/2021,

27,455,11/01/2021,

27,46,12/31/2021

];

Script syntax and chart functions - Qlik Sense, May 2024 667

8 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l due_date

l book_id

Create the following measure:

=Floor(GMT() – due_date)

due_date book_id =Floor(GMT()-due_date)

01/01/2021 4 455

01/10/2021 24 446

01/31/2021 173 425

02/01/2021 281 424

02/10/2021 265 415

06/30/2021 465 275

07/26/2021 537 249

10/31/2021 275 152

11/01/2021 455 151

12/31/2021 46 91

Results table

The values in the days_overdue field are calculated by finding the difference between the current
Greenwich Mean Time, using the GMT() function, and the original due date. In order to calculate only
the days, the results are rounded off to the nearest whole number using the Floor() function.

hour
This function returns an integer representing the hour when the fraction of the
expression is interpreted as a time according to the standard number interpretation.

Syntax:
hour(expression)

Return data type: integer

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.

Script syntax and chart functions - Qlik Sense, May 2024 668

8 Script and chart functions

You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example Result

hour(

'09:14:36')
The text string supplied is implicitly converted to a timestamp as it matches the
timestamp format defined in the TimestampFormat variable. The expression
returns 9.

hour(

'0.5555')
The expression returns 13 (Because 0.5555 = 13:19:55).

Function examples

Example 1 – Variable (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing transactions by timestamp
l The default TimeStamp system variable (M/D/YYYY h:mm:ss[.fff] TT)

Create a field 'hour', calculating when purchases took place.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*,

hour(date) as hour

;

Load

*

Inline

[

id,date,amount

9497,'2022-01-05 19:04:57',47.25,

9498,'2022-01-03 14:21:53',51.75,

9499,'2022-01-03 05:40:49',73.53,

9500,'2022-01-04 18:49:38',15.35,

Script syntax and chart functions - Qlik Sense, May 2024 669

8 Script and chart functions

9501,'2022-01-01 22:10:22',31.43,

9502,'2022-01-05 19:34:46',13.24,

9503,'2022-01-04 22:58:34',74.34,

9504,'2022-01-06 11:29:38',50.00,

9505,'2022-01-02 08:35:54',36.34,

9506,'2022-01-06 08:49:09',74.23

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l hour

date hour

2022-01-01 22:10:22 22

2022-01-02 08:35:54 8

2022-01-03 05:40:49 5

2022-01-03 14:21:53 14

2022-01-04 18:49:38 18

2022-01-04 22:58:34 22

2022-01-05 19:04:57 19

2022-01-05 19:34:46 19

2022-01-06 08:49:09 8

2022-01-06 11:29:38 11

Results table

The values in the hour field are created by using the hour() function and passing the date as the
expression in the preceding load statement.

Example 2 – Chart object (chart)
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset from the first example.
l The default TimeStamp system variable (M/D/YYYY h:mm:ss[.fff] TT).

Script syntax and chart functions - Qlik Sense, May 2024 670

8 Script and chart functions

However, in this example, the dataset, unchanged, is loaded into the application. The ‘hour’ values
are calculated via a measure in a chart object.

Load Script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*

Inline

[

id,date,amount

9497,'2022-01-05 19:04:57',47.25,

9498,'2022-01-03 14:21:53',51.75,

9499,'2022-01-03 05:40:49',73.53,

9500,'2022-01-04 18:49:38',15.35,

9501,'2022-01-01 22:10:22',31.43,

9502,'2022-01-05 19:34:46',13.24,

9503,'2022-01-04 22:58:34',74.34,

9504,'2022-01-06 11:29:38',50.00,

9505,'2022-01-02 08:35:54',36.34,

9506,'2022-01-06 08:49:09',74.23

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

To calculate the ‘hour’, create the following measure:

=hour(date)

due_date =hour(date)

2022-01-01 22:10:22 22

2022-01-02 08:35:54 8

2022-01-03 05:40:49 5

2022-01-03 14:21:53 14

2022-01-04 18:49:38 18

2022-01-04 22:58:34 22

2022-01-05 19:04:57 19

2022-01-05 19:34:46 19

2022-01-06 08:49:09 8

2022-01-06 11:29:38 11

Results table

Script syntax and chart functions - Qlik Sense, May 2024 671

8 Script and chart functions

The values for ‘hour’ are created by using the hour() function and passing the date as the
expression in a measure for the chart object.

inday
This function returns True if timestamp lies inside the day containing base_timestamp.

Syntax:
InDay (timestamp, base_timestamp, period_no[, day_start])
Diagram of inday function

The inday() function uses the base_timestamp argument to identify which day the timestamp falls
into. The start time of the day is, by default, midnight; but you can change the start time of the day
by using the day_start argument of the inday() function. Once this day is defined, the function will
return Boolean results when comparing the prescribed timestamp values to that day.

When to use it

The inday() function returns a Boolean result. Typically, this type of function will be used as a
condition in an if expression. This returns an aggregation or calculation dependent on whether a
date evaluated occurred in the day of the timestamp in question.

For example, the inday() function can be used to identify all equipment manufactured in a given
day.

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Argument Description

timestamp The date and time that you want to compare with base_timestamp.

base_

timestamp
Date and time that is used to evaluate the timestamp.

period_no The day can be offset by period_no. period_no is an integer, where the value 0
indicates the day which contains base_timestamp. Negative values in period_no

indicate preceding days and positive values indicate succeeding days.

day_start If you want to work with days not starting midnight, indicate an offset as a
fraction of a day in day_start, For example, 0.125 to denote 3 AM.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 672

8 Script and chart functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example Result

inday ('01/12/2006 12:23:00 PM', '01/12/2006 12:00:00 AM', 0) Returns True

inday ('01/12/2006 12:23:00 PM', '01/13/2006 12:00:00 AM', 0) Returns False

inday ('01/12/2006 12:23:00 PM', '01/12/2006 12:00:00 AM', -1) Returns False

inday ('01/11/2006 12:23:00 PM', '01/12/2006 12:00:00 AM', -1) Returns True

inday ('01/12/2006 12:23:00 PM', '01/12/2006 12:00:00 AM', 0, 0.5) Returns False

inday ('01/12/2006 11:23:00 AM', '01/12/2006 12:00:00 AM', 0, 0.5) Returns True

Function examples

Example 1 – Load statement (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing transactions by timestamp which is loaded into a table called
Transactions.

l A date field which is provided in the TimeStamp system variable (M/D/YYYY h:mm:ss[.fff] TT)

format.
l A preceding load which contains the inday() function which is set as the in_day field.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

Script syntax and chart functions - Qlik Sense, May 2024 673

8 Script and chart functions

*,

inday(date,'01/05/2022 12:00:00 AM', 0) as in_day

;

Load

*

Inline

[

id,date,amount

9497,'01/01/2022 7:34:46 PM',13.24

9498,'01/01/2022 10:10:22 PM',31.43

9499,'01/02/2022 8:35:54 AM',36.34

9500,'01/03/2022 2:21:53 PM',51.75

9501,'01/04/2022 6:49:38 PM',15.35

9502,'01/04/2022 10:58:34 PM',74.34

9503,'01/05/2022 5:40:49 AM',73.53

9504,'01/05/2022 11:29:38 AM',50.00

9505,'01/05/2022 7:04:57 PM',47.25

9506,'01/06/2022 8:49:09 AM',74.23

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_day

date in_day

01/01/2022 7:34:46 PM 0

01/01/2022 10:10:22 PM 0

01/02/2022 8:35:54 AM 0

01/03/2022 2:21:53 PM 0

01/04/2022 6:49:38 PM 0

01/04/2022 10:58:34 PM 0

01/05/2022 5:40:49 AM -1

01/05/2022 11:29:38 AM -1

01/05/2022 7:04:57 PM -1

01/06/2022 8:49:09 AM 0

Results table

The in_day field is created in the preceding load statement by using the inday() function and
passing the date field, a hard-coded timestamp for January 5 and a period_no of 0 as the function’s
arguments.

Example 2 – period_no
Load script and results

Script syntax and chart functions - Qlik Sense, May 2024 674

8 Script and chart functions

Overview

The load script uses the same dataset and scenario that were used in the first example.

However, in this example, the task is to calculate whether the transaction date occurred two days
before January 5.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*,

inday(date,'01/05/2022 12:00:00 AM', -2) as in_day

;

Load

*

Inline

[

id,date,amount

9497,'01/01/2022 7:34:46 PM',13.24

9498,'01/01/2022 10:10:22 PM',31.43

9499,'01/02/2022 8:35:54 AM',36.34

9500,'01/03/2022 2:21:53 PM',51.75

9501,'01/04/2022 6:49:38 PM',15.35

9502,'01/04/2022 10:58:34 PM',74.34

9503,'01/05/2022 5:40:49 AM',73.53

9504,'01/05/2022 11:29:38 AM',50.00

9505,'01/05/2022 7:04:57 PM',47.25

9506,'01/06/2022 8:49:09 AM',74.23

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_day

date in_day

01/01/2022 7:34:46 PM 0

01/01/2022 10:10:22 PM 0

01/02/2022 8:35:54 AM 0

01/03/2022 2:21:53 PM -1

01/04/2022 6:49:38 PM 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 675

8 Script and chart functions

date in_day

01/04/2022 10:58:34 PM 0

01/05/2022 5:40:49 AM 0

01/05/2022 11:29:38 AM 0

01/05/2022 7:04:57 PM 0

01/06/2022 8:49:09 AM 0

In this instance, because a period_no of -2 is used as the offset argument in the inday() function, the
function determines whether each transaction date took place on January 3. This can be verified in
the output table where one transaction returns a Boolean result of TRUE.

Example 3 – day_start
Load script and results

Overview

The load script uses the same dataset and scenario that were used in the previous examples.

However, in this example, the company policy is that the workday begins and ends at 7 AM.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*,

inday(date,'01/05/2022 12:00:00 AM', 0, 7/24) as in_day

;

Load

*

Inline

[

id,date,amount

9497,'01/01/2022 7:34:46 PM',13.24

9498,'01/01/2022 10:10:22 PM',31.43

9499,'01/02/2022 8:35:54 AM',36.34

9500,'01/03/2022 2:21:53 PM',51.75

9501,'01/04/2022 6:49:38 PM',15.35

9502,'01/04/2022 10:58:34 PM',74.34

9503,'01/05/2022 5:40:49 AM',73.53

9504,'01/05/2022 11:29:38 AM',50.00

9505,'01/05/2022 7:04:57 PM',47.25

9506,'01/06/2022 8:49:09 AM',74.23

];

Script syntax and chart functions - Qlik Sense, May 2024 676

8 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_day

date in_day

01/01/2022 7:34:46 PM 0

01/01/2022 10:10:22 PM 0

01/02/2022 8:35:54 AM 0

01/03/2022 2:21:53 PM 0

01/04/2022 6:49:38 PM -1

01/04/2022 10:58:34 PM -1

01/05/2022 5:40:49 AM -1

01/05/2022 11:29:38 AM 0

01/05/2022 7:04:57 PM 0

01/06/2022 8:49:09 AM 0

Results table

Because the start_day argument of 7/24, which is 7 AM, is used in the inday() function, the function
determines whether each transaction date took place on January 4 from 7 AM and January 5 before
7 AM.

This can be verified in the output table where transactions that take place after 7 AM on January 4
return a Boolean result of TRUE whilst transactions that take place after 7 AM on January 5 return a
Boolean result of FALSE.

Example 4 – Chart object
Load script and chart expression

Overview

The load script uses the same dataset and scenario that were used in the previous examples.

However, in this example, the dataset is unchanged and loaded into the application. You will
calculate to determine if a transaction takes place on January 5 by creating a measure in a chart
object.

Load script

Transactions:

Load

Script syntax and chart functions - Qlik Sense, May 2024 677

8 Script and chart functions

*

Inline

[

id,date,amount

9497,'01/01/2022 7:34:46 PM',13.24

9498,'01/01/2022 10:10:22 PM',31.43

9499,'01/02/2022 8:35:54 AM',36.34

9500,'01/03/2022 2:21:53 PM',51.75

9501,'01/04/2022 6:49:38 PM',15.35

9502,'01/04/2022 10:58:34 PM',74.34

9503,'01/05/2022 5:40:49 AM',73.53

9504,'01/05/2022 11:29:38 AM',50.00

9505,'01/05/2022 7:04:57 PM',47.25

9506,'01/06/2022 8:49:09 AM',74.23

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

l date

To calculate whether a transaction takes place on January 5, create the following measure:

=inday(date,'01/05/2022 12:00:00 AM',0)

date inday(date,'01/05/2022 12:00:00 AM',0)

01/01/2022 7:34:46 PM 0

01/01/2022 10:10:22 PM 0

01/02/2022 8:35:54 AM 0

01/03/2022 2:21:53 PM 0

01/04/2022 6:49:38 PM 0

01/04/2022 10:58:34 PM 0

01/05/2022 5:40:49 AM -1

01/05/2022 11:29:38 AM -1

01/05/2022 7:04:57 PM -1

01/06/2022 8:49:09 AM 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 678

8 Script and chart functions

Example 5 – Scenario
Load script and results

Overview

In this example, it has been identified that due to equipment error, products that were
manufactured on January 5 were defective. The end user would like a chart object that displays, by
date, the status of which products that were manufactured were ‘defective’ or ‘faultless’ and the
cost of the products manufactured on January 5.

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called ‘Products’.
l The table contains the following fields:

l product ID
l manufacture time
l cost price

Load script

Products:

Load

*

Inline

[

product_id,manufacture_date,cost_price

9497,'01/01/2022 7:34:46 PM',13.24

9498,'01/01/2022 10:10:22 PM',31.43

9499,'01/02/2022 8:35:54 AM',36.34

9500,'01/03/2022 2:21:53 PM',51.75

9501,'01/04/2022 6:49:38 PM',15.35

9502,'01/04/2022 10:58:34 PM',74.34

9503,'01/05/2022 5:40:49 AM',73.53

9504,'01/05/2022 11:29:38 AM',50.00

9505,'01/05/2022 7:04:57 PM',47.25

9506,'01/06/2022 8:49:09 AM',74.23

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

=dayname(manufacture_date)

Create the following measures:

Script syntax and chart functions - Qlik Sense, May 2024 679

8 Script and chart functions

l =if(only(InDay(manufacture_date,makedate(2022,01,05),0)),'Defective','Faultless')

l =sum(cost_price)

Set the measure’s Number Formatting to Money.

Under Appearance, turn off Totals.

dayname
(manufacture_
date)

=if(only(InDay(manufacture_date,makedate
(2022,01,05),0)),'Defective','Faultless')

=sum
(cost_
price)

01/01/2022 Faultless 44.67

01/02/2022 Faultless 36.34

01/03/2022 Faultless 51.75

01/04/2022 Faultless 89.69

01/05/2022 Defective 170.78

01/06/2022 Faultless 74.23

Results table

The inday() function returns a Boolean value when evaluating the manufacturing dates of each of
the products. For any product manufactured on January 5, the inday() function returns a Boolean
value of TRUE and marks the products as ‘Defective’. For any product returning a value of FALSE,
and therefore not manufactured on that day, it marks the products as ‘Faultless’.

indaytotime
This function returns True if timestamp lies inside the part of day containing base_
timestamp up until and including the exact millisecond of base_timestamp.

Syntax:
InDayToTime (timestamp, base_timestamp, period_no[, day_start])

The indaytotime() function returns a Boolean result depending on when a timestamp value occurs
during the segment of the day. The start boundary of this segment is the start of the day, which is
set as midnight by default; the start of the day can be modified by the day_start argument of the
indaytotime() function. The end boundary of the day segment is determined by a base_timestamp

argument of the function.

Diagram of indaytotime function.

Script syntax and chart functions - Qlik Sense, May 2024 680

8 Script and chart functions

When to use it

The indaytotime() function returns a Boolean result. Typically, this type of function will be used as a
condition in an if expression. The indaytotime() function returns an aggregation or calculation
depending on if a timestamp occurred in the segment of the day up to and including the time of the
base timestamp.

For example, the indaytotime() function can be used to show the sum of ticket sales for shows that
have taken place so far today.

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Argument Description

timestamp The date and time that you want to compare with base_timestamp.
base_

timestamp

Date and time that is used to evaluate the timestamp.

period_no The day can be offset by period_no. period_no is an integer, where the value 0
indicates the day which contains base_timestamp. Negative values in period_no

indicate preceding days and positive values indicate succeeding days.

day_start (optional) If you want to work with days not starting midnight, indicate an offset
as a fraction of a day in day_start. For example, use 0.125 to denote 3 AM.

Arguments

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example Result

indaytotime ('01/12/2006 12:23:00 PM', '01/12/2006 11:59:00 PM', 0) Returns True

indaytotime ('01/12/2006 12:23:00 PM', '01/12/2006 12:00:00 AM', 0) Returns False

indaytotime '01/11/2006 12:23:00 PM', '01/12/2006 11:59:00 PM', -1) Returns True

Function examples

Script syntax and chart functions - Qlik Sense, May 2024 681

8 Script and chart functions

Example 1 – no additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the period between January 4 and 5 is loaded
into a table called 'Transactions'.

l A date field which is provided in the TimeStamp system variable (M/D/YYYY h:mm:ss[.fff] TT)

format.
l A preceding load which contains the indaytotime() function which is set as the 'in_day_to_

time', field that determines whether each of the transactions take place before 9:00 AM.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*,

indaytotime(date,'01/05/2022 9:00:00 AM',0) as in_day_to_time

;

Load

*

Inline

[

id,date,amount

8188,'01/04/2022 3:41:54 AM',25.66

8189,'01/04/2022 4:19:43 AM',87.21

8190,'01/04/2022 4:53:47 AM',53.80

8191,'01/04/2022 8:38:53 AM',69.98

8192,'01/04/2022 10:37:52 AM',57.42

8193,'01/04/2022 1:54:10 PM',45.89

8194,'01/04/2022 5:53:23 PM',82.77

8195,'01/04/2022 8:13:26 PM',36.23

8196,'01/04/2022 10:00:49 PM',76.11

8197,'01/05/2022 7:45:37 AM',82.06

8198,'01/05/2022 8:44:36 AM',17.17

8199,'01/05/2022 11:26:08 AM',40.39

8200,'01/05/2022 6:43:08 PM',37.23

8201,'01/05/2022 10:54:10 PM',88.27

8202,'01/05/2022 11:09:09 PM',95.93

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 682

8 Script and chart functions

l date

l in_day_to_time

date in_day_to_time

01/04/2022 3:41:54 AM 0

01/04/2022 4:19:43 AM 0

01/04/2022 04:53:47 AM 0

01/04/2022 8:38:53 AM 0

01/04/2022 10:37:52 AM 0

01/04/2022 1:54:10 PM 0

01/04/2022 5:53:23 PM 0

01/04/2022 8:13:26 PM 0

01/04/2022 10:00:49 PM 0

01/05/2022 7:45:37 AM -1

01/05/2022 8:44:36 AM -1

01/05/2022 11:26:08 AM 0

01/05/2022 6:43:08 PM 0

01/05/2022 10:54:10 PM 0

01/05/2022 11:09:09 PM 0

Results table

Example 1 diagram of indaytotime function with 9:00 AM limit..

The in_day_to_time field is created in the preceding load statement by using the indaytotime()

function and passing the date field, a hard-coded timestamp for 9:00 AM January 5 and an offset of
0 as the function’s arguments. Any transactions that occur between midnight and 9:00 AM on
January 5 return TRUE.

Example 2 – period_no
Load script and results

Script syntax and chart functions - Qlik Sense, May 2024 683

8 Script and chart functions

Overview

The load script uses the same dataset and scenario that were used in the first example.

However, in this example, you will calculate whether the transaction date occurred one day before
9:00 AM on January 5.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*,

indaytotime(date,'01/05/2022 9:00:00 AM', -1) as in_day_to_time

;

Load

*

Inline

[

id,date,amount

8188,'01/04/2022 3:41:54 AM',25.66

8189,'01/04/2022 4:19:43 AM',87.21

8190,'01/04/2022 4:53:47 AM',53.80

8191,'01/04/2022 8:38:53 AM',69.98

8192,'01/04/2022 10:37:52 AM',57.42

8193,'01/04/2022 1:54:10 PM',45.89

8194,'01/04/2022 5:53:23 PM',82.77

8195,'01/04/2022 8:13:26 PM',36.23

8196,'01/04/2022 10:00:49 PM',76.11

8197,'01/05/2022 7:45:37 AM',82.06

8198,'01/05/2022 8:44:36 AM',17.17

8199,'01/05/2022 11:26:08 AM',40.39

8200,'01/05/2022 6:43:08 PM',37.23

8201,'01/05/2022 10:54:10 PM',88.27

8202,'01/05/2022 11:09:09 PM',95.93

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_day_to_time

date in_day_to_time

01/04/2022 3:41:54 AM -1

01/04/2022 4:19:43 AM -1

Results table

Script syntax and chart functions - Qlik Sense, May 2024 684

8 Script and chart functions

date in_day_to_time

01/04/2022 04:53:47 AM -1

01/04/2022 8:38:53 AM -1

01/04/2022 10:37:52 AM 0

01/04/2022 1:54:10 PM 0

01/04/2022 5:53:23 PM 0

01/04/2022 8:13:26 PM 0

01/04/2022 10:00:49 PM 0

01/05/2022 7:45:37 AM 0

01/05/2022 8:44:36 AM 0

01/05/2022 11:26:08 AM 0

01/05/2022 6:43:08 PM 0

01/05/2022 10:54:10 PM 0

01/05/2022 11:09:09 PM 0

Example 2 diagram of indaytotime function with transactions from January 4.

In this example, because an offset of -1 was used as the offset argument in the indaytotime()

function, the function determines whether each transaction date took place before 9:00 AM on
January 4. This can be verified in the output table where a transaction returns a Boolean result of
TRUE.

Example 3 – day_start
Load script and results

Overview

The same dataset and scenario as the first example are used.

However, in this example, the company policy is that the workday begins and ends at 8AM.

Script syntax and chart functions - Qlik Sense, May 2024 685

8 Script and chart functions

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*,

indaytotime(date,'01/05/2022 9:00:00 AM', 0,8/24) as in_day_to_time

;

Load

*

Inline

[

id,date,amount

8188,'01/04/2022 3:41:54 AM',25.66

8189,'01/04/2022 4:19:43 AM',87.21

8190,'01/04/2022 4:53:47 AM',53.80

8191,'01/04/2022 8:38:53 AM',69.98

8192,'01/04/2022 10:37:52 AM',57.42

8193,'01/04/2022 1:54:10 PM',45.89

8194,'01/04/2022 5:53:23 PM',82.77

8195,'01/04/2022 8:13:26 PM',36.23

8196,'01/04/2022 10:00:49 PM',76.11

8197,'01/05/2022 7:45:37 AM',82.06

8198,'01/05/2022 8:44:36 AM',17.17

8199,'01/05/2022 11:26:08 AM',40.39

8200,'01/05/2022 6:43:08 PM',37.23

8201,'01/05/2022 10:54:10 PM',88.27

8202,'01/05/2022 11:09:09 PM',95.93

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_day_to_time

date in_day_to_time

01/04/2022 3:41:54 AM 0

01/04/2022 4:19:43 AM 0

01/04/2022 04:53:47 AM 0

01/04/2022 8:38:53 AM 0

01/04/2022 10:37:52 AM 0

01/04/2022 1:54:10 PM 0

01/04/2022 5:53:23 PM 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 686

8 Script and chart functions

date in_day_to_time

01/04/2022 8:13:26 PM 0

01/04/2022 10:00:49 PM 0

01/05/2022 7:45:37 AM 0

01/05/2022 8:44:36 AM -1

01/05/2022 11:26:08 AM 0

01/05/2022 6:43:08 PM 0

01/05/2022 10:54:10 PM 0

01/05/2022 11:09:09 PM 0

Example 3 diagram of indaytotime function with transactions from 8:00 AM to 9:00 AM.,

Because the start_day argument of 8/24, which equates to 8:00 AM, is used in the indaytotime()

function, each day begins and ends at 8:00 AM. Therefore, the indaytotime() function will return a
Boolean result of TRUE for any transaction that took place between 8:00 AM and 9:00 AM on
January 5.

Example 4 – Chart object
Load script and chartexpression

Overview

The same dataset and scenario as the first example are used.

However, in this example, the dataset is unchanged and loaded into the application. You will
calculate to determine if a transaction takes place on January 5 before 9:00 AM by creating a
measure in a chart object.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

Script syntax and chart functions - Qlik Sense, May 2024 687

8 Script and chart functions

8188,'01/04/2022 3:41:54 AM',25.66

8189,'01/04/2022 4:19:43 AM',87.21

8190,'01/04/2022 4:53:47 AM',53.80

8191,'01/04/2022 8:38:53 AM',69.98

8192,'01/04/2022 10:37:52 AM',57.42

8193,'01/04/2022 1:54:10 PM',45.89

8194,'01/04/2022 5:53:23 PM',82.77

8195,'01/04/2022 8:13:26 PM',36.23

8196,'01/04/2022 10:00:49 PM',76.11

8197,'01/05/2022 7:45:37 AM',82.06

8198,'01/05/2022 8:44:36 AM',17.17

8199,'01/05/2022 11:26:08 AM',40.39

8200,'01/05/2022 6:43:08 PM',37.23

8201,'01/05/2022 10:54:10 PM',88.27

8202,'01/05/2022 11:09:09 PM',95.93

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

date.

To determine if a transaction takes place on January 5 before 9:00 AM, create the following
measure:

=indaytotime(date,'01/05/2022 9:00:00 AM',0)

date =indaytotime(date,'01/05/2022 9:00:00 AM',0)

01/04/2022 3:41:54 AM 0

01/04/2022 4:19:43 AM 0

01/04/2022 04:53:47 AM 0

01/04/2022 8:38:53 AM 0

01/04/2022 10:37:52 AM 0

01/04/2022 1:54:10 PM 0

01/04/2022 5:53:23 PM 0

01/04/2022 8:13:26 PM 0

01/04/2022 10:00:49 PM 0

01/05/2022 7:45:37 AM -1

01/05/2022 8:44:36 AM -1

01/05/2022 11:26:08 AM 0

01/05/2022 6:43:08 PM 0

01/05/2022 10:54:10 PM 0

01/05/2022 11:09:09 PM 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 688

8 Script and chart functions

The in_day_to_time measure is created in the chart object by using the indaytotime() function and
passing the date field, a hard-coded timestamp for 9:00 AM on January 5 and an offset of 0 as the
function’s arguments. Any transactions that occur between midnight and 9:00 AM on January 5
return TRUE. This is validated in the results table.

Example 5 – Scenario
Load script and results

Overview

In this example, a dataset containing ticket sales for a local cinema is loaded into a table called
Ticket_Sales. Today is May 3, 2022 and it is 11:00 AM.

The user would like a KPI chart object to show the revenue earned from all shows that have taken
place so far today.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Ticket_Sales:

Load

*

Inline

[

sale ID, show time, ticket price

1,05/01/2022 09:30:00 AM,10.50

2,05/03/2022 05:30:00 PM,21.00

3,05/03/2022 09:30:00 AM,10.50

4,05/03/2022 09:30:00 AM,31.50

5,05/03/2022 09:30:00 AM,10.50

6,05/03/2022 12:00:00 PM,42.00

7,05/03/2022 12:00:00 PM,10.50

8,05/03/2022 05:30:00 PM,42.00

9,05/03/2022 08:00:00 PM,31.50

10,05/04/2022 10:30:00 AM,31.50

11,05/04/2022 12:00:00 PM,10.50

12,05/04/2022 05:30:00 PM,10.50

13,05/05/2022 05:30:00 PM,21.00

14,05/06/2022 12:00:00 PM,21.00

15,05/07/2022 09:30:00 AM,42.00

16,05/07/2022 10:30:00 AM,42.00

17,05/07/2022 10:30:00 AM,10.50

18,05/07/2022 05:30:00 PM,10.50

19,05/08/2022 05:30:00 PM,21.00

20,05/11/2022 09:30:00 AM,10.50

];

Results

Do the following:

Script syntax and chart functions - Qlik Sense, May 2024 689

8 Script and chart functions

1. Create a KPI object.
2. Create a measure that will show the sum of all ticket sales for shows that have taken place

today so far using the indaytotime() function:

=sum(if(indaytotime([show time],'05/03/2022 11:00:00 AM',0),[ticket price],0))

3. Create a label for the KPI object, ‘Current Revenue’.
4. Set the measure’s Number Formatting to Money.

The sum total of ticket sales up to 11:00 AM on May 3, 2022 is $52.50.

The indaytotime () function returns a Boolean value when comparing the show times of each of the
ticket sales to the current time ('05/03/2022 11:00:00 AM’). For any show on May 3 before 11:00
AM, the indaytotime () function returns a Boolean value of TRUE and its ticket price will be included
in the sum total.

inlunarweek
This function determines if timestamp lies inside the lunar week containing base_date.
Lunar weeks in Qlik Sense are defined by counting January 1 as the first day of the
week., Apart from the final week of the year, each week will contain exactly seven
days.

Syntax:
InLunarWeek (timestamp, base_date, period_no[, first_week_day])

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is
represented by 0.

The inlunarweek() function determines which lunar week the base_date falls into. It then returns a
Boolean result once it has determined whether each timestamp value occurs during the same lunar
week as the base_date.

Diagram of inlunarweek() function

Script syntax and chart functions - Qlik Sense, May 2024 690

8 Script and chart functions

When to use it
The inlunarweek() function returns a Boolean result. Typically, this type of function will be used as a
condition in an IF expression. This would return an aggregation or calculation dependent on
whether the date evaluated occurred during the lunar week in question.

For example, the inlunarweek() function can be used to identify all equipment manufactured in a
particular lunar week.

Argument Description

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the lunar week.

period_no The lunar week can be offset by period_no. period_no is an integer, where the
value 0 indicates the lunar week which contains base_date. Negative values in
period_no indicate preceding lunar weeks and positive values indicate
succeeding lunar weeks.

first_week_
day

An offset that may be greater than or less than zero. This changes the beginning
of the year by the specified number of days and/or fractions of a day.

Arguments

Example Result

inlunarweek

('01/12/2013',

'01/14/2013', 0)

Returns TRUE, since the value of timestamp, 01/12/2013, falls in the week
01/08/2013 to 01/14/2013.

inlunarweek

('01/12/2013',

'01/07/2013', 0)

Returns FALSE, since the base_date 01/07/2013 is in the lunar week defined as
01/01/2013 to 01/07/2013.

inlunarweek

('01/12/2013',

'01/14/2013', -

1)

Returns FALSE. Specifying a value of period_no as -1 shifts the week to the
previous week, 01/01/2013 to 01/07/2013.

inlunarweek

('01/07/2013',

01/14/2013', -1)

Returns TRUE. In comparison with the previous example, the timestamp is in the
following week, after into account the shift backwards.

inlunarweek

('01/11/2006',

'01/08/2006', 0,

3)

Returns FALSE. Specifying a value of 3 for first_week_day means that the start
of the year is calculated from 01/04/2013. Therefore, the value of base_date
falls in the first week, and the value of timestamp falls in the week 01/11/2013
to 01/17/2013.

Function examples

The inlunarweek() function is often used in combination with the following functions:

Script syntax and chart functions - Qlik Sense, May 2024 691

8 Script and chart functions

Function Interaction

lunarweekname
(page 865)

This function is used to determine the lunar week number of the year in
which an input date occurs.

Related functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 - No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of transactions for the month of January, which is loaded into a table called
Transactions.

l The date field has been provided in the DateFormat system variable (MM/DD/YYYY) format.

Create a field, in_lunar_week, that determines whether the transactions took place in the same lunar
week as January 10.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inlunarweek(date,'01/10/2022', 0) as in_lunar_week

;

Load

*

Inline

[

id,date,amount

Script syntax and chart functions - Qlik Sense, May 2024 692

8 Script and chart functions

8183,'1/5/2022',42.32

8184,'1/6/2022',68.22

8185,'1/7/2022',15.25

8186,'1/8/2022',25.26

8187,'1/9/2022',37.23

8188,'1/10/2022',37.23

8189,'1/11/2022',17.17

8190,'1/12/2022',88.27

8191,'1/13/2022',57.42

8192,'1/14/2022',53.80

8193,'1/15/2022',82.06

8194,'1/16/2022',87.21

8195,'1/17/2022',95.93

8196,'1/18/2022',45.89

8197,'1/19/2022',36.23

8198,'1/20/2022',25.66

8199,'1/21/2022',82.77

8200,'1/22/2022',69.98

8201,'1/23/2022',76.11

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_lunar_week

date in_lunar_week

1/5/2022 0

1/6/2022 0

1/7/2022 0

1/8/2022 -1

1/9/2022 -1

1/10/2022 -1

1/11/2022 -1

1/12/2022 -1

1/13/2022 -1

1/14/2022 -1

1/15/2022 0

1/16/2022 0

1/17/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 693

8 Script and chart functions

date in_lunar_week

1/18/2022 0

1/19/2022 0

1/20/2022 0

1/21/2022 0

1/22/2022 0

1/23/2022 0

inlunarweek() function, basic example

The in_lunar_week field is created in the preceding load statement by using the inlunarweek()

function, then passing the following as the function's arguments:

l The date field
l A hard-coded date for January 10 as the base_date

l Aperiod_no of 0

Because lunar weeks begin on January 1, January 10 would fall in the lunar week that begins on
January 8 and ends on January 14. Therefore, any transactions that occur between those two dates
in January would return a Boolean value of TRUE. This is validated in the results table.

Example 2 - period_no
Examples and results:

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The date field has been provided in the DateFormat system variable (MM/DD/YYYY) format.

However, in this example, the task is to create a field, 2_lunar_weeks_later, that determines whether
or not the transactions took place two lunar weeks after January 10.

Script syntax and chart functions - Qlik Sense, May 2024 694

8 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inlunarweek(date,'01/10/2022', 2) as [2_lunar_weeks_later]

;

Load

*

Inline

[

id,date,amount

8183,'1/5/2022',42.32

8184,'1/6/2022',68.22

8185,'1/7/2022',15.25

8186,'1/8/2022',25.26

8187,'1/9/2022',37.23

8188,'1/10/2022',37.23

8189,'1/11/2022',17.17

8190,'1/12/2022',88.27

8191,'1/13/2022',57.42

8192,'1/14/2022',53.80

8193,'1/15/2022',82.06

8194,'1/16/2022',87.21

8195,'1/17/2022',95.93

8196,'1/18/2022',45.89

8197,'1/19/2022',36.23

8198,'1/20/2022',25.66

8199,'1/21/2022',82.77

8200,'1/22/2022',69.98

8201,'1/23/2022',76.11

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l 2_lunar_weeks_later

date 2_lunar_weeks_later

1/5/2022 0

1/6/2022 0

1/7/2022 0

1/8/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 695

8 Script and chart functions

date 2_lunar_weeks_later

1/9/2022 0

1/10/2022 0

1/11/2022 0

1/12/2022 0

1/13/2022 0

1/14/2022 0

1/15/2022 0

1/16/2022 0

1/17/2022 0

1/18/2022 0

1/19/2022 0

1/20/2022 0

1/21/2022 0

1/22/2022 -1

1/23/2022 -1

inlunarweek() function, period_no example

In this instance, because a period_no of 2 was used as the offset argument in the inlunarweek()

function, the function defines the week beginning on January 22 as the lunar week to validate
transactions against. Therefore, any transaction that takes place between the January 22 and
January 28 will return a Boolean result of TRUE.

Example 3 - first_week_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, May 2024 696

8 Script and chart functions

The load script uses the same dataset and scenario as the first example. However, in the example,
we set lunar weeks to begin on January 6.

l The same dataset and scenario as the first example.
l The default DateFormat system variable MM/DD/YYYY is used.
l A first_week_day argument of 5. This sets lunar weeks to begin on January 5.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inlunarweek(date,'01/10/2022', 0,5) as in_lunar_week

;

Load

*

Inline

[

id,date,amount

8183,'1/5/2022',42.32

8184,'1/6/2022',68.22

8185,'1/7/2022',15.25

8186,'1/8/2022',25.26

8187,'1/9/2022',37.23

8188,'1/10/2022',37.23

8189,'1/11/2022',17.17

8190,'1/12/2022',88.27

8191,'1/13/2022',57.42

8192,'1/14/2022',53.80

8193,'1/15/2022',82.06

8194,'1/16/2022',87.21

8195,'1/17/2022',95.93

8196,'1/18/2022',45.89

8197,'1/19/2022',36.23

8198,'1/20/2022',25.66

8199,'1/21/2022',82.77

8200,'1/22/2022',69.98

8201,'1/23/2022',76.11

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_lunar_week

Script syntax and chart functions - Qlik Sense, May 2024 697

8 Script and chart functions

date in_lunar_week

1/5/2022 0

1/6/2022 -1

1/7/2022 -1

1/8/2022 -1

1/9/2022 -1

1/10/2022 -1

1/11/2022 -1

1/12/2022 -1

1/13/2022 0

1/14/2022 0

1/15/2022 0

1/16/2022 0

1/17/2022 0

1/18/2022 0

1/19/2022 0

1/20/2022 0

1/21/2022 0

1/22/2022 0

1/23/2022 0

Results table

inlunarweek() function, first_week_day example

In this instance, because the first_week_date argument of 5 is used in the inlunarweek() function, it
offsets the start of the lunar week calendar to January 6. Therefore, January 10 falls in the lunar
week beginning on January 6 and ending on January 12. Any transaction that falls between these
two dates will return a Boolean value of TRUE.

Script syntax and chart functions - Qlik Sense, May 2024 698

8 Script and chart functions

Example 4 - Chart object
Load script and chart expression:

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The date field has been provided in the DateFormat system variable (MM/DD/YYYY) format.

However, in this example, the unchanged dataset is loaded into the application. The calculation that
determines whether the transactions took place in the same lunar week as January 10 is created as
a measure in a chart object of the application.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8183,'1/5/2022',42.32

8184,'1/6/2022',68.22

8185,'1/7/2022',15.25

8186,'1/8/2022',25.26

8187,'1/9/2022',37.23

8188,'1/10/2022',37.23

8189,'1/11/2022',17.17

8190,'1/12/2022',88.27

8191,'1/13/2022',57.42

8192,'1/14/2022',53.80

8193,'1/15/2022',82.06

8194,'1/16/2022',87.21

8195,'1/17/2022',95.93

8196,'1/18/2022',45.89

8197,'1/19/2022',36.23

8198,'1/20/2022',25.66

8199,'1/21/2022',82.77

8200,'1/22/2022',69.98

8201,'1/23/2022',76.11

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Script syntax and chart functions - Qlik Sense, May 2024 699

8 Script and chart functions

To calculate whether a transaction takes place in the lunar week that contains January 10, create
the following measure:

= inlunarweek(date,'01/10/2022', 0)

date =inlunarweek(date,'01/10/2022', 0)

1/5/2022 0

1/6/2022 0

1/7/2022 0

1/8/2022 -1

1/9/2022 -1

1/10/2022 -1

1/11/2022 -1

1/12/2022 -1

1/13/2022 -1

1/14/2022 -1

1/15/2022 0

1/16/2022 0

1/17/2022 0

1/18/2022 0

1/19/2022 0

1/20/2022 0

1/21/2022 0

1/22/2022 0

1/23/2022 0

Results table

Example 5 - Scenario
Load script and chart expression:

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2024 700

8 Script and chart functions

l A dataset which is loaded into a table called Products.
l Information consisting of product ID, manufacture date, and cost price.

It has been identified that due to equipment error, products that were manufactured in the lunar
week that included January 12 were defective. The end user would like a chart object that displays,
by lunar week name, the status of whether the products manufactured were ‘defective’ or ‘faultless’
and the cost of the products manufactured in that month.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

product_id,manufacture_date,cost_price

8183,'1/5/2022',42.32

8184,'1/6/2022',68.22

8185,'1/7/2022',15.25

8186,'1/8/2022',25.26

8187,'1/9/2022',37.23

8188,'1/10/2022',37.23

8189,'1/11/2022',17.17

8190,'1/12/2022',88.27

8191,'1/13/2022',57.42

8192,'1/14/2022',53.80

8193,'1/15/2022',82.06

8194,'1/16/2022',87.21

8195,'1/17/2022',95.93

8196,'1/18/2022',45.89

8197,'1/19/2022',36.23

8198,'1/20/2022',25.66

8199,'1/21/2022',82.77

8200,'1/22/2022',69.98

8201,'1/23/2022',76.11

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table.
2. Create a dimension to show the month names:

=lunarweekname(manufacture_date)

3. Create a measure to identify which of the products are defective and which are faultless
using the inlunarweek() function:
=if(only(inlunarweek(manufacture_date,makedate(2022,01,12),0)), 'Defective','Faultless')

4. Create a measure to sum the cost_price of the products:

Script syntax and chart functions - Qlik Sense, May 2024 701

8 Script and chart functions

=sum(cost_price)

5. Set the measure's Number formatting to Money.
6. Under Appearance, turn off Totals.

lunarweekname
(manufacture_date)

=if(only(inlunarweek(manufacture_
date,makedate(2022,01,12),0)),
'Defective','Faultless')

sum(cost_
price)

2022/01 Faultless $125.79

2022/02 Defective $316.38

2022/03 Faultless $455.75

2022/04 Faultless $146.09

Results table

The inlunarweek() function returns a Boolean value when evaluating the manufacturing dates of
each of the products. For any product manufactured in the lunar week that contains January 10, the
inlunarweek() function returns a Boolean value of TRUE and marks the products as ‘Defective’. For
any product returning a value of FALSE, and therefore not manufactured in that week, it marks the
products as ‘Faultless’.

inlunarweektodate
This function finds if timestamp lies inside the part of the lunar week up to and
including the last millisecond of base_date. Lunar weeks in Qlik Sense are defined by
counting January 1 as the first day of the week and, apart from the final week of the
year, will contain exactly seven days.

Syntax:
InLunarWeekToDate (timestamp, base_date, period_no [, first_week_day])

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is
represented by 0.

Example diagram of inlunarweektodate() function

Script syntax and chart functions - Qlik Sense, May 2024 702

8 Script and chart functions

IThe inlunarweektodate() function acts as the end point of the lunar week. In contrast, the
inlunarweek() function, determines which lunar week the base_date falls into. For example, if the
base_date were January 5, any timestamp between January 1 and January 5 would return a Boolean
result of TRUE, while dates on January 6 and 7, and later, would return a Boolean result of FALSE.

Argument Description

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the lunar week.

period_no The lunar week can be offset by period_no. period_no is an integer, where the
value 0 indicates the lunar week which contains base_date. Negative values in
period_no indicate preceding lunar weeks and positive values indicate
succeeding lunar weeks.

first_week_
day

An offset that may be greater than or less than zero. This changes the beginning
of the year by the specified number of days and/or fractions of a day.

Arguments

When to use it
The inlunarweektodate() function returns a Boolean result. Typically, this type of function will be
used as a condition in an IF expression. The inlunarweektodate() function would be used when the
user would like the calculation to return an aggregation or calculation, dependent on whether the
evaluated date occurred during a particular segment of the week in question.

For example, the inlunarweektodate() function can be used to identify all equipment manufactured
in a particular week up to and including a particular date.

Example Result

inlunarweektodate

('01/12/2013',

'01/13/2013', 0)

Returns TRUE, since the value of the timestamp, 01/12/2013, falls in the
part of the week 01/08/2013 to 01/13/2013.

inlunarweektodate

('01/12/2013',

'01/11/2013', 0)

Returns FALSE, since the value of the timestamp is later than the value of
base_date, even though the two dates are in the same lunar week before
01/12/2012.

inlunarweektodate

('01/12/2006',

'01/05/2006', 1)

Returns TRUE. Specifying a value of 1 for period_no shifts the base_date

forward one week, so the value of timestamp falls in the part of the lunar
week.

Function examples

The inlunarweektodate() function is often used in combination with the following functions:

Function Interaction

lunarweekname
(page 865)

This function is used to determine the lunar week number of the year in
which an input date occurs.

Related functions

Script syntax and chart functions - Qlik Sense, May 2024 703

8 Script and chart functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 - No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the month of January, which is loaded into a
table called Transactions. The default DateFormat system variable MM/DD/YYYY is used.

l Create a field in_lunar_week_to_date, that determines which transactions took place in lunar
week to date of January 10.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inlunarweektodate(date,'01/10/2022', 0) as in_lunar_week_to_date

;

Load

*

Inline

[

id,date,amount

8188,'1/10/2022',37.23

8189,'1/17/2022',17.17

8190,'1/26/2022',88.27

8191,'1/12/2022',57.42

8192,'1/19/2022',53.80

8193,'1/21/2022',82.06

8194,'1/1/2022',40.39

8195,'1/27/2022',87.21

Script syntax and chart functions - Qlik Sense, May 2024 704

8 Script and chart functions

8196,'1/11/2022',95.93

8197,'1/29/2022',45.89

8198,'1/31/2022',36.23

8199,'1/18/2022',25.66

8200,'1/23/2022',82.77

8201,'1/15/2022',69.98

8202,'1/4/2022',76.11

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_lunar_week_to_date

date in_lunar_week_to_date

1/1/2022 0

1/4/2022 0

1/10/2022 -1

1/11/2022 0

1/12/2022 0

1/15/2022 0

1/17/2022 0

1/18/2022 0

1/19/2022 0

1/21/2022 0

1/23/2022 0

1/26/2022 0

1/27/2022 0

1/29/2022 0

1/31/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 705

8 Script and chart functions

inlunarweektodate() function, no additional arguments

The in_lunar_week_to_date field is created in the preceding load statement by using the
inlunarweektodate() function and passing the date field, a hard-coded date for January 10 as our
base_date, and an offset of 0 as the function’s arguments.

Because lunar weeks begin on January 1, January 10 would fall in the lunar week that begins on
January 8; and because we are using the inlunarweektodate() function, that lunar week would then
end on the 10th. Therefore, any transactions that occur between those two dates in January would
return a Boolean value of TRUE. This is validated in the results table.

Example 2 - period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. However, in this
example, the task is to create a field, 2_lunar_weeks_later, that determines whether or not the
transactions took place two weeks after the lunar week to date of January 1.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inlunarweektodate(date,'01/10/2022', 2) as [2_lunar_weeks_later]

;

Load

*

Inline

[

id,date,amount

8188,'1/10/2022',37.23

8189,'1/17/2022',17.17

8190,'1/26/2022',88.27

8191,'1/12/2022',57.42

8192,'1/19/2022',53.80

8193,'1/21/2022',82.06

8194,'1/1/2022',40.39

8195,'1/27/2022',87.21

Script syntax and chart functions - Qlik Sense, May 2024 706

8 Script and chart functions

8196,'1/11/2022',95.93

8197,'1/29/2022',45.89

8198,'1/31/2022',36.23

8199,'1/18/2022',25.66

8200,'1/23/2022',82.77

8201,'1/15/2022',69.98

8202,'1/4/2022',76.11

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l 2_lunar_weeks_later

date 2_lunar_weeks_later

1/1/2022 0

1/4/2022 0

1/10/2022 0

1/11/2022 0

1/12/2022 0

1/15/2022 0

1/17/2022 0

1/18/2022 0

1/19/2022 0

1/21/2022 0

1/23/2022 -1

1/26/2022 0

1/27/2022 0

1/29/2022 0

1/31/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 707

8 Script and chart functions

inlunarweektodate() function, period_no example

In this instance, the inlunarweektodate() function determines that the lunar week up to January 10
equates to three days (January 8, 9, 10). Since a period_no of 2 was used as the offset argument,
this lunar week is shifted by 14 days. Therefore, this defines that three-day lunar week to include
January 22, 23, and 24. Any transaction that takes place between January 22 and January 24 will
return a Boolean result of TRUE.

Example 3 - first_week_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The default DateFormat system variable MM/DD/YYYY is used.
l A first_week_date argument of 3. This sets lunar weeks to begin on January 3.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inlunarweek(date,'01/10/2022', 0,3) as in_lunar_week_to_date

;

Load

*

Inline

[

id,date,amount

8188,'1/10/2022',37.23

8189,'1/17/2022',17.17

8190,'1/26/2022',88.27

8191,'1/12/2022',57.42

8192,'1/19/2022',53.80

8193,'1/21/2022',82.06

8194,'1/1/2022',40.39

Script syntax and chart functions - Qlik Sense, May 2024 708

8 Script and chart functions

8195,'1/27/2022',87.21

8196,'1/11/2022',95.93

8197,'1/29/2022',45.89

8198,'1/31/2022',36.23

8199,'1/18/2022',25.66

8200,'1/23/2022',82.77

8201,'1/15/2022',69.98

8202,'1/4/2022',76.11

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_lunar_week_to_date

date in_lunar_week_to_date

1/1/2022 0

1/4/2022 -1

1/10/2022 -1

1/11/2022 0

1/12/2022 0

1/15/2022 0

1/17/2022 0

1/18/2022 0

1/19/2022 0

1/21/2022 0

1/23/2022 0

1/26/2022 0

1/27/2022 0

1/29/2022 0

1/31/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 709

8 Script and chart functions

inlunarweektodate() function, first_week_day example

In this instance, because the first_week_date argument of 3 is used in the inlunarweek() function,
the first lunar week will be from January 3 to January 10. Because January 10 is also the base_date,
any transaction that falls between these two dates will return a Boolean value of TRUE.

Example 4 - Chart object example
Load script and chart expression

Overview

Open the Data load editor, and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation that
determines whether the transactions took place in the lunar week up to January 10 is created as a
measure in a chart object of the application.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'1/10/2022',37.23

8189,'1/17/2022',17.17

8190,'1/26/2022',88.27

8191,'1/12/2022',57.42

8192,'1/19/2022',53.80

8193,'1/21/2022',82.06

8194,'1/1/2022',40.39

8195,'1/27/2022',87.21

8196,'1/11/2022',95.93

8197,'1/29/2022',45.89

8198,'1/31/2022',36.23

8199,'1/18/2022',25.66

Script syntax and chart functions - Qlik Sense, May 2024 710

8 Script and chart functions

8200,'1/23/2022',82.77

8201,'1/15/2022',69.98

8202,'1/4/2022',76.11

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Create the following measure:

=inlunarweektodate(date,'01/10/2022', 0)

date =inlunarweektodate(date,'01/10/2022', 0)

1/1/2022 0

1/4/2022 0

1/10/2022 -1

1/11/2022 0

1/12/2022 0

1/15/2022 0

1/17/2022 0

1/18/2022 0

1/19/2022 0

1/21/2022 0

1/23/2022 0

1/26/2022 0

1/27/2022 0

1/29/2022 0

1/31/2022 0

Results table

inlunarweektodate() function, chart object example

Script syntax and chart functions - Qlik Sense, May 2024 711

8 Script and chart functions

The in_lunar_week_to_date measure is created in the chart object by using the inlunarweektodate()

function and passing the date field, a hard-coded date for January 10 as our base_date, and an
offset of 0 as the function’s arguments.

Because lunar weeks begin on January 1, January 10 would fall in the lunar week that begins on
January 8. Additionally, since we are using the inlunarweektodate() function, that lunar week would
then terminate on the 10th. Therefore, any transactions that occur between those two dates in
January would return a Boolean value of TRUE. This is validated in the results table.

Example 5 - Scenario
Load script and chart expressions

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called Products.
l Information consisting of product ID, manufacture date, and cost price.

It has been identified that due to equipment error, products that were manufactured in the lunar
week of January 12 were defective. The issue was resolved on January 13. The end user would like
a chart object that displays, by week, the status of whether the products manufactured ‘defective’
or ‘faultless’ and the cost of the products manufactured in that week.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff]';

Products:

Load

*

Inline

[

product_id,manufacture_date,cost_price

8188,'01/02/2022 12:22:06',37.23

8189,'01/05/2022 01:02:30',17.17

8190,'01/06/2022 15:36:20',88.27

8191,'01/08/2022 10:58:35',57.42

8192,'01/09/2022 08:53:32',53.80

8193,'01/10/2022 21:13:01',82.06

8194,'01/11/2022 00:57:13',40.39

8195,'01/12/2022 09:26:02',87.21

8196,'01/13/2022 15:05:09',95.93

8197,'01/14/2022 18:44:57',45.89

8198,'01/15/2022 06:10:46',36.23

8199,'01/16/2022 06:39:27',25.66

8200,'01/17/2022 10:44:16',82.77

8201,'01/18/2022 18:48:17',69.98

8202,'01/26/2022 04:36:03',76.11

Script syntax and chart functions - Qlik Sense, May 2024 712

8 Script and chart functions

8203,'01/27/2022 08:07:49',25.12

8204,'01/28/2022 12:24:29',46.23

8205,'01/30/2022 11:56:56',84.21

8206,'01/30/2022 14:40:19',96.24

8207,'01/31/2022 05:28:21',67.67

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table.
2. Create a dimension to show the week names:

=weekname(manufacture_date)

3. Next, create a dimension which uses the inlunarweektodate() function to identify which of
the products are defective and which are faultless:
=if(inlunarweektodate(manufacture_date,makedate(2022,01,12),0),'Defective','Faultless')

4. Create a measure to sum the cost_price of the products:
=sum(cost_price)

5. Set the measure's Number formatting to Money.

=lunarweekname
(manufacture_date)

=if(InLunarWeekToDate(manufacture_
date,makedate
(2022,01,12),0),'Defective','Faultless')

=Sum(cost_
price)

2022/01 Faultless $142.67

2022/02 Defective $320.88

2022/02 Faultless $141.82

2022/03 Faultless $214.64

2022/04 Faultless $147.46

2022/05 Faultless $248.12

Results table

The inlunarweektodate() function returns a Boolean value when evaluating the manufacturing dates
of each of the products. For those that return a Boolean value of TRUE, it marks the products as
‘Defective’. For any product returning a value of FALSE, and therefore not made in the lunar week up
to January 12, it marks the products as ‘Faultless’.

inmonth
This function returns True if timestamp lies inside the month containing base_date.

Syntax:
InMonth (timestamp, base_date, period_no)

Script syntax and chart functions - Qlik Sense, May 2024 713

8 Script and chart functions

Diagram of indaytotime function.

In other words, the inmonth() function determines if a set of dates fall into this month and returns a
Boolean value based on a base_date that identifies the month.

When to use it

The inmonth() function returns a Boolean result. Typically, this type of function will be used as a
condition in an if expression. This returns an aggregation or calculation depending on whether a
date occurred in the month, including the date in question.

For example, the inmonth() function can be used to identify all equipment manufactured in a
specific month.

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Argument Description

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the month. It is important to note that the base_date

can be any day within a month.

period_no The month can be offset by period_no. period_no is an integer, where the value 0
indicates the month which contains base_date. Negative values in period_no

indicate preceding months and positive values indicate succeeding months.

Arguments

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Script syntax and chart functions - Qlik Sense, May 2024 714

8 Script and chart functions

Example Result

inmonth ('25/01/2013', '01/01/2013', 0) Returns True

inmonth('25/01/2013', '23/04/2013', 0) Returns False
inmonth ('25/01/2013', '01/01/2013', -1) Returns False

inmonth ('25/12/2012', '17/01/2013', -1) Returns True

Function examples

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the first half of 2022.
l A preceding load with an additional variable ‘in_month’, that determines whether transactions

took place in April.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inmonth(date,'04/01/2022', 0) as in_month

;

Load

*

Inline

[

id,date,amount

8188,'1/10/2022',37.23

8189,'1/14/2022',17.17

8190,'1/20/2022',88.27

8191,'1/22/2022',57.42

8192,'2/1/2022',53.80

8193,'2/2/2022',82.06

8194,'2/20/2022',40.39

8195,'4/11/2022',87.21

8196,'4/13/2022',95.93

8197,'4/15/2022',45.89

8198,'4/25/2022',36.23

8199,'5/20/2022',25.66

8200,'5/22/2022',82.77

Script syntax and chart functions - Qlik Sense, May 2024 715

8 Script and chart functions

8201,'6/19/2022',69.98

8202,'6/22/2022',76.11

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_month

date in_month

1/10/2022 0

1/14/2022 0

1/20/2022 0

1/22/2022 0

2/1/2022 0

2/2/2022 0

2/20/2022 0

4/11/2022 -1

4/13/2022 -1

4/15/2022 -1

4/25/2022 -1

5/20/2022 0

5/22/2022 0

6/19/2022 0

6/22/2022 0

Function examples

The ‘in_month’ fieldis created in the preceding load statement by using the inmonth() function and
passing the date field, a hard-coded date of April 1, as our base_date and a period_no of 0 as the
function’s arguments.

The base_date identifies the month that will return a Boolean result of TRUE. Therefore, all
transactions that occurred in April return TRUE which is validated in the results table.

Example 2 – period_no
Load script and results

Overview

The same dataset and scenario from the first example are used.

Script syntax and chart functions - Qlik Sense, May 2024 716

8 Script and chart functions

However, in this example, you will create a field, ‘2_months_prior’, that determines whether the
transactions took place two months before April.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inmonth(date,'04/01/2022', -2) as [2_months_prior]

Inline

[

id,date,amount

8188,'1/10/2022',37.23

8189,'1/14/2022',17.17

8190,'1/20/2022',88.27

8191,'1/22/2022',57.42

8192,'2/1/2022',53.80

8193,'2/2/2022',82.06

8194,'2/20/2022',40.39

8195,'4/11/2022',87.21

8196,'4/13/2022',95.93

8197,'4/15/2022',45.89

8198,'4/25/2022',36.23

8199,'5/20/2022',25.66

8200,'5/22/2022',82.77

8201,'6/19/2022',69.98

8202,'6/22/2022',76.11

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l 2_months_prior

date 2_months_prior

1/10/2022 0

1/14/2022 0

1/20/2022 0

1/22/2022 0

2/1/2022 -1

2/2/2022 -1

2/20/2022 -1

Function examples

Script syntax and chart functions - Qlik Sense, May 2024 717

8 Script and chart functions

date 2_months_prior

4/11/2022 0

4/13/2022 0

4/15/2022 0

4/25/2022 0

5/20/2022 0

5/22/2022 0

6/19/2022 0

6/22/2022 0

Using -2 as the period_no argument in the inmonth() function shifts the month defined by the base_

date argument two months prior. In this example it changes the defined month from April to
February.

Therefore, any transaction that takes place in February will return a Boolean result of TRUE.

Example 3 – Chart object
Load script and chartexpression

Overview

The same dataset and scenario from the previous examples are used.

However, in this example, the dataset is unchanged and loaded into the application. The calculation
that determines whether transactions took place in April is created as a measurein a chart object of
the application.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'1/10/2022',37.23

8189,'1/14/2022',17.17

8190,'1/20/2022',88.27

8191,'1/22/2022',57.42

8192,'2/1/2022',53.80

8193,'2/2/2022',82.06

8194,'2/20/2022',40.39

8195,'4/11/2022',87.21

8196,'4/13/2022',95.93

8197,'4/15/2022',45.89

Script syntax and chart functions - Qlik Sense, May 2024 718

8 Script and chart functions

8198,'4/25/2022',36.23

8199,'5/20/2022',25.66

8200,'5/22/2022',82.77

8201,'6/19/2022',69.98

8202,'6/22/2022',76.11

];

Chart object

Load the data and open a sheet. Create a new table and add this field as a dimension:

date

To calculate whether a transaction takes place in April, create the following measure:

=inmonth(date,'04/01/2022', 0)

Results

date =inmonth(date,'04/01/2022', 0)

1/10/2022 0

1/14/2022 0

1/20/2022 0

1/22/2022 0

2/1/2022 0

2/2/2022 0

2/20/2022 0

4/11/2022 -1

4/13/2022 -1

4/15/2022 -1

4/25/2022 -1

5/20/2022 0

5/22/2022 0

6/19/2022 0

6/22/2022 0

Function examples

Example 4 – Scenario
Load script and results

Overview

In this example, a dataset is loaded into a table called ‘Products’. The table contains the following
fields:

Script syntax and chart functions - Qlik Sense, May 2024 719

8 Script and chart functions

l Product ID
l Manufacture date
l Cost price

Due to equipment error, products that were manufactured in the month of July 2022 were
defective. The issue was resolved on July 27, 2022.

The end user would like a chart that displays, by month, the status of products that were
manufactured as ‘defective’ (Boolean TRUE) or ‘faultless’ (Boolean FALSE) and the cost of the
products manufactured in that month.

Load script

Products:

Load

*

Inline

[

product_id,manufacture_date,cost_price

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

=monthname(manufacture_date)

Create the following measures

l =sum(cost_price)

l =if(only(inmonth(manufacture_date,makedate(2022,07,01),0)),'Defective','Faultless')

Script syntax and chart functions - Qlik Sense, May 2024 720

8 Script and chart functions

1. Set the measure’s Number Formatting to Money.
2. Under Appearance, turn off Totals.

monthname
(manufacture_date)

=if(only(inmonth(manufacture_date,makedate
(2022,07,01),0)),'Defective','Faultless')

sum(cost_
price)

Jan 2022 Faultless $54.40

Feb 2022 Faultless $145.69

Mar 2022 Faultless $53.80

Apr 2022 Faultless $82.06

May 2022 Faultless $127.60

Jun 2022 Faultless $141.82

Jul 2022 Defective $214.64

Aug 2022 Faultless $147.46

Sep 2022 Faultless $84.21

Oct 2022 Faultless $163.91

Results table

The inmonth() function returns a Boolean value when evaluating the manufacturing dates of each of
the products. For any product manufactured in July 2022, the inmonth() function returns a Boolean
value of True and marks the products as ‘Defective’. For any product returning a value of False, and
therefore not manufactured in July, it marks the products as ‘Faultless’.

inmonths
This function finds if a timestamp falls within the same month, bi-month, quarter, four-
month period, or half-year as a base date. It is also possible to find if the timestamp
falls within a previous or following time period.

Syntax:
InMonths(n_months, timestamp, base_date, period_no [, first_month_of_year])

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Script syntax and chart functions - Qlik Sense, May 2024 721

8 Script and chart functions

Diagram of inmonths() function

The inmonths() function divides the year into segments based on the n_months argument provided. It
then determines whether each timestamp evaluated falls into the same segment as the base_date

argument. If, however, a period_no argument is provided, the function determines whether the
timestamps fall into a previous or following period from the base_date.

The following segments of the year are available in the function as n_month arguments.

Period Number of months

month 1

bi-month 2

quarter 3

four months 4

half-year 6

n_month arguments

When to use it

The inmonths() function returns a Boolean result. Typically, this type of function will be used as a
condition in an if expression. By using the inmonths() function, you can select the period that you
want to be evaluated. For example, letting the user identify products manufactured in the month,
quarter, or half-year of a certain period.

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Argument Description

n_months The number of months that defines the period. An integer or expression that
resolves to an integer that must be one of: 1 (equivalent to the inmonth()
function), 2 (bi-month), 3 (equivalent to the inquarter()function), 4 (four-month
period), or 6 (half year).

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 722

8 Script and chart functions

Argument Description

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the period.

period_no The period can be offset by period_no, an integer, or expression resolving to an
integer, where the value 0 indicates the period that contains base_date.
Negative values in period_no indicate preceding periods and positive values
indicate succeeding periods.

first_month_
of_year

If you want to work with (fiscal) years not starting in January, indicate a value
between 2 and 12 in first_month_of_year.

You can use the following values to set the first month of year in the first_month_of_year argument:

Month Value

February 2

March 3

April 4

May 5

June 6

July 7

August 8

September 9

October 10

November 11

December 12

first_month_of_year values

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Script syntax and chart functions - Qlik Sense, May 2024 723

8 Script and chart functions

Example Result

inmonths(4,

'01/25/2013',

'04/25/2013', 0)

Returns TRUE. Because the value of timestamp, 01/25/2013, lies within the
four-month period 01/01/2013 to 04/30/2013, in which the value of base_
date, 04/25/2013 lies.

inmonths(4,

'05/25/2013',

'04/25/2013', 0)

Returns FALSE. Because 05/25/2013 is outside the same period as the
previous example.

inmonths(4,

'11/25/2012',

'02/01/2013', -1

)

Returns TRUE. Because the value of period_no, -1, shifts the search period
back one period of four months (the value of n-months), which makes the
search period 09/01/2012 to 12/31/2012.

inmonths(4,

'05/25/2006',

'03/01/2006', 0,

3)

Returns TRUE. Because the value of first_month_of_year is set to 3, which
makes the search period 03/01/2006 to 07/30/2006 instead of 01/01/2006
to 04/30/2006.

Function examples

Example 1 - No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022 is loaded into a table called ‘Transactions’.
l A preceding load with an additional variable ‘in_months’, that determines which transactions

took place in the same quarter as May 15, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inmonths(3,date,'05/15/2022', 0) as in_months

;

Load

*

Inline

[

id,date,amount

8188,'2/19/2022',37.23

8189,'3/7/2022',17.17

8190,'3/30/2022',88.27

8191,'4/5/2022',57.42

Script syntax and chart functions - Qlik Sense, May 2024 724

8 Script and chart functions

8192,'4/16/2022',53.80

8193,'5/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/22/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_months

date in_months

2/19/2022 0

3/7/2022 0

3/30/2022 0

4/5/2022 -1

4/16/2022 -1

5/1/2022 -1

5/7/2022 -1

5/22/2022 -1

6/15/2022 -1

6/26/2022 -1

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 725

8 Script and chart functions

date in_months

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

The ‘in_months’ field is created in the preceding load statement by using the inmonths() function.
The first argument provided is 3 which divides the year into quarter segments. The second
argument identifies which field is being evaluated, the date field in this example. The third argument
is a hard-coded date for the for May 15 which is the base_date and a period_no of 0 is the final
argument.

Diagram of inmonths() function with quarter segments

May falls into the second quarter of the year. Therefore, any transaction that occurs between April 1
and June 30 will return a Boolean result of TRUE. This is validated in the results table.

Example 2 - period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022 is loaded into a table called ‘Transactions’.
l A preceding load with an additional variable, ‘previous_quarter’, that determines whether

transactions took place in the quarter before May 15, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Script syntax and chart functions - Qlik Sense, May 2024 726

8 Script and chart functions

Transactions:

Load

*,

inmonths(3,date,'05/15/2022', -1) as previous_quarter

;

Load

*

Inline

[

id,date,amount

8188,'2/19/2022',37.23

8189,'3/7/2022',17.17

8190,'3/30/2022',88.27

8191,'4/5/2022',57.42

8192,'4/16/2022',53.80

8193,'5/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/22/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_quarter

date previous quarter

2/19/2022 -1

3/7/2022 -1

3/30/2022 -1

4/5/2022 0

4/16/2022 0

5/1/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 727

8 Script and chart functions

date previous quarter

5/7/2022 0

5/22/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

The function evaluates whether transactions occurred in the first quarter of the year by using -1 as
the period_no argument in the inmonths() function. May 15 is the base_date and falls into the second
quarter of the year (April-June).

Diagram of inmonths() function with quarter segments and the period_no set to -1

Therefore, any transaction that occurs between January and March will return a Boolean result of
TRUE.

Script syntax and chart functions - Qlik Sense, May 2024 728

8 Script and chart functions

Example 3 - first_month_of_year
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022 is loaded into a table called ‘Transactions’.
l A preceding load with an additional variable, ‘in_months’, that determines which transactions

took place in the same quarter as May 15, 2022.

In this example, the organizational policy is for March to be the first month of the financial year.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inmonths(3,date,'05/15/2022', 0, 3) as in_months

;

Load

*

Inline

[

id,date,amount

8188,'2/19/2022',37.23

8189,'3/7/2022',17.17

8190,'3/30/2022',88.27

8191,'4/5/2022',57.42

8192,'4/16/2022',53.80

8193,'5/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/22/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Script syntax and chart functions - Qlik Sense, May 2024 729

8 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_months

date in_months

2/19/2022 0

3/7/2022 -1

3/30/2022 -1

4/5/2022 -1

4/16/2022 -1

5/1/2022 -1

5/7/2022 -1

5/22/2022 -1

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

Results table

By using 3 as the first_month_of_year argument in the inmonths() function, the function begins the
year on March 1. The inmonths() function then divides the year into quarters: Mar-May, Jun-Aug,
Sep-Nov, Dec-Feb. Therefore, May 15 falls into the first quarter of the year (March-May).

Script syntax and chart functions - Qlik Sense, May 2024 730

8 Script and chart functions

Diagram of inmonths() function with March set as first month of the year

Any transaction that occurs in these months will return a Boolean result of TRUE.

Example 4 - Chart object example
Load script and chart expression

Overview

The same dataset and scenario from the first example are used.

However, in this example, the dataset is unchanged and loaded into the application. The calculation
that determines whether transactions took place in the same quarter as May 15, 2022 is created as
a measure in a chart in the app.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'2/19/2022',37.23

8189,'3/7/2022',17.17

8190,'3/30/2022',88.27

8191,'4/5/2022',57.42

8192,'4/16/2022',53.80

8193,'5/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/22/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

Script syntax and chart functions - Qlik Sense, May 2024 731

8 Script and chart functions

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

l date

To calculate whether transactions took place in the same quarter as May 15, create the following
measure:

=inmonths(3,date,'05/15/2022', 0)

date =inmonths(3,date,'05/15/2022', 0)

2/19/2022 0

3/7/2022 0

3/30/2022 0

4/5/2022 -1

4/16/2022 -1

5/1/2022 -1

5/7/2022 -1

5/22/2022 -1

6/15/2022 -1

6/26/2022 -1

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 732

8 Script and chart functions

The ‘in_months’ field is created in the chart by using the inmonths() function. The first argument
provided is 3 which divides the year into quarter segments. The second argument identifies which
field is being evaluated, the date field in this example. The third argument is a hard-coded date for
the for May 15 which is the base_date and a period_no of 0 is the final argument.

Diagram of inmonths() function with quarter segments

May falls into the second quarter of the year. Therefore, any transaction that occurs between April 1
and June 30 will return a Boolean result of TRUE. This is validated in the results table.

Example 5 - Scenario
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called ‘Products’.
l The table contains the following fields:

l product ID
l product type
l manufacture date
l cost price

The end user would like a chart that displays, by product type, the cost of products manufactured in
the first segment of 2021. The user would like to be able to define the length of this segment.

Load script

SET vPeriod = 1;

Products:

Load

*

Inline

[

product_id,product_type,manufacture_date,cost_price

8188,product A,'2/19/2022',37.23

Script syntax and chart functions - Qlik Sense, May 2024 733

8 Script and chart functions

8189,product D,'3/7/2022',17.17

8190,product C,'3/30/2022',88.27

8191,product B,'4/5/2022',57.42

8192,product D,'4/16/2022',53.80

8193,product D,'5/1/2022',82.06

8194,product A,'5/7/2022',40.39

8195,product B,'5/22/2022',87.21

8196,product C,'6/15/2022',95.93

8197,product B,'6/26/2022',45.89

8198,product C,'7/9/2022',36.23

8199,product D,'7/22/2022',25.66

8200,product D,'7/23/2022',82.77

8201,product A,'7/27/2022',69.98

8202,product A,'8/2/2022',76.11

8203,product B,'8/8/2022',25.12

8204,product B,'8/19/2022',46.23

8205,product B,'9/26/2022',84.21

8206,product C,'10/14/2022',96.24

8207,product D,'10/29/2022',67.67

];

Results

Load the data and open a sheet.

At the start of the load script a variable, vPeriod, is created that is tied to the variable input control.

Do the following:

1. In the assets panel, click Custom objects.
2. Select Qlik Dashboard bundle, create a Variable input object.
3. Enter a title for the chart object.
4. Under Variable, select vPeriod as the name and set the object to show as a Drop down.
5. Under Values, click Dynamic values. Enter the following:

='1~month|2~bi-month|3~quarter|4~tertial|6~half-year'.

6. Add a new table to the sheet.
7. Under Data in the properties panel, add product_type as a dimension.
8. Add the following expression as a measure:

=sum(if(inmonths($(vPeriod),manufacture_date,makedate(2022,01,01),0),cost_price,0))

9. Set the measure’s Number formatting to Money.

product_
type

=sum(if(inmonths($(vPeriod),manufacture_date,makedate
(2022,01,01),0),cost_price,0))

product A $88.27

product B $37.23

product C $17.17

product D $0.00

Results table

Script syntax and chart functions - Qlik Sense, May 2024 734

8 Script and chart functions

The inmonths() function uses the user input as its argument to define the size of the starting
segment of the year. The function passes in the manufacture date of each of the products as the
inmonths() function’s second argument. By using January 1 as the third argument in the inmonths()

function, products with manufacture dates that fall in the opening segment of the year will return a
Boolean value of TRUE and therefore the sum function will add the costs of those products.

inmonthstodate
This function finds if a timestamp falls within the part a period of the month, bi-month,
quarter, four-month period, or half-year up to and including the last millisecond of base_
date. It is also possible to find if the timestamp falls within a previous or following time
period.

Syntax:
InMonths (n_months, timestamp, base_date, period_no[, first_month_of_year])

Return data type: Boolean

Diagram of inmonthstodate function.

Argument Description

n_months The number of months that defines the period. An integer or expression that
resolves to an integer that must be one of: 1 (equivalent to the inmonth()
function), 2 (bi-month), 3 (equivalent to the inquarter()function), 4 (four-month
period), or 6 (half year).

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the period.

period_no The period can be offset by period_no, an integer, or expression resolving to an
integer, where the value 0 indicates the period that contains base_date.
Negative values in period_no indicate preceding periods and positive values
indicate succeeding periods.

first_month_
of_year

If you want to work with (fiscal) years not starting in January, indicate a value
between 2 and 12 in first_month_of_year.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 735

8 Script and chart functions

In the inmonthstodate() function, the base_date acts as the end point of the particular year segment
that it is part of.

For example, if the year was broken into tertial segments, and the base_date was May 15, any
timestamp between the start of January and end of April would return a Boolean result of FALSE.
Dates between May 1 and May 15 would return TRUE. The rest of the year would return FALSE.

Diagram of Boolean results range of inmonthstodate function.

The following segments of the year are available in the function as n_month arguments.

Period Number of months

month 1

bi-month 2

quarter 3

tertial 4

half-year 6

n_month arguments

When to use it

The inmonthstodate() function returns a Boolean result. Typically, this type of function is used as a
condition in an if expression. By using the inmonthstodate() function, you can select the period you
want to be evaluated. For example, providing an input variable that lets the user identify the
products manufactured in the month, quarter, or half-year of a period, up to a certain date.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Script syntax and chart functions - Qlik Sense, May 2024 736

8 Script and chart functions

Example Result

inmonthstodate(4,

'01/25/2013',

'04/25/2013', 0)

Returns True, because the value of timestamp, 01/25/2013, lies within the
four-month period 01/01/2013 up to the end of 04/25/2013, in which the
value of base_date, 04/25/2013 lies.

inmonthstodate(4,

'04/26/2013',

'04/25/2006', 0)

Returns False, because 04/26/2013 is outside the same period as the
previous example.

inmonthstodate(4,

'09/25/2005',

'02/01/2006', -1)

Returns True, because the value of period_no, -1, shifts the search period
back one period of four months (the value of n-months), which makes the
search period 01/09/2005 to 02/01/2006.

inmonthstodate(4,

'04/25/2006',

'06/01/2006', 0, 3)

Returns True, because the value of first_month_of_year is set to 3, which
makes the search period 03/01/2006 to 06/01/2006 instead of
05/01/2006 to 06/01/2006.

Function examples

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022 that is loaded into a table called
‘Transactions’.

l A date field in the DateFormat system variable (MM/DD/YYYY) format.
l A preceding load statement containing:

l The inmonthstodate() function that is set as the field, ‘in_months_to_date’. This
determines which transactions took place in the quarter up until May 15, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inmonthstodate(3,date,'05/15/2022', 0) as in_months_to_date

;

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

Script syntax and chart functions - Qlik Sense, May 2024 737

8 Script and chart functions

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_months_to_date

date in_months_to_date

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

3/16/2022 0

4/1/2022 -1

5/7/2022 -1

5/16/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 738

8 Script and chart functions

date in_months_to_date

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

The ‘in_months_to_date’ field is created in the preceding load statement by using the inmonthstodate

() function.

The first argument provided is 3, dividing the year into quarter segments. The second argument
identifies which field is being evaluated. The third argument is a hard-coded date for May 15, which
is the base_date that defines the end boundary of the segment. A period_no of 0 is the final
argument.

Diagram of inmonthstodate function with no additional arguments.

Any transaction that occurs between April 1 and May 15 returns a Boolean result of TRUE.
Transaction dates outside of that period return FALSE.

Example 2 – period_no
Load script and results

Overview

The same dataset and scenario as the first example are used.

However, in this example, the task is to create a field, ‘previous_qtr_to_date’, that determines if the
transactions took place a quarter before May 15.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

Script syntax and chart functions - Qlik Sense, May 2024 739

8 Script and chart functions

inmonthstodate(3,date,'05/15/2022', -1) as previous_qtr_to_date

;

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_qtr_to_date

date previous_qtr_to_date

1/7/2022 -1

1/19/2022 -1

2/5/2022 -1

2/28/2022 0

3/16/2022 0

4/1/2022 0

5/7/2022 0

5/16/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 740

8 Script and chart functions

date previous_qtr_to_date

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

By using -1 as the period_no argument in the inmonthstodate() function, the function shifts the
boundaries of the comparator year segment by a quarter.

May 15 falls into the second quarter of the year and therefore the segment initially equates to
between April 1 and May 15. The period_no argument offsets this segment by a negative three
months. The date boundaries become January 1 to February 15.

Diagram of inmonthstodate function with period_no set to -1.

Therefore, any transaction that occurs between January 1 and February 15 will return a Boolean
result of TRUE.

Example 3 – first_month_of_year
Load script and results

Overview

The same dataset and scenario as the first example are used.

Script syntax and chart functions - Qlik Sense, May 2024 741

8 Script and chart functions

In this example, the organizational policy is for March to be the first month of the financial year.

Create a field, ‘in_months_to_date’, that determines which transactions took place in the same
quarter up to May 15, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inmonthstodate(3,date,'05/15/2022', 0,3) as in_months_to_date

;

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_months_to_date

Script syntax and chart functions - Qlik Sense, May 2024 742

8 Script and chart functions

date previous_qtr_to_date

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

3/16/2022 -1

4/1/2022 -1

5/7/2022 -1

5/16/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

Results table

By using 3 as the first_month_of_year argument in the inmonthstodate() function, the function
begins the year on March 1 and then divides the year into quarters based on the first argument
provided. Therefore, the quarter segments are:

l Mar-May
l Jun-Aug
l Sep-Nov
l Dec-Feb

The base_date of May 15 then segments the Mar-May quarter by setting its end boundary as May
15.

Script syntax and chart functions - Qlik Sense, May 2024 743

8 Script and chart functions

Diagram of inmonthstodate function with March set as first month of the year.

Therefore, any transaction that occurs between March 1 and May 15 will return a Boolean result of
TRUE, and transactions with dates outside these boundaries will return a value of FALSE.

Example 4 – Chart example
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

In this example, the dataset is unchanged and loaded into the app. The task is to create a
calculation that determines whether transactions took place in the same quarter as May 15 as a
measure in a chart of the app.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

Script syntax and chart functions - Qlik Sense, May 2024 744

8 Script and chart functions

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

date

To calculate whether transactions took place in the same quarter as May 15, create the following
measure:

=inmonthstodate(3,date,'05/15/2022', 0)

date =inmonthstodate(3,date,'05/15/2022', 0)

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

3/16/2022 0

4/1/2022 -1

5/7/2022 -1

5/16/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

Results table

The ‘in_months_to_date’ measure is created in the chart by using the inmonthstodate() function.

Script syntax and chart functions - Qlik Sense, May 2024 745

8 Script and chart functions

The first argument provided is 3, dividing the year into quarter segments. The second argument
identifies which field is being evaluated. The third argument is a hard-coded date May 15 which is
the base_date that defines the end boundary of the segment. A period_no of 0 is the final argument.

Diagram of inmonthstodate function with quarter segments.

Any transaction that occurs between April 1 and May 15 will return a Boolean result of TRUE.
Transaction dates outside of that segment will return FALSE.

Example 5 – Scenario
Load script and results

Overview

In this example, a dataset is loaded into a table called ‘Sales’. The table contains the following fields:

l Product ID
l Product type
l Sales date
l Sales price

The end user would like a chart that displays, by product type, the sales of products sold in the
period leading up to December 24, 2022. The user would like to be able to define the length of this
period.

Load script

SET vPeriod = 1;

Products:

Load

*

Inline

[

product_id,product_type,sales_date,sales_price

8188,product A,'9/19/2022',37.23

8189,product D,'10/27/2022',17.17

8190,product C,'10/30/2022',88.27

8191,product B,'10/31/2022',57.42

8192,product D,'11/16/2022',53.80

8193,product D,'11/28/2022',82.06

8194,product A,'12/2/2022',40.39

8195,product B,'12/5/2022',87.21

Script syntax and chart functions - Qlik Sense, May 2024 746

8 Script and chart functions

8196,product C,'12/15/2022',95.93

8197,product B,'12/16/2022',45.89

8198,product C,'12/19/2022',36.23

8199,product D,'12/22/2022',25.66

8200,product D,'12/23/2022',82.77

8201,product A,'12/24/2022',69.98

8202,product A,'12/24/2022',76.11

8203,product B,'12/26/2022',25.12

8204,product B,'12/27/2022',46.23

8205,product B,'12/27/2022',84.21

8206,product C,'12/28/2022',96.24

8207,product D,'12/29/2022',67.67

];

Results

Load the data and open a sheet.

At the start of the load script a variable, vPeriod, is created that is tied to the variable input control.

Do the following:

1. In the assets panel, click Custom objects.
2. Select Qlik Dashboard bundle and add a Variable input to your sheet.
3. Enter a title for the chart.
4. Under Variable, select vPeriod as the name and set the object to show as a Drop down.
5. Under Values, click Dynamic values. Enter the following:

='1~month|2~bi-month|3~quarter|4~tertial|6~half-year'.

6. Add a new table to the sheet.
7. Under Data in the properties panel, add product_type as a dimension.
8. Add the following expression as a measure:

=sum(if(inmonthstodate($(vPeriod),sales_date,makedate(2022,12,24),0),sales_price,0))

9. Set the measure’s Number formatting to Money.

product_
type

=sum(if(inmonthstodate($(vPeriod),sales_date,makedate
(2022,12,24),0),sales_price,0))

product A $186.48

product B $190.52

product C $220.43

product D $261.46

Results table

The inmonthstodate() function uses the user input as its argument to define the size of the starting
segment of the year.

Script syntax and chart functions - Qlik Sense, May 2024 747

8 Script and chart functions

The function passes in the sales date of each of the products as the inmonthstodate() function’s
second argument. By using December 24 as the third argument in the inmonthstodate() function,
products with sales dates that occur in the defined period up to and including December 24 return a
Boolean value of TRUE. The sum function adds the sales of these products.

inmonthtodate
Returns True if date lies inside the part of month containing basedate up until and
including the last millisecond of basedate.

Syntax:
InMonthToDate (timestamp, base_date, period_no)

Return data type: Boolean

Diagram of inmonthtodate function.

The inmonthtodate() function identifies a selected month as a segment. The start boundary is the
beginning of the month. The end boundary can be set as a later date in the month. It then
determines whether a set of dates fall into this segment or not, returning a TRUE or FALSE Boolean
value.

Argument Description

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the month.

period_no The month can be offset by period_no. period_no is an integer, where the value
0 indicates the month which contains base_date. Negative values in period_no
indicate preceding months and positive values indicate succeeding months.

Arguments

When to use it

The inmonthtodate() function returns a Boolean result. Typically, this type of function is used as a
condition in an if expression. The inmonthtodate() function returns an aggregation or calculation
that depends on whether a date occurred in the month up to and including the date in question.

For example, the inmonthtodate() function can be used to identify all equipment manufactured in a
month up to a specific date.

Script syntax and chart functions - Qlik Sense, May 2024 748

8 Script and chart functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example Result

inmonthtodate ('01/25/2013', '25/01/2013', 0) Returns True

inmonthtodate ('01/25/2013', '24/01/2013', 0) Returns False

inmonthtodate ('01/25/2013', '28/02/2013', -1) Returns True

Function examples

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022 is loaded into a table called ‘Transactions’.
l A date field is provided in the DateFormat system variable (MM/DD/YYYY) format.
l A preceding load statement containing:

l The inmonthtodate() function which is set as the field, ‘in_month_to_date’. This
determines which transactions took place between July 1 and July 26, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inmonthtodate(date,'07/26/2022', 0) as in_month_to_date

;

Load

*

Inline

Script syntax and chart functions - Qlik Sense, May 2024 749

8 Script and chart functions

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_month_to_date

date in_month_to_date

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

3/16/2022 0

4/1/2022 0

5/7/2022 0

5/16/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 -1

Results table

Script syntax and chart functions - Qlik Sense, May 2024 750

8 Script and chart functions

date in_month_to_date

7/22/2022 -1

7/23/2022 -1

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

The ‘in_month_to_date’ field is created in the preceding load statement by using the inmonthtodate()

function.

The first argument identifies which field is being evaluated. The second argument is a hard-coded
date, July 26, which is the base_date. This base_date argument identifies which month is segmented
and the end boundary of that segment.

A period_no of 0 is the final argument meaning that the function is not comparing months preceding
or following the segmented month.

Diagram of inmonthtodate function with no additional arguments.

As a result, any transaction that occurs between July 1 and July 26 returns a Boolean result of
TRUE. Any transaction that occurs in July after July 26 returns a Boolean result of FALSE as will any
transaction in any other month of the year.

Example 2 – period_no
Load script and results

Overview

The same dataset and scenario as the first example are used.

Script syntax and chart functions - Qlik Sense, May 2024 751

8 Script and chart functions

In this example, the task is to create a field, ‘six_months_prior’, that determines which transactions
took place a full six months before July 1 and July 26.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inmonthtodate(date,'07/26/2022', -6) as six_months_prior

;

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l six_months_prior

date six_months_prior

1/7/2022 -1

1/19/2022 -1

Results table

Script syntax and chart functions - Qlik Sense, May 2024 752

8 Script and chart functions

date six_months_prior

2/5/2022 0

2/28/2022 0

3/16/2022 0

4/1/2022 0

5/7/2022 0

5/16/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

By using -6 as the period_no argument in the inmonthtodate() function, the boundaries of the
comparator month segment shift by six months. Initially the month segment equates to between
July 1 and July 26. The period_no then offsets this segment by a negative six months and the date
boundaries are shifted and fall between January 1 and January 26.

Diagram of inmonthtodate function with period_no set to -6.

As a result, any transaction that occurs between January 1 and January 26 will return a Boolean
result of TRUE.

Script syntax and chart functions - Qlik Sense, May 2024 753

8 Script and chart functions

Example 3 – Chart example
Load script and chartexpression

Overview

The same dataset and scenario as the first example are used.

In this example, the dataset is unchanged and loaded into the app. The task is to create a
calculation that determines whether transactions took place between July 1 and July 26 as a
measure in a chart of the app.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

date

To calculate whether transactions took place between July 1 and July 26, create the following
measure:

Script syntax and chart functions - Qlik Sense, May 2024 754

8 Script and chart functions

=inmonthtodate(date,'07/26/2022', 0)

date =inmonthtodate(date,'07/26/2022', 0)

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

3/16/2022 0

4/1/2022 0

5/7/2022 0

5/16/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 -1

7/22/2022 -1

7/23/2022 -1

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

Results table

The ‘in_month_to_date’ field measure is created in the chart by using the inmonthtodate() function.

The first argument identifies which field is being evaluated. The second argument is a hard-coded
date, July 26, which is the base_date. This base_date argument identifies which month is segmented
and the end boundary of that segment. A period_no of 0 is the final argument. This means that the
function is not comparing months preceding or following the segmented month.

Script syntax and chart functions - Qlik Sense, May 2024 755

8 Script and chart functions

Diagram of inmonthtodate function with no additional arguments.

As a result, any transaction that occurs between July 1 and July 26 returns a Boolean result of
TRUE. Any transaction that occurs in July after July 26 returns a Boolean result of FALSE as will any
transaction in any other month of the year.

Example 4 – Scenario
Load script and results

Overview

In this example, a dataset is loaded into a table called ‘Products’. The table contains the following
fields:

l Product ID
l Manufacture date
l Cost price

Due to equipment error, products that were manufactured in the month of July 2022 were
defective. The issue was resolved on July 27, 2022.

The end user would like a chart that displays, by month, the status of products that were
manufactured as ‘defective’ (Boolean TRUE) or ‘faultless’ (Boolean FALSE) and the cost of the
products manufactured in that month.

Load script

Products:

Load

*

Inline

[

product_id,manufacture_date,cost_price

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

Script syntax and chart functions - Qlik Sense, May 2024 756

8 Script and chart functions

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l =monthname(manufacture_date)

l =if(Inmonthtodate(manufacture_date,makedate(2022,07,26),0),'Defective','Faultless')

To calculate the sum cost of the products, create this measure:

=sum(cost_price)

Set the measure’s Number Formatting to Money.

monthname
(manufacture_date)

if(Inmonthtodate(manufacture_date,makedate
(2022,07,26),0),'Defective','Faultless')

Sum(cost_
price)

Jan 2022 Faultless $54.40

Feb 2022 Faultless $145.69

Mar 2022 Faultless $53.80

Apr 2022 Faultless $82.06

May 2022 Faultless $127.60

Jun 2022 Faultless $141.82

Jul 2022 Defective $144.66

Jul 2022 Faultless $69.98

Aug 2022 Faultless $147.46

Sep 2022 Faultless $84.21

Oct 2022 Faultless $163.91

Results table

The inmonthtodate() function returns a Boolean value when evaluating the manufacturing dates of
each of the products.

Script syntax and chart functions - Qlik Sense, May 2024 757

8 Script and chart functions

For the dates that return a Boolean value of TRUE, the product is marked as ‘Defective’. For any
product returning a value of FALSE, and therefore not made in the month up to and including July
26, it marks the products as ‘Faultless’.

inquarter
This function returns True if timestamp lies inside the quarter containing base_date.

Syntax:
InQuarter (timestamp, base_date, period_no[, first_month_of_year])

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Diagram of inquarter() function's range

In other words, the inquarter() function divides the year into four equal quarters between January 1
and December 31. You can use the first_month_of_year argument to change what month is
considered the first in your app and the quarters will change based on that argument. The base_

date, the function identifies which quarter should be used as the comparator for the function.
Finally, the function returns a Boolean result when comparing date values to that quarter segment.

When to use it

The inquarter() function returns a Boolean result. Typically, this type of function will be used as a
condition in an if expression. This returns an aggregation or calculation that depends on whether a
date occurred in the selected quarter.

For example, the inquarter() function can be used to identify all equipment manufactured in a
quarter segment based on the dates when the equipment was manufactured.

Argument Description

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the quarter.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 758

8 Script and chart functions

Argument Description

period_no The quarter can be offset by period_no. period_no is an integer, where the value
0 indicates the quarter which contains base_date. Negative values in period_no
indicate preceding quarters and positive values indicate succeeding quarters.

first_month_
of_year

If you want to work with (fiscal) years not starting in January, indicate a value
between 2 and 12 in first_month_of_year.

You can use the following values to set the first month of year in the first_month_of_year argument:

Month Value

February 2

March 3

April 4

May 5

June 6

July 7

August 8

September 9

October 10

November 11

December 12

first_month_of_year values

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Script syntax and chart functions - Qlik Sense, May 2024 759

8 Script and chart functions

Example Result

inquarter ('01/25/2013', '01/01/2013', 0) Returns TRUE

inquarter ('01/25/2013', '04/01/2013', 0) Returns FALSE

inquarter ('01/25/2013', '01/01/2013', -1) Returns FALSE

inquarter ('12/25/2012', '01/01/2013', -1) Returns TRUE

inquarter ('01/25/2013', '03/01/2013', 0, 3) Returns FALSE

inquarter ('03/25/2013', '03/01/2013', 0, 3) Returns TRUE

Function examples

Example 1 - No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions in 2022 which is loaded into a table called
‘Transactions’.

l A preceding load which contains the inquarter() function that is set as the ‘in_quarter’ field
and determines which transactions took place in the same quarter as May 15, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inquarter (date,'05/15/2022', 0) as in_quarter

;

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

Script syntax and chart functions - Qlik Sense, May 2024 760

8 Script and chart functions

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_quarter

date in_quarter

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

3/16/2022 0

4/1/2022 -1

5/7/2022 -1

5/16/2022 -1

6/15/2022 -1

6/26/2022 -1

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 761

8 Script and chart functions

date in_quarter

9/26/2022 0

10/14/2022 0

10/29/2022 0

The ‘in_quarter’ field is created in the preceding load statement by using the inquarter() function.
The first argument identifies which field is being evaluated. The second argument is a hard-coded
date for May 15 that identifies which quarter to define as the comparator. A period_no of 0 is the final
argument and ensures the inquarter() function does not compare quarters preceding or following
the segmented quarter.

Diagram of inquarter() function with May 15 as the base date

Any transaction that occurs between April 1 and the end of June 30 returns a Boolean result of
TRUE.

Example 2 - period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions in 2022 which is loaded into a table called
‘Transactions’.

l A preceding load which contains the inquarter() function that is set as the ‘previous_quarter’
field, and determines which transactions took place in the quarter preceding the quarter of
May 15, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

Script syntax and chart functions - Qlik Sense, May 2024 762

8 Script and chart functions

inquarter (date,'05/15/2022', -1) as previous_qtr

;

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_qtr

date previous_qtr

1/7/2022 -1

1/19/2022 -1

2/5/2022 -1

2/28/2022 -1

3/16/2022 -1

4/1/2022 0

5/7/2022 0

5/16/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 763

8 Script and chart functions

date previous_qtr

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

Using -1 as the period_no argument in the inquarter() function shifts the boundaries of the
comparator quarter back by a full quarter. May 15 falls into the second quarter of the year and
therefore the segment initially equates to the quarter of April 1 to June 30. The period_no offsets
this segment by a negative three months and causes the date boundaries to become January 1 to
March 30.

Diagram of inquarter() function with May 15 as the base date

Therefore, any transaction that occurs between January 1 and March 30 will return a Boolean result
of TRUE.

Script syntax and chart functions - Qlik Sense, May 2024 764

8 Script and chart functions

Example 3 - first_month_of_year
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions in 2022 which is loaded into a table called
‘Transactions’.

l A preceding load which contains the inquarter() function that is set as the ‘in_quarter’ field,
and determines which transactions took place in the same quarter as May 15, 2022.

However, in this example, the organizational policy is for March to be the first month of the financial
year.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inquarter (date,'05/15/2022', 0, 3) as in_quarter

;

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Script syntax and chart functions - Qlik Sense, May 2024 765

8 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_qtr

date previous_qtr

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

3/16/2022 -1

4/1/2022 -1

5/7/2022 -1

5/16/2022 -1

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

Results table

Using 3 as the first_month_of_year argument in the inquarter() function sets March 1 as the start of
the year and then divides the year into quarters. Therefore, the quarter segments are Mar-May,
Jun-Aug, Sep-Nov, Dec-Feb. The base_date of May 15 sets the Mar-May quarter as the comparator
quarter for the function.

Script syntax and chart functions - Qlik Sense, May 2024 766

8 Script and chart functions

Diagram of inquarter() function with March set as the first month of the year

Therefore, any transaction that occurs between March 1 and May 31 will return a Boolean result of
TRUE.

Example 4 - Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions in 2022 which is loaded into a table called
‘Transactions’.

l A preceding load which contains the inquarter() function that is set as the ‘in_quarter’ field,
and determines which transactions took place in the same quarter as May 15, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

Script syntax and chart functions - Qlik Sense, May 2024 767

8 Script and chart functions

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

l date

Create the following measure to calculate whether transactions took place in the same quarter as
May 15:

=inquarter(date,'05/15/2022', 0)

date in_quarter

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

3/16/2022 0

4/1/2022 -1

5/7/2022 -1

5/16/2022 -1

6/15/2022 -1

6/26/2022 -1

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 768

8 Script and chart functions

date in_quarter

10/14/2022 0

10/29/2022 0

The ‘in_quarter’ measure is created in the chart by using the inquarter() function. The first
argument identifies which field is being evaluated. The second argument is a hard-coded date for
May 15 that identifies which quarter to define as the comparator. A period_no of 0 is the final
argument and ensures the inquarter() function does not compare quarters preceding or following
the segmented quarter.

Diagram of inquarter() function with May 15 as the base date

Any transaction that occurs between April 1 and the end of June 30 returns a Boolean result of
TRUE.

Example 5 - Scenario
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called ‘Products’.
l The table contains the following fields:

l product ID
l product type
l manufacture date
l cost price

It has been identified that due to equipment error, products that were manufactured in the quarter
of May 15, 2022 were defective. The end user would like a chart that displays, by quarter name, the
status of which products manufactured were ‘defective’ or ‘faultless’ and the cost of the products
manufactured in that quarter.

Script syntax and chart functions - Qlik Sense, May 2024 769

8 Script and chart functions

Load script

Products:

Load

*

Inline

[

product_id,manufacture_date,cost_price

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

=quartername(manufacture_date)

Create the following measures:

l =if(only(InQuarter(manufacture_date,makedate(2022,05,15),0)),'Defective','Faultless'), to
identify which of the products are defective and which are faultless using the inquarter()

function.
l =sum(cost_price), to show the sum of the cost of each product.

Do the following:

1. Set the measure’s Number Formatting to Money.
2. Under Appearance, turn off Totals.

Script syntax and chart functions - Qlik Sense, May 2024 770

8 Script and chart functions

quartername
(manufacture_date)

=if(only(InQuarter(manufacture_date,makedate
(2022,05,15),0)),'Defective','Faultless')

Sum
(cost_
price)

Jan-Mar 2022 Faultless 253.89

Apr-Jun 2022 Defective 351.48

Jul-Sep 2022 Faultless 446.31

Oct-Dec 2022 Faultless 163.91

Results table

The inquarter() function returns a Boolean value when evaluating the manufacturing dates of each
of the products. For any product manufactured in the quarter that contains May 15, the inquarter()

function returns a Boolean value of TRUE and marks the products as ‘Defective’. For any product
returning a value of FALSE, and therefore not manufactured in that quarter, it marks the products as
‘Faultless’.

inquartertodate
This function returns True if timestamp lies inside the part of the quarter containing
base_date up until and including the last millisecond of base_date.

Syntax:
InQuarterToDate (timestamp, base_date, period_no [, first_month_of_year])

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is
represented by 0.

Diagram of inquartertodate function

The inquartertodate() function divides the year into four equal quarters between January 1 and
December 31 (or the user-defined start of year and its corresponding end date). Using the base_

Script syntax and chart functions - Qlik Sense, May 2024 771

8 Script and chart functions

date, the function will then segment a particular quarter, with the base_date identifying both which
quarter and the maximum allowed date for that quarter segment. Finally, the function returns a
Boolean result when comparing the prescribed date values to that segment.

Argument Description

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the quarter.

period_no The quarter can be offset by period_no. period_no is an integer, where the value
0 indicates the quarter which contains base_date. Negative values in period_no
indicate preceding quarters and positive values indicate succeeding quarters.

first_month_
of_year

If you want to work with (fiscal) years not starting in January, indicate a value
between 2 and 12 in first_month_of_year.

Arguments

When to use it
The inquartertodate() function returns a Boolean result. Typically, this type of function will be used
as a condition in an if expression. The inquartertodate() function would be used to return an
aggregation or calculation dependent on whether a date evaluated occurred in the quarter up to
and including the date in question.

For example, the inquartertodate() function can be used to identify all equipment manufactured in
a quarter up to a specific date.

Example Result

inquartertodate

('01/25/2013',

'03/25/2013', 0)

Returns TRUE, since the value of timestamp, 01/25/2013, lies within the
three-month period from 01/01/2013 to 03/25/2013, in which the value of
base_date, 03/25/2013, lies.

inquartertodate

('04/26/2013',

'03/25/2013', 0)

Returns FALSE, since 04/26/2013 is outside the same period as the
previous example.

inquartertodate

('02/25/2013',

'06/09/2013', -1)

Returns TRUE, since the value of period_no, -1, shifts the search period back
one period of three months (one quarter of the year). This makes the
search period 01/01/2013 to 03/09/2013.

inquartertodate

('03/25/2006',

'04/15/2006', 0,

2)

Returns TRUE, since the value of first_month_of_year is set to 2, which
makes the search period 02/01/2006 to 04/15/2006 instead of 04/01/2006
to 04/15/2006.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.

Script syntax and chart functions - Qlik Sense, May 2024 772

8 Script and chart functions

You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, in_quarter_to_date, that determines which transactions took place in

the quarter up until May 15, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inquartertodate(date,'05/15/2022', 0) as in_quarter_to_date

;

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

Script syntax and chart functions - Qlik Sense, May 2024 773

8 Script and chart functions

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_quarter_to_date

date in_quarter_to_date

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

3/16/2022 0

4/1/2022 -1

5/7/2022 -1

5/16/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 774

8 Script and chart functions

The in_quarter_to_date field is created in the preceding load statement by using the
inquartertodate() function. The first argument provided identifies which field is being evaluated.
The second argument is a hard-coded date for the for May 15, which is the base_date that identifies
which quarter to segment and defines the end boundary of that segment. A period_no of 0 is the
final argument, meaning that the function is not comparing quarters preceding or following the
segmented quarter.

Diagram of inquartertodate function, no additional arguments

Any transaction that occurs in between April 1 and May 15 returns a Boolean result of TRUE.
Transactions dates of May 16 and later will return FALSE, as do any transactions before April 1.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, previous_qtr_to_date, that determines which transactions took place a

full quarter before the quarter segment ending on May 15, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inquartertodate(date,'05/15/2022', -1) as previous_qtr_to_date

;

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

Script syntax and chart functions - Qlik Sense, May 2024 775

8 Script and chart functions

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_qtr_to_date

date previous_qtr_to_date

1/7/2022 -1

1/19/2022 -1

2/5/2022 -1

2/28/2022 0

3/16/2022 0

4/1/2022 0

5/7/2022 0

5/16/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 776

8 Script and chart functions

date previous_qtr_to_date

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

A period_no value of -1 indicates that the inquartertodate () function compares the input quarter
segment to the preceding quarter. May 15 falls into the second quarter of the year, so the segment
initially equates to between April 1 and May 15. The period_no then offsets this segment by three
months earlier, causing the date boundaries to become January 1 to February 15.

Diagram of inquartertodate function, period_no example

Therefore, any transaction that occurs between January 1 and February 15 will return a Boolean
result ofTRUE.

Example 3 – first_month_of_year
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, in_quarter_to_date, that determines which transactions took place in

the same quarter up to May 15, 2022.

In this example, we set March as the first month of the fiscal year.

Script syntax and chart functions - Qlik Sense, May 2024 777

8 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inquartertodate(date,'05/15/2022', 0,3) as in_quarter_to_date

;

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_quarter_to_date

date in_quarter_to_date

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 778

8 Script and chart functions

date in_quarter_to_date

3/16/2022 -1

4/1/2022 -1

5/7/2022 -1

5/16/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

By using 3 as the first_month_of_year argument in the inquartertodate() function, the function
begins the year on March 1, and then divides the year into quarters. Therefore, the quarter
segments are:

l March to May
l June to August
l September to November
l December to February

The base_date of May 15 then segments the March to May quarter by setting its end boundary as
May 15.

Script syntax and chart functions - Qlik Sense, May 2024 779

8 Script and chart functions

Diagram of inquartertodate function, first_month_of_year example

Therefore, any transaction that occurs in between the March 1 and May 15 will return a Boolean
result of TRUE, while transactions with dates outside these boundaries will return a value of FALSE.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. However, in this
example, the unchanged dataset is loaded into the application. The calculation that determines
which transactions took place in the same quarter as May 15 is created as a measure in the chart
object.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

Script syntax and chart functions - Qlik Sense, May 2024 780

8 Script and chart functions

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:date.

Create the following measure:

=inquartertodate(date,'05/15/2022', 0)

date =inquartertodate(date,'05/15/2022', 0)

1/7/2022 0

1/19/2022 0

2/5/2022 0

2/28/2022 0

3/16/2022 0

4/1/2022 -1

5/7/2022 -1

5/16/2022 0

6/15/2022 0

6/26/2022 0

7/9/2022 0

7/22/2022 0

7/23/2022 0

7/27/2022 0

8/2/2022 0

8/8/2022 0

8/19/2022 0

9/26/2022 0

10/14/2022 0

10/29/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 781

8 Script and chart functions

The in_quarter_to_date measure is created in a chart object by using the inquartertodate()

function. The first argument is the date field being evaluated. The second argument is a hard-coded
date for May 15, which is the base_date that identifies which quarter to segment and defines the end
boundary of that segment. A period_no of 0 is the final argument, meaning that the function is not
comparing quarters preceding or following the segmented quarter.

Diagram of inquartertodate function, chart object example

Any transaction that occurs between April 1 and May 15 returns a Boolean result of TRUE.
Transactions on May 16 and later will return FALSE, as do any transactions before April 1.

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called Products.
l Information concerning product ID, manufacture date, and cost price.

On May 15, 2022, a piece of equipment error was identified in the manufacturing process and
resolved. Products that were manufactured in that quarter up to this date will be defective. The end
user would like a chart object that displays, by quarter name, the status of whether the product is
‘defective’ or ‘faultless’ and the cost of the products manufactured in that quarter to date.

Load script

Products:

Load

*

Inline

[

product_id,manufacture_date,cost_price

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

Script syntax and chart functions - Qlik Sense, May 2024 782

8 Script and chart functions

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table. Create a dimension to show the quarter
names:
=quartername(manufacture_date)

2. Next, create a dimension to identify which of the products are defective and which are
faultless:
=if(inquartertodate(manufacture_date,makedate(2022,05,15),0),'Defective','Faultless')

3. Create a measure to sum the cost_price of the products:
=sum(cost_price)

4. Set the measure's Number formatting to Money.

quartername
(manufacture_date)

if(inquartertodate(manufacture_date,makedate
(2022,05,15),0),'Defective','Faultless')

Sum(cost_
price)

Jan-Mar 2022 Faultless $253.89

Apr-Jun 2022 Faultless $229.03

Apr-Jun 2022 Defective $122.45

Jul-Sep 2022 Faultless $446.31

Oct-Dec 2022 Faultless $163.91

Results table

The inquartertodate() function returns a Boolean value when evaluating the manufacturing dates of
each of the products. For those that return a Boolean value of TRUE, it marks the products as
‘Defective’. For any product returning a value of FALSE, and therefore not made in the quarter up to
and including May 15, it marks the products as ‘Faultless’.

Script syntax and chart functions - Qlik Sense, May 2024 783

8 Script and chart functions

inweek
This function returns True if timestamp lies inside the week containing base_date.

Syntax:
InWeek (timestamp, base_date, period_no[, first_week_day])

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Diagram of inweek() function's range

The inweek() function uses the base_date argument to identify which seven-day period the date falls
into. The start day of the week is based on the FirstWeekDay system variable. However, you can also
change the first day of the week by using the first_week_day argument of the inweek() function.

After the selected week has been defined, the function will return Boolean results when comparing
the prescribed date values to that week segment.

When to use it

The inweek() function returns a Boolean result. Typically, this type of function will be used as a
condition in an if expression. The inweek() function returns an aggregation or calculation which
depends on whether a date evaluated occurred in the week with the selected date of the base_date

argument.

For example, the inweek() function can be used to identify all equipment manufactured in a specific
week.

Argument Description

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the week.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 784

8 Script and chart functions

Argument Description

period_no The week can be offset by period_no. period_no is an integer, where the value 0
indicates the week which contains base_date. Negative values in period_no
indicate preceding weeks and positive values indicate succeeding weeks.

first_week_
day By default, the first day of the week is Sunday (as determined by the

FirstWeekDay system variable), starting at midnight between Saturday and
Sunday. The first_week_day parameter supersedes the FirstWeekDay variable.
To indicate the week starting on another day, specify a flag between 0 and 6.

Day Value

Monday 0

Tuesday 1

Wednesday 2

Thursday 3

Friday 4

Saturday 5

Sunday 6

first_week_day values

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example Result

inweek

('01/12/2006',

'01/14/2006', 0)

Returns TRUE

inweek

('01/12/2006',

'01/20/2006', 0)

Returns FALSE

Function examples

Script syntax and chart functions - Qlik Sense, May 2024 785

8 Script and chart functions

Example Result

inweek

('01/12/2006',

'01/14/2006', -1)

Returns FALSE

inweek

('01/07/2006',

'01/14/2006', -1)

Returns TRUE

inweek

('01/12/2006',

'01/09/2006', 0,

3)

Returns FALSE because first_week_day is specified as 3 (Thursday), which
makes 01/12/2006 the first day of the week following the week containing
01/09/2006.

These topics may help you work with this function:

Topic Default Flag / Value Description

FirstWeekDay (page 228) 6 / Sunday Defines the start day of each week.

Related topics

Example 1 - No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the month of January 2022 which is loaded into
a table called ‘Transactions’.

l The FirstWeekDay system variable which is set to 6 (Sunday).
l A preceding load which contains the following:

l The inweek() function, set as the field ‘in_week’ that determines which transactions
took place in the week of January 14, 2022.

l The weekday() function, set as the field ‘week_day’ that shows which day of the week
corresponds to each date.

Load script

SET FirstWeekDay=6;

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

weekday(date) as week_day,

Script syntax and chart functions - Qlik Sense, May 2024 786

8 Script and chart functions

inweek(date,'01/14/2022', 0) as in_week

;

Load

*

Inline

[

id,date,amount

8188,'01/02/2022',37.23

8189,'01/05/2022',17.17

8190,'01/06/2022',88.27

8191,'01/08/2022',57.42

8192,'01/09/2022',53.80

8193,'01/10/2022',82.06

8194,'01/11/2022',40.39

8195,'01/12/2022',87.21

8196,'01/13/2022',95.93

8197,'01/14/2022',45.89

8198,'01/15/2022',36.23

8199,'01/16/2022',25.66

8200,'01/17/2022',82.77

8201,'01/18/2022',69.98

8202,'01/26/2022',76.11

8203,'01/27/2022',25.12

8204,'01/28/2022',46.23

8205,'01/29/2022',84.21

8206,'01/30/2022',96.24

8207,'01/31/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l week_day

l in_week

date week_day in_week

01/02/2022 Sun 0

01/05/2022 Wed 0

01/06/2022 Thu 0

01/08/2022 Sat 0

01/09/2022 Sun -1

01/10/2022 Mon -1

01/11/2022 Tue -1

Results table

Script syntax and chart functions - Qlik Sense, May 2024 787

8 Script and chart functions

date week_day in_week

01/12/2022 Wed -1

01/13/2022 Thu -1

01/14/2022 Fri -1

01/15/2022 Sat -1

01/16/2022 Sun 0

01/17/2022 Mon 0

01/18/2022 Tue 0

01/26/2022 Wed 0

01/27/2022 Thu 0

01/28/2022 Fri 0

01/29/2022 Sat 0

01/30/2022 Sun 0

01/31/2022 Mon 0

The ‘in_week’ field is created in the preceding load statement by using the inweek() function. The
first argument identifies which field is being evaluated. The second argument is a hard-coded date
for January 14 which is the base_date. The base_date argument works in with the FirstWeekDay

system variable to identify the comparator week. A period_no of 0 — meaning that the function is
not comparing weeks preceding or following the segmented week — is the final argument.

The FirstWeekDay system variable determines that weeks begin on a Sunday and end on a Saturday.
Therefore, January would be broken into weeks according to the diagram below, with the dates
between January 9 and 15 providing the valid period for the inweek() calculation:

Script syntax and chart functions - Qlik Sense, May 2024 788

8 Script and chart functions

Diagram of calendar with the inweek() function's range highlighted

Any transaction that occurs between January 9 and the 15 of January returns a Boolean result of
TRUE.

Example 2 - period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset containing a set of transactions for 2022 is loaded into a table called
‘Transactions’.

l The FirstWeekDay system variable which is set to 6 (Sunday).
l A preceding load which contains the following:

l The inweek () function, set as the field ‘prev_week’ that determines which transactions
took place a full week before the week of January 14, 2022.

Script syntax and chart functions - Qlik Sense, May 2024 789

8 Script and chart functions

l The weekday() function, set as the field ‘week_day’ that shows which day of the week
corresponds to each date.

Load script

SET FirstWeekDay=6;

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

weekday(date) as week_day,

inweek(date,'01/14/2022', -1) as prev_week

;

Load

*

Inline

[

id,date,amount

8188,'01/02/2022',37.23

8189,'01/05/2022',17.17

8190,'01/06/2022',88.27

8191,'01/08/2022',57.42

8192,'01/09/2022',53.80

8193,'01/10/2022',82.06

8194,'01/11/2022',40.39

8195,'01/12/2022',87.21

8196,'01/13/2022',95.93

8197,'01/14/2022',45.89

8198,'01/15/2022',36.23

8199,'01/16/2022',25.66

8200,'01/17/2022',82.77

8201,'01/18/2022',69.98

8202,'01/26/2022',76.11

8203,'01/27/2022',25.12

8204,'01/28/2022',46.23

8205,'01/29/2022',84.21

8206,'01/30/2022',96.24

8207,'01/31/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l week_day

l prev_week

Script syntax and chart functions - Qlik Sense, May 2024 790

8 Script and chart functions

date week_day prev_week

01/02/2022 Sun -1

01/05/2022 Wed -1

01/06/2022 Thu -1

01/08/2022 Sat -1

01/09/2022 Sun 0

01/10/2022 Mon 0

01/11/2022 Tue 0

01/12/2022 Wed 0

01/13/2022 Thu 0

01/14/2022 Fri 0

01/15/2022 Sat 0

01/16/2022 Sun 0

01/17/2022 Mon 0

01/18/2022 Tue 0

01/26/2022 Wed 0

01/27/2022 Thu 0

01/28/2022 Fri 0

01/29/2022 Sat 0

01/30/2022 Sun 0

01/31/2022 Mon 0

Results table

Using -1 as the period_no argument in the inweek() function shifts the boundaries of the comparator
week back by a full seven days. With a period_no of 0 the week would be between January 9 and 15.
But in this example, the period_no of -1 shifts the start and end boundary of this segment
backwards by one week. The date boundaries become January 2 to January 8.

Script syntax and chart functions - Qlik Sense, May 2024 791

8 Script and chart functions

Diagram of calendar with the inweek() function's range highlighted

Therefore, any transaction that occurs between January 2 and January 8 will return a Boolean
result of TRUE.

Example 3 - first_week_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset containing a set of transactions for 2022 is loaded into a table called
‘Transactions’.

l The FirstWeekDay system variable which is set to 6 (Sunday).
l A preceding load which contains the following:

l The inweek() function, set as the field ‘in_week’ that determines which transactions
took place in the week of January 14, 2022.

Script syntax and chart functions - Qlik Sense, May 2024 792

8 Script and chart functions

l The weekday() function, set as the field ‘week_day’ that shows which day of the week
corresponds to each date.

Load script

SET FirstWeekDay=6;

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

weekday(date) as week_day,

inweek(date,'01/14/2022', 0, 0) as in_week

;

Load

*

Inline

[

id,date,amount

8188,'01/02/2022',37.23

8189,'01/05/2022',17.17

8190,'01/06/2022',88.27

8191,'01/08/2022',57.42

8192,'01/09/2022',53.80

8193,'01/10/2022',82.06

8194,'01/11/2022',40.39

8195,'01/12/2022',87.21

8196,'01/13/2022',95.93

8197,'01/14/2022',45.89

8198,'01/15/2022',36.23

8199,'01/16/2022',25.66

8200,'01/17/2022',82.77

8201,'01/18/2022',69.98

8202,'01/26/2022',76.11

8203,'01/27/2022',25.12

8204,'01/28/2022',46.23

8205,'01/29/2022',84.21

8206,'01/30/2022',96.24

8207,'01/31/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l week_day

l in_week

Script syntax and chart functions - Qlik Sense, May 2024 793

8 Script and chart functions

date week_day in_week

01/02/2022 Sun 0

01/05/2022 Wed 0

01/06/2022 Thu 0

01/08/2022 Sat 0

01/09/2022 Sun 0

01/10/2022 Mon -1

01/11/2022 Tue -1

01/12/2022 Wed -1

01/13/2022 Thu -1

01/14/2022 Fri -1

01/15/2022 Sat -1

01/16/2022 Sun -1

01/17/2022 Mon 0

01/18/2022 Tue 0

01/26/2022 Wed 0

01/27/2022 Thu 0

01/28/2022 Fri 0

01/29/2022 Sat 0

01/30/2022 Sun 0

01/31/2022 Mon 0

Results table

Using 0 as the first_week_day argument in the inweek() function supersedes the FirstWeekDay

system variable and sets Monday as the first day of the week.

Script syntax and chart functions - Qlik Sense, May 2024 794

8 Script and chart functions

Diagram of calendar with the inweek() function's range highlighted

Therefore, any transaction that occurs between January 10 and 16 will return a Boolean result of
TRUE.

Example 4 - Chart object example
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

However, in this example, the dataset is unchanged and loaded into the application. Create a
measure in the results table to determine which transactions took place in the week of January 14,
2022.

Load script

SET FirstWeekDay=6;

SET DateFormat='MM/DD/YYYY';

Transactions:

Script syntax and chart functions - Qlik Sense, May 2024 795

8 Script and chart functions

Load

*

Inline

[

id,date,amount

8188,'01/02/2022',37.23

8189,'01/05/2022',17.17

8190,'01/06/2022',88.27

8191,'01/08/2022',57.42

8192,'01/09/2022',53.80

8193,'01/10/2022',82.06

8194,'01/11/2022',40.39

8195,'01/12/2022',87.21

8196,'01/13/2022',95.93

8197,'01/14/2022',45.89

8198,'01/15/2022',36.23

8199,'01/16/2022',25.66

8200,'01/17/2022',82.77

8201,'01/18/2022',69.98

8202,'01/26/2022',76.11

8203,'01/27/2022',25.12

8204,'01/28/2022',46.23

8205,'01/29/2022',84.21

8206,'01/30/2022',96.24

8207,'01/31/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

l date

Create the following measures:

l =inweek (date,'01/14/2022',0), to calculate whether transactions took place in the same
week as January 14.

l =weekday(date), to show which day of the week corresponds to each date.

date week_day =inweek (date,'01/14/2022',0)

01/02/2022 Sun 0

01/05/2022 Wed 0

01/06/2022 Thu 0

01/08/2022 Sat 0

01/09/2022 Sun -1

01/10/2022 Mon -1

Results table

Script syntax and chart functions - Qlik Sense, May 2024 796

8 Script and chart functions

date week_day =inweek (date,'01/14/2022',0)

01/11/2022 Tue -1

01/12/2022 Wed -1

01/13/2022 Thu -1

01/14/2022 Fri -1

01/15/2022 Sat -1

01/16/2022 Sun 0

01/17/2022 Mon 0

01/18/2022 Tue 0

01/26/2022 Wed 0

01/27/2022 Thu 0

01/28/2022 Fri 0

01/29/2022 Sat 0

01/30/2022 Sun 0

01/31/2022 Mon 0

The ‘in_week’ measure is created in chart by using the inweek() function. The first argument
identifies which field is being evaluated. The second argument is a hard-coded date for January 14
which is the base_date. The base_date argument works in with the FirstWeekDay system variable to
identify the comparator week. A period_no of 0 is the final argument.

The FirstWeekDay system variable determines that weeks begin on a Sunday and end on a Saturday.
Therefore, January would be broken into weeks according to the diagram below, with the dates
between January 9 and 15 providing the valid period for the inweek() calculation:

Script syntax and chart functions - Qlik Sense, May 2024 797

8 Script and chart functions

Diagram of calendar with the inweek() function's range highlighted

Any transaction that occurs between January 9 and the 15 of January returns a Boolean result of
TRUE.

Example 5 - Scenario
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called ‘Products’.
l The table contains the following fields:

l product ID
l product type
l manufacture date
l cost price

Script syntax and chart functions - Qlik Sense, May 2024 798

8 Script and chart functions

It has been identified that due to equipment error, products that were manufactured in the week of
January 12 were defective. The end user would like a chart that displays, by week, the status of
which products manufactured were ‘defective’ or ‘faultless’ and the cost of the products
manufactured in that week.

Load script

Products:

Load

*

Inline

[

product_id,manufacture_date,cost_price

8188,'01/02/2022',37.23

8189,'01/05/2022',17.17

8190,'01/06/2022',88.27

8191,'01/08/2022',57.42

8192,'01/09/2022',53.80

8193,'01/10/2022',82.06

8194,'01/11/2022',40.39

8195,'01/12/2022',87.21

8196,'01/13/2022',95.93

8197,'01/14/2022',45.89

8198,'01/15/2022',36.23

8199,'01/16/2022',25.66

8200,'01/17/2022',82.77

8201,'01/18/2022',69.98

8202,'01/26/2022',76.11

8203,'01/27/2022',25.12

8204,'01/28/2022',46.23

8205,'01/29/2022',84.21

8206,'01/30/2022',96.24

8207,'01/31/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

l =weekname(manufacture_date)

Create the following measures:

l =if(only(inweek(manufacture_date,makedate(2022,01,12),0)),'Defective','Faultless'), to
identify which of the products are defective and which are faultless using the inweek()

function.
l =sum(cost_price), to show the sum of the cost of each product.

Script syntax and chart functions - Qlik Sense, May 2024 799

8 Script and chart functions

Do the following:

1. Set the measure’s Number Formatting to Money.
2. Under Appearance, turn off Totals.

weekname
(manufacture_date)

=if(only(inweek(manufacture_date,makedate
(2022,01,12),0)), 'Defective','Faultless')

Sum(cost_
price)

2022/02 Faultless 200.09

2022/03 Defective 441.51

2022/04 Faultless 178.41

2022/05 Faultless 231.67

2022/06 Faultless 163.91

Results table

The inweek() function returns a Boolean value when evaluating the manufacturing dates of each of
the products. For any product manufactured in the week of January 12, the inweek() function
returns a Boolean value of TRUE and marks the products as ‘Defective’. For any product returning a
value of FALSE, and therefore not manufactured in that week, it marks the products as ‘Faultless’.

inweektodate
This function returns True if timestamp lies inside the part of week containing base_
date up until and including the last millisecond of base_date.

Syntax:
InWeekToDate (timestamp, base_date, period_no [, first_week_day])

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is
represented by 0.

Diagram of inweektodate function

Script syntax and chart functions - Qlik Sense, May 2024 800

8 Script and chart functions

The inweektodate() function uses the base_date parameter to identify a maximum boundary date of
a week segment, as well as its corresponding date for the start of the week, which is based on the
FirstWeekDay system variable (or user-defined first_week_day parameter). Once this week segment
has been defined, the function will then return Boolean results when comparing the prescribed date
values to that segment.

When to use it
The inweektodate() function returns a Boolean result. Typically, this type of function will be used as
a condition in an if expression. This will return an aggregation or calculation dependent on whether
a date evaluated occurred during the week in question up to and including a particular date.

For example, the inweektodate() function can be used to calculate all sales made during a specified
week up to a particular date.

Argument Description

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the week.

period_no The week can be offset by period_no. period_no is an integer, where the value
0 indicates the week which contains base_date. Negative values in period_no
indicate preceding weeks and positive values indicate succeeding weeks.

first_week_
day

By default, the first day of the week is Sunday (as determined by the
FirstWeekDay system variable), starting at midnight between Saturday and
Sunday. The first_week_day parameter supersedes the FirstWeekDay
variable. To indicate the week starting on another day, specify a flag between
0 and 6.

For a week starting on Monday and ending on Sunday, use a flag of 0 for
Monday, 1 for Tuesday, 2 for Wednesday, 3 for Thursday, 4 for Friday, 5 for
Saturday, and 6 for Sunday.

Arguments

Example Interaction

inweektodate

('01/12/2006',

'01/12/2006', 0)

Returns TRUE.

inweektodate

('01/12/2006',

'01/11/2006', 0)

Returns FALSE.

inweektodate

('01/12/2006',

'01/18/2006', -1)

Returns FALSE.
Because period_no is specified as -1, the effective data that timestamp is
measured against is 01/11/2006.

Function examples

Script syntax and chart functions - Qlik Sense, May 2024 801

8 Script and chart functions

Example Interaction

inweektodate

('01/11/2006',

'01/12/2006', 0, 3)

Returns FALSE, since first_week_day is specified as 3 (Thursday), which
makes 01/12/2006 the first day of the week following the week
containing 01/12/2006.

These topics may help you work with this function:

Topic Default Flag / Value Description

FirstWeekDay (page 228) 6 / Sunday Defines the start day of each week.

Related topics

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the month of January 2022, which is loaded
into a table called Transactions.

l The data field provided in the TimestampFormat='M/D/YYYY h:mm:ss[.fff]' format.
l The creation of a field, in_week_to_date, which determines which transactions took place in

the week up until January 14, 2022.
l The creation of an additional field, named weekday, using the weekday() function. This new

field is created to show which day of the week corresponds to each date.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff]';

SET FirstWeekDay=6;

Script syntax and chart functions - Qlik Sense, May 2024 802

8 Script and chart functions

Transactions:

Load

*,

weekday(date) as week_day,

inweektodate(date,'01/14/2022', 0) as in_week_to_date

;

Load

*

Inline

[

id,date,amount

8188,'2022-01-02 12:22:06',37.23

8189,'2022-01-05 01:02:30',17.17

8190,'2022-01-06 15:36:20',88.27

8191,'2022-01-08 10:58:35',57.42

8192,'2022-01-09 08:53:32',53.80

8193,'2022-01-10 21:13:01',82.06

8194,'2022-01-11 00:57:13',40.39

8195,'2022-01-12 09:26:02',87.21

8196,'2022-01-13 15:05:09',95.93

8197,'2022-01-14 18:44:57',45.89

8198,'2022-01-15 06:10:46',36.23

8199,'2022-01-16 06:39:27',25.66

8200,'2022-01-17 10:44:16',82.77

8201,'2022-01-18 18:48:17',69.98

8202,'2022-01-26 04:36:03',76.11

8203,'2022-01-27 08:07:49',25.12

8204,'2022-01-28 12:24:29',46.23

8205,'2022-01-30 11:56:56',84.21

8206,'2022-01-30 14:40:19',96.24

8207,'2022-01-31 05:28:21',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l week_day

l in_week_to_date

date week_day in_week_to_date

2022-01-02 12:22:06 Sun 0

2022-01-05 01:02:30 Wed 0

2022-01-06 15:36:20 Thu 0

2022-01-08 10:58:35 Sat 0

2022-01-09 08:53:32 Sun -1

Results table

Script syntax and chart functions - Qlik Sense, May 2024 803

8 Script and chart functions

date week_day in_week_to_date

2022-01-10 21:13:01 Mon -1

2022-01-11 00:57:13 Tue -1

2022-01-12 09:26:02 Wed -1

2022-01-13 15:05:09 Thu -1

2022-01-14 18:44:57 Fri -1

2022-01-15 06:10:46 Sat 0

2022-01-16 06:39:27 Sun 0

2022-01-17 10:44:16 Mon 0

2022-01-18 18:48:17 Tue 0

2022-01-26 04:36:03 Wed 0

2022-01-27 08:07:49 Thu 0

2022-01-28 12:24:29 Fri 0

2022-01-30 11:56:56 Sun 0

2022-01-30 14:40:19 Sun 0

2022-01-31 05:28:21 Mon 0

The in_week_to_date field is created in the preceding load statement by using the inweektodate()

function. The first argument provided identifies which field is being evaluated. The second
argument is a hard-coded date for January 14, which is the base_date that identifies which week to
segment and defines the end boundary of that segment. A period_no of 0 is the final argument,
meaning that the function is not comparing weeks preceding or following the segmented week.

The FirstWeekDay system variable determines that weeks begin on a Sunday and end on a Saturday.
Therefore, January would be broken into weeks according to the diagram below, with the dates
between January 9 and 14 providing the valid period for the inweekdodate() calculation:

Script syntax and chart functions - Qlik Sense, May 2024 804

8 Script and chart functions

Calendar diagram showing transaction dates which would return a Boolean result of TRUE

Any transaction that occurs in between January 9 and 14 returns a Boolean result of TRUE.
Transactions before and after the dates return a Boolean result of FALSE.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, prev_week_to_date, that determines which transactions took place a

full week before the week segment ending on January 14, 2022.
l The creation of an additional field, named weekday, using the weekday() function. This is to

show which day of the week corresponds to each date.

Load script

SET FirstWeekDay=6;

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff]';

Transactions:

Load

*,

weekday(date) as week_day,

inweektodate(date,'01/14/2022', -1) as prev_week_to_date

;

Load

*

Inline

[

id,date,amount

Script syntax and chart functions - Qlik Sense, May 2024 805

8 Script and chart functions

8188,'2022-01-02 12:22:06',37.23

8189,'2022-01-05 01:02:30',17.17

8190,'2022-01-06 15:36:20',88.27

8191,'2022-01-08 10:58:35',57.42

8192,'2022-01-09 08:53:32',53.80

8193,'2022-01-10 21:13:01',82.06

8194,'2022-01-11 00:57:13',40.39

8195,'2022-01-12 09:26:02',87.21

8196,'2022-01-13 15:05:09',95.93

8197,'2022-01-14 18:44:57',45.89

8198,'2022-01-15 06:10:46',36.23

8199,'2022-01-16 06:39:27',25.66

8200,'2022-01-17 10:44:16',82.77

8201,'2022-01-18 18:48:17',69.98

8202,'2022-01-26 04:36:03',76.11

8203,'2022-01-27 08:07:49',25.12

8204,'2022-01-28 12:24:29',46.23

8205,'2022-01-30 11:56:56',84.21

8206,'2022-01-30 14:40:19',96.24

8207,'2022-01-31 05:28:21',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l week_day

l prev_week_to_date

date week_day prev_week_to_date

2022-01-02 12:22:06 Sun -1

2022-01-05 01:02:30 Wed -1

2022-01-06 15:36:20 Thu -1

2022-01-08 10:58:35 Sat 0

2022-01-09 08:53:32 Sun 0

2022-01-10 21:13:01 Mon 0

2022-01-11 00:57:13 Tue 0

2022-01-12 09:26:02 Wed 0

2022-01-13 15:05:09 Thu 0

2022-01-14 18:44:57 Fri 0

2022-01-15 06:10:46 Sat 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 806

8 Script and chart functions

date week_day prev_week_to_date

2022-01-16 06:39:27 Sun 0

2022-01-17 10:44:16 Mon 0

2022-01-18 18:48:17 Tue 0

2022-01-26 04:36:03 Wed 0

2022-01-27 08:07:49 Thu 0

2022-01-28 12:24:29 Fri 0

2022-01-30 11:56:56 Sun 0

2022-01-30 14:40:19 Sun 0

2022-01-31 05:28:21 Mon 0

A period_no value of -1 indicates that the inweektodate () function compares the input quarter
segment to the preceding week. The week segment initially equates to between January 9 and
January 14. The period_no then offsets both the start and end boundary of this segment to one
week earlier, causing the date boundaries to become January 2 to January 7.

Calendar diagram showing transaction dates which would return a Boolean result of TRUE

Therefore, any transaction that occurs between January 2 and 8 (not including January 8 itself) will
return a Boolean result of TRUE.

Example 3 – first_week_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2024 807

8 Script and chart functions

l The same dataset and scenario as the first example.
l The creation of a field, in_week_to_date, that determines which transactions took place in the

week up until January 14, 2022.
l The creation of an additional field, named weekday, using the weekday() function. This is to

show which day of the week corresponds to each date.

In this example, we consider Monday as the first day of the week.

Load script

SET FirstWeekDay=6;

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff]';

Transactions:

Load

*,

weekday(date) as week_day,

inweektodate(date,'01/14/2022', 0, 0) as in_week_to_date

;

Load

*

Inline

[

id,date,amount

8188,'2022-01-02 12:22:06',37.23

8189,'2022-01-05 01:02:30',17.17

8190,'2022-01-06 15:36:20',88.27

8191,'2022-01-08 10:58:35',57.42

8192,'2022-01-09 08:53:32',53.80

8193,'2022-01-10 21:13:01',82.06

8194,'2022-01-11 00:57:13',40.39

8195,'2022-01-12 09:26:02',87.21

8196,'2022-01-13 15:05:09',95.93

8197,'2022-01-14 18:44:57',45.89

8198,'2022-01-15 06:10:46',36.23

8199,'2022-01-16 06:39:27',25.66

8200,'2022-01-17 10:44:16',82.77

8201,'2022-01-18 18:48:17',69.98

8202,'2022-01-26 04:36:03',76.11

8203,'2022-01-27 08:07:49',25.12

8204,'2022-01-28 12:24:29',46.23

8205,'2022-01-30 11:56:56',84.21

8206,'2022-01-30 14:40:19',96.24

8207,'2022-01-31 05:28:21',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l week_day

Script syntax and chart functions - Qlik Sense, May 2024 808

8 Script and chart functions

l in_week_to_date

date week_day in_week_to_date

2022-01-02 12:22:06 Sun 0

2022-01-05 01:02:30 Wed 0

2022-01-06 15:36:20 Thu 0

2022-01-08 10:58:35 Sat 0

2022-01-09 08:53:32 Sun 0

2022-01-10 21:13:01 Mon -1

2022-01-11 00:57:13 Tue -1

2022-01-12 09:26:02 Wed -1

2022-01-13 15:05:09 Thu -1

2022-01-14 18:44:57 Fri -1

2022-01-15 06:10:46 Sat 0

2022-01-16 06:39:27 Sun 0

2022-01-17 10:44:16 Mon 0

2022-01-18 18:48:17 Tue 0

2022-01-26 04:36:03 Wed 0

2022-01-27 08:07:49 Thu 0

2022-01-28 12:24:29 Fri 0

2022-01-30 11:56:56 Sun 0

2022-01-30 14:40:19 Sun 0

2022-01-31 05:28:21 Mon 0

Results table

By using 0 as the first_week_day argument in the inweektodate() function, the function argument
supersedes the FirstWeekDay system variable and sets Monday as the first day of the week.

Script syntax and chart functions - Qlik Sense, May 2024 809

8 Script and chart functions

Calendar diagram showing transaction dates which would return a Boolean result of TRUE

Therefore, any transaction that occurs in between January 10 and 14 will return a Boolean result of
TRUE, while transactions with dates outside these boundaries will return a value of FALSE.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. However, in this
example, the unchanged dataset is loaded into the application. The calculation that determines
which transactions took place in the week up until January 14, 2022 is created as a measure in the
chart object.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'2022-01-02 12:22:06',37.23

8189,'2022-01-05 01:02:30',17.17

8190,'2022-01-06 15:36:20',88.27

8191,'2022-01-08 10:58:35',57.42

8192,'2022-01-09 08:53:32',53.80

8193,'2022-01-10 21:13:01',82.06

8194,'2022-01-11 00:57:13',40.39

Script syntax and chart functions - Qlik Sense, May 2024 810

8 Script and chart functions

8195,'2022-01-12 09:26:02',87.21

8196,'2022-01-13 15:05:09',95.93

8197,'2022-01-14 18:44:57',45.89

8198,'2022-01-15 06:10:46',36.23

8199,'2022-01-16 06:39:27',25.66

8200,'2022-01-17 10:44:16',82.77

8201,'2022-01-18 18:48:17',69.98

8202,'2022-01-26 04:36:03',76.11

8203,'2022-01-27 08:07:49',25.12

8204,'2022-01-28 12:24:29',46.23

8205,'2022-01-30 11:56:56',84.21

8206,'2022-01-30 14:40:19',96.24

8207,'2022-01-31 05:28:21',67.67

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add this field as a dimension: date.
2. To calculate whether transactions took place in the same week up until the 14th of January,

create the following measure:
=inweektodate(date,'01/14/2022',0)

3. To show which day of the week corresponds to each date, create an additional measure:
=weekday(date)

date week_day in_week_to_date

2022-01-02 12:22:06 Sun 0

2022-01-05 01:02:30 Wed 0

2022-01-06 15:36:20 Thu 0

2022-01-08 10:58:35 Sat 0

2022-01-09 08:53:32 Sun -1

2022-01-10 21:13:01 Mon -1

2022-01-11 00:57:13 Tue -1

2022-01-12 09:26:02 Wed -1

2022-01-13 15:05:09 Thu -1

2022-01-14 18:44:57 Fri -1

2022-01-15 06:10:46 Sat 0

2022-01-16 06:39:27 Sun 0

2022-01-17 10:44:16 Mon 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 811

8 Script and chart functions

date week_day in_week_to_date

2022-01-18 18:48:17 Tue 0

2022-01-26 04:36:03 Wed 0

2022-01-27 08:07:49 Thu 0

2022-01-28 12:24:29 Fri 0

2022-01-30 11:56:56 Sun 0

2022-01-30 14:40:19 Sun 0

2022-01-31 05:28:21 Mon 0

The in_week_to_date field is created as a measure in the chart object using the inweektodate()

function. The first argument provided identifies which field is being evaluated. The second
argument is a hard-coded date for January 14, which is the base_date that identifies which week to
segment and defines the end boundary of that segment. A period_no of 0 is the final argument,
meaning that the function is not comparing weeks preceding or following the segmented week.

The FirstWeekDay system variable determines that weeks begin on a Sunday and end on a Saturday.
Therefore, January would be broken into weeks according to the diagram below, with the dates
between January 9 and 14 providing the valid period for the inweekdodate() calculation:

Calendar diagram showing transaction dates which would return a Boolean result of TRUE

Any transaction that occurs in between January 9 and 14 returns a Boolean result of TRUE.
Transactions before and after the dates return a Boolean result of FALSE.

Script syntax and chart functions - Qlik Sense, May 2024 812

8 Script and chart functions

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called Products.
l Information concerning product ID, manufacture date, and cost price.

It has been identified that due to equipment error, products that were manufactured in the week of
January 12 were defective. The issue was resolved on January 13. The end user would like a chart
object that displays, by week, the status of whether the products manufactured are ‘defective’ or
‘faultless’, and the cost of the products manufactured in that week.

Load script

Products:

Load

*

Inline

[

product_id,manufacture_date,cost_price

8188,'2022-01-02 12:22:06',37.23

8189,'2022-01-05 01:02:30',17.17

8190,'2022-01-06 15:36:20',88.27

8191,'2022-01-08 10:58:35',57.42

8192,'2022-01-09 08:53:32',53.80

8193,'2022-01-10 21:13:01',82.06

8194,'2022-01-11 00:57:13',40.39

8195,'2022-01-12 09:26:02',87.21

8196,'2022-01-13 15:05:09',95.93

8197,'2022-01-14 18:44:57',45.89

8198,'2022-01-15 06:10:46',36.23

8199,'2022-01-16 06:39:27',25.66

8200,'2022-01-17 10:44:16',82.77

8201,'2022-01-18 18:48:17',69.98

8202,'2022-01-26 04:36:03',76.11

8203,'2022-01-27 08:07:49',25.12

8204,'2022-01-28 12:24:29',46.23

8205,'2022-01-30 11:56:56',84.21

8206,'2022-01-30 14:40:19',96.24

8207,'2022-01-31 05:28:21',67.67

];

Script syntax and chart functions - Qlik Sense, May 2024 813

8 Script and chart functions

Results

Do the following:

1. Load the data and open a sheet. Create a new table. Create a dimension to show the week
names:
=weekname(manufacture_date)

2. Next, create a dimension to identify which of the products are defective and which are
faultless:
=if(inWeektodate(manufacture_date,makedate(2022,01,12),0),'Defective','Faultless')

3. Create a measure to sum the cost_price of the products:
=sum(cost_price)

4. Set the measure's Number formatting to Money.

weekname
(manufacture_date)

if(inweektodate(manufacture_date,makedate
(2022,01,12),0),'Defective','Faultless')

Sum(cost_
price)

2022/02 Faultless $200.09

2022/03 Defective $263.46

2022/03 Faultless $178.05

2022/04 Faultless $178.41

2022/05 Faultless $147.46

2022/06 Faultless $248.12

Results table

The inweektodate() function returns a Boolean value when evaluating the manufacturing dates of
each of the products. For those that return a Boolean value of TRUE, it marks the products as
'Defective'. For any product returning a value of FALSE, and therefore not made in the week up to
January 12, it marks the products as ‘Faultless’.

inyear
This function returns True if timestamp lies inside the year containing base_date.

Syntax:
InYear (timestamp, base_date, period_no [, first_month_of_year])

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Script syntax and chart functions - Qlik Sense, May 2024 814

8 Script and chart functions

Diagram of inyear() function's range

The inyear() function returns a Boolean result when comparing the selected date values to a year
defined by the base_date.

When to use it

The inyear() function returns a Boolean result. Typically, this type of function will be used as a
condition in an if expression. This returns an aggregation or calculation dependent on whether a
date evaluated occurred in the year in question. For example, the inyear() function can be used to
identify all sales that occurred in a defined year.

Argument Description

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the year.

period_no The year can be offset by period_no. period_no is an integer, where the value 0
indicates the year that contains base_date. Negative values in period_no
indicate preceding years, and positive values indicate succeeding years.

first_month_
of_year

If you want to work with (fiscal) years not starting in January, indicate a value
between 2 and 12 in first_month_of_year.

Arguments

You can use the following values to set the first month of year in the first_month_of_year argument:

Month Value

February 2

March 3

April 4

May 5

June 6

July 7

first_month_of_year values

Script syntax and chart functions - Qlik Sense, May 2024 815

8 Script and chart functions

Month Value

August 8

September 9

October 10

November 11

December 12

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example Result

inyear ('01/25/2013',

'01/01/2013', 0)

Returns TRUE

inyear ('01/25/2012',

'01/01/2013', 0)

Returns FALSE

inyear ('01/25/2013',

'01/01/2013', -1)

Returns FALSE

inyear ('01/25/2012',

'01/01/2013', -1)

Returns TRUE

inyear ('01/25/2013',

'01/01/2013', 0, 3)

Returns TRUE

The value of base_date and first_month_of_year specify that
timestamp must fall within 01/03/2012 and 02/28/2013

inyear ('03/25/2013',

'07/01/2013', 0, 3)

Returns TRUE

Function examples

Script syntax and chart functions - Qlik Sense, May 2024 816

8 Script and chart functions

Example 1 - Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022 which is loaded into a
table called ‘Transactions’.

l A preceding load which contains the inyear() function that is set as the ‘in_year’ field and
determines which transactions took place in the same year as July 26, 2021.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inyear(date,'07/26/2021', 0) as in_year

;

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Script syntax and chart functions - Qlik Sense, May 2024 817

8 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_year

date in_year

01/13/2020 0

02/26/2020 0

03/27/2020 0

04/16/2020 0

05/21/2020 0

08/14/2020 0

10/07/2020 0

12/05/2020 0

01/22/2021 -1

02/03/2021 -1

03/17/2021 -1

04/23/2021 -1

05/04/2021 -1

06/30/2021 -1

07/26/2021 -1

12/27/2021 -1

06/06/2022 0

07/18/2022 0

11/14/2022 0

12/12/2022 0

Results table

The ‘in_year’ field is created in the preceding load statement by using the inyear() function. The
first argument identifies which field is being evaluated. The second argument is a hard-coded date
for July 26, 2021 which is the base_date that determines the comparator year. A period_no of 0 is the
final argument meaning that the inyear() function does not compare years preceding or following
the year.

Script syntax and chart functions - Qlik Sense, May 2024 818

8 Script and chart functions

Diagram of inyear() function's range with July 26 as the base date

Any transaction that occurs in 2021 returns a Boolean result of TRUE.

Example 2 - period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022 which is loaded into a
table called ‘Transactions’.

l A preceding load which contains the inyear() function that is set as the ‘previous_year’ field,
and determines which transactions took place in the year before the year containing July 26,
2021.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inyear(date,'07/26/2021', -1) as previous_year

;

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

Script syntax and chart functions - Qlik Sense, May 2024 819

8 Script and chart functions

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_year

date previous_year

01/13/2020 -1

02/26/2020 -1

03/27/2020 -1

04/16/2020 -1

05/21/2020 -1

08/14/2020 -1

10/07/2020 -1

12/05/2020 -1

01/22/2021 0

02/03/2021 0

03/17/2021 0

04/23/2021 0

05/04/2021 0

06/30/2021 0

07/26/2021 0

12/27/2021 0

06/06/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 820

8 Script and chart functions

date previous_year

07/18/2022 0

11/14/2022 0

12/12/2022 0

Using -1 as the period_no argument in the inyear() function shifts the boundaries of the comparator
year back by a full year. 2021 is initially identified as the comparator year. The period_no offsets the
comparator year by one, making 2020 the comparator year.

Diagram of inyear() function's range with the period_no argument set to -1

Therefore, any transaction that occurs in 2020 returns a Boolean result of TRUE.

Example 3 - first_month_of_year
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022 which is loaded into a
table called ‘Transactions’.

l A preceding load which contains the inyear() function that is set as the ‘in_year’ field, and
determines which transactions took place in the same year as July 26, 2021.

However, in this example, the organizational policy is for March to be the first month of the financial
year.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Script syntax and chart functions - Qlik Sense, May 2024 821

8 Script and chart functions

Load

*,

inyear(date,'07/26/2021', 0, 3) as in_year

;

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_year

date in_year

01/13/2020 0

02/26/2020 0

03/27/2020 0

04/16/2020 0

05/21/2020 0

08/14/2020 0

10/07/2020 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 822

8 Script and chart functions

date in_year

12/05/2020 0

01/22/2021 0

02/03/2021 0

03/17/2021 -1

04/23/2021 -1

05/04/2021 -1

06/30/2021 -1

07/26/2021 -1

12/27/2021 -1

06/06/2022 0

07/18/2022 0

11/14/2022 0

12/12/2022 0

Using 3 as the first_month_of_year argument in the inyear() function begins the year on March 1
and ends the year at the end of February.

Diagram of inyear() function's range with March set as the first month of the year

Therefore, any transaction that occurs between March 1, 2021 and March 1, 2022 will return a
Boolean result of TRUE.

Example 4 - Chart object example
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

Script syntax and chart functions - Qlik Sense, May 2024 823

8 Script and chart functions

However, in this example, the dataset is unchanged and loaded into the application. The calculation
that determines whether transactions took place in the same year as July 26, 2021 is created as a
measure in a chart object of the application.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

l date

To calculate whether transactions took place in the same year as July 26, 2021, create the following
measure:

l =inyear(date,'07/26/2021', 0)

date =inyear(date,'07/26/2021',0)

01/13/2020 0

02/26/2020 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 824

8 Script and chart functions

date =inyear(date,'07/26/2021',0)

03/27/2020 0

04/16/2020 0

05/21/2020 0

08/14/2020 0

10/07/2020 0

12/05/2020 0

01/22/2021 -1

02/03/2021 -1

03/17/2021 -1

04/23/2021 -1

05/04/2021 -1

06/30/2021 -1

07/26/2021 -1

12/27/2021 -1

06/06/2022 0

07/18/2022 0

11/14/2022 0

12/12/2022 0

The ‘in_year’ field is created in the chart by using the inyear() function. The first argument identifies
which field is being evaluated. The second argument is a hard-coded date for July 26, 2021 which is
the base_date that determines the comparator year. A period_no of 0 is the final argument meaning
that the inyear() function does not compare years preceding or following the year.

Diagram of inyear() function's range with July 27 as the base date

Any transaction that occurs in 2021 returns a Boolean result of TRUE.

Script syntax and chart functions - Qlik Sense, May 2024 825

8 Script and chart functions

Example 5 - Scenario
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called ‘Products’.
l The table contains the following fields:

l product ID
l product type
l manufacture date
l cost price

The end user would like a chart object that displays, by product type, the cost of the products
manufactured in 2021.

Load script

Products:

Load

*

Inline

[

product_id,product_type,manufacture_date,cost_price

8188,product A,'01/13/2020',37.23

8189,product B,'02/26/2020',17.17

8190,product B,'03/27/2020',88.27

8191,product C,'04/16/2020',57.42

8192,product D,'05/21/2020',53.80

8193,product D,'08/14/2020',82.06

8194,product C,'10/07/2020',40.39

8195,product B,'12/05/2020',87.21

8196,product A,'01/22/2021',95.93

8197,product B,'02/03/2021',45.89

8198,product C,'03/17/2021',36.23

8199,product C,'04/23/2021',25.66

8200,product B,'05/04/2021',82.77

8201,product D,'06/30/2021',69.98

8202,product D,'07/26/2021',76.11

8203,product D,'12/27/2021',25.12

8204,product C,'06/06/2022',46.23

8205,product C,'07/18/2022',84.21

8206,product A,'11/14/2022',96.24

8207,product B,'12/12/2022',67.67

];

Script syntax and chart functions - Qlik Sense, May 2024 826

8 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

l product_type

To calculate the sum of each product that was manufactured in 2021, create the following measure:

l =sum(if(InYear(manufacture_date,makedate(2021,01,01),0),cost_price,0))

Do the following:

1. Set the measure’s Number Formatting to Money.
2. Under Appearance, turn off Totals.

product_type =sum(if(InYear(manufacture_date,makedate(2021,01,01),0),cost_price,0))

product A $95.93

product B $128.66

product C $61.89

product D $171.21

Results table

The inyear() function returns a Boolean value when evaluating the manufacturing dates of each of
the products. For any product manufactured in 2021, the inyear() function returns a Boolean value
of TRUE and shows the sum of the cost_price.

inyeartodate
This function returns True if timestamp lies inside the part of year containing base_
date up until and including the last millisecond of base_date.

Syntax:
InYearToDate (timestamp, base_date, period_no[, first_month_of_year])

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is
represented by 0.

Script syntax and chart functions - Qlik Sense, May 2024 827

8 Script and chart functions

Diagram of inyeartodate function

The inyeartodate() function will segment a particular portion of the year with the base_date,
identifying the maximum allowed date for that year segment. The function then evaluates whether a
date field or value falls into this segment and returns a Boolean result.

Argument Description

timestamp The date that you want to compare with base_date.

base_date Date that is used to evaluate the year.

period_no The year can be offset by period_no. period_no is an integer, where the value 0
indicates the year that contains base_date. Negative values in period_no
indicate preceding years, and positive values indicate succeeding years.

first_month_
of_year

If you want to work with (fiscal) years not starting in January, indicate a value
between 2 and 12 in first_month_of_year.

Arguments

When to use it
The inyeartodate() function returns a Boolean result. Typically, this type of function will be used as
a condition in an if expression. This would return an aggregation or calculation dependent on
whether a date evaluated occurred in the year up to and including the date in question.

For example, the inyeartodate() function can be used to identify all equipment manufactured in a
year up to a specific date.

These examples use the date format MM/DD/YYYY. The date format is specified in the SET

DateFormat statement at the top of your data load script. Change the format in the examples to suit
your requirements.

Example Result

inyeartodate

('01/25/2013',

'02/01/2013', 0)

Returns TRUE.

inyeartodate

('01/25/2012',

'01/01/2013', 0)

Returns FALSE.

Function examples

Script syntax and chart functions - Qlik Sense, May 2024 828

8 Script and chart functions

Example Result

inyeartodate

('01/25/2012',

'02/01/2013', -1)

Returns TRUE.

inyeartodate

('11/25/2012',

'01/31/2013', 0, 4)

Returns TRUE.
The value of timestamp falls inside the fiscal year beginning in the fourth
month and before the value of base_date.

inyeartodate

('3/31/2013',

'01/31/2013', 0, 4)

Returns FALSE.
Compared with the previous example, the value of timestamp is still inside
the fiscal year, but it is after the value of base_date, so it falls outside the
part of the year.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022, which is loaded into a
table called Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, in_year_to_date, that determines which transactions took place in the

year up until July 26, 2021.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Script syntax and chart functions - Qlik Sense, May 2024 829

8 Script and chart functions

Load

*,

inyeartodate(date,'07/26/2021', 0) as in_year_to_date

;

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'06/14/2020',82.06

8194,'08/07/2020',40.39

8195,'09/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'07/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_year_to_date

date in_year_to_date

01/13/2020 0

02/26/2020 0

03/27/2020 0

04/16/2020 0

05/21/2020 0

06/14/2020 0

08/07/2020 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 830

8 Script and chart functions

date in_year_to_date

09/05/2020 0

01/22/2021 -1

02/03/2021 -1

03/17/2021 -1

04/23/2021 -1

05/04/2021 -1

06/30/2021 -1

07/26/2021 -1

07/27/2021 0

06/06/2022 0

07/18/2022 0

11/14/2022 0

12/12/2022 0

The in_year_to_date field is created in the preceding load statement by using the inyeartodate()

function. The first argument provided identifies which field is being evaluated.

The second argument is a hard-coded date for the for the July 26, 2021, which is the base_date that
identifies the end boundary of the year segment. A period_no of 0 is the final argument, meaning
that the function is not comparing years preceding or following the segmented year.

Diagram of inyeartodate function, no additional arguments

Any transaction that occurs in between January 1 and July 26 returns a Boolean result of TRUE.
Transactions dates before 2021 and beyond July 26, 2021 return FALSE.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, May 2024 831

8 Script and chart functions

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, previous_year_to_date, that determines which transactions took place

a full year before the year segment ending on July 26, 2021.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inyeartodate(date,'07/26/2021', -1) as previous_year_to_date

;

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'06/14/2020',82.06

8194,'08/07/2020',40.39

8195,'09/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'07/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_year_to_date

Script syntax and chart functions - Qlik Sense, May 2024 832

8 Script and chart functions

date previous_year_to_date

01/13/2020 -1

02/26/2020 -1

03/27/2020 -1

04/16/2020 -1

05/21/2020 -1

06/14/2020 -1

08/07/2020 0

09/05/2020 0

01/22/2021 0

02/03/2021 0

03/17/2021 0

04/23/2021 0

05/04/2021 0

06/30/2021 0

07/26/2021 0

07/27/2021 0

06/06/2022 0

07/18/2022 0

11/14/2022 0

12/12/2022 0

Results table

A period_no value of -1 indicates that the inyeartodate () function compares the input quarter
segment to the preceding year. With an input date of July 26, 2021, the segment from January 1,
2021 to July 26, 2021 was initially identified as the year-to-date. The period_no then offsets this
segment by a full year earlier, causing the date boundaries to become January 1 to July 26, 2020.

Diagram of inyeartodate function, period_no example

Script syntax and chart functions - Qlik Sense, May 2024 833

8 Script and chart functions

Therefore, any transaction that occurs between January 1 and July 26, 2020 will return a Boolean
result of TRUE.

Example 3 – first_month_of_year
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, in_year_to_date, that determines which transactions took place in the

same year up to July 26, 2021.

In this example, we set March as the first month of the fiscal year.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

inyeartodate(date,'07/26/2021', 0,3) as in_year_to_date

;

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'06/14/2020',82.06

8194,'08/07/2020',40.39

8195,'09/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'07/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

Script syntax and chart functions - Qlik Sense, May 2024 834

8 Script and chart functions

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l in_year_to_date

date in_year_to_date

01/13/2020 0

02/26/2020 0

03/27/2020 0

04/16/2020 0

05/21/2020 0

06/14/2020 0

08/07/2020 0

09/05/2020 0

01/22/2021 0

02/03/2021 0

03/17/2021 -1

04/23/2021 -1

05/04/2021 -1

06/30/2021 -1

07/26/2021 -1

07/27/2021 0

06/06/2022 0

07/18/2022 0

11/14/2022 0

12/12/2022 0

Results table

By using 3 as the first_month_of_year argument in the inyeartodate() function, the function begins
the year on March 1. The base_date of July 26, 2021 then sets the end date for that year segment.

Script syntax and chart functions - Qlik Sense, May 2024 835

8 Script and chart functions

Diagram of inyeartodate function, first_month_of_year example

Therefore, any transaction that occurs between March 1 and July 26, 2021 will return a Boolean
result of TRUE, while transactions with dates outside these boundaries will return a value of FALSE.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. However, in this
example, the unchanged dataset is loaded into the application. The calculation that determines
which transactions took place in the same year up to July 26, 2021 is created as a measure in a
chart object in the application.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'06/14/2020',82.06

8194,'08/07/2020',40.39

8195,'09/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'07/27/2021',25.12

Script syntax and chart functions - Qlik Sense, May 2024 836

8 Script and chart functions

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:date.

Create the following measure:

=inyeartodate(date,'07/26/2021', 0)

date =inyeartodate(date,'07/26/2021', 0)

01/13/2020 0

02/26/2020 0

03/27/2020 0

04/16/2020 0

05/21/2020 0

06/14/2020 0

08/07/2020 0

09/05/2020 0

01/22/2021 -1

02/03/2021 -1

03/17/2021 -1

04/23/2021 -1

05/04/2021 -1

06/30/2021 -1

07/26/2021 -1

07/27/2021 0

06/06/2022 0

07/18/2022 0

11/14/2022 0

12/12/2022 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 837

8 Script and chart functions

The in_year_to_date measure is created in the chart object by using the inyeartodate() function.
The first argument provided identifies which field is being evaluated. The second argument is a
hard-coded date for July 26, 2021, which is the base_date that identifies the end boundary of the
comparator year segment. A period_no of 0 is the final argument, meaning that the function is not
comparing years preceding or following the segmented year.

Diagram of inyeartodate function, chart object example

Any transaction that occurs between January 1 and July 26, 2021 returns a Boolean result of TRUE.
Transaction dates before 2021 and after July 26, 2021 return FALSE.

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called Products.
l Information concerning product ID, product type, manufacture date, and cost price.

The end user would like a chart object that displays, by product type, the cost of the products
manufactured in 2021 up to July 26.

Load script

Products:

Load

*

Inline

[

product_id,product_type,manufacture_date,cost_price

8188,product A,'01/13/2020',37.23

8189,product B,'02/26/2020',17.17

8190,product B,'03/27/2020',88.27

8191,product C,'04/16/2020',57.42

8192,product D,'05/21/2020',53.80

8193,product D,'08/14/2020',82.06

8194,product C,'10/07/2020',40.39

8195,product B,'12/05/2020',87.21

8196,product A,'01/22/2021',95.93

Script syntax and chart functions - Qlik Sense, May 2024 838

8 Script and chart functions

8197,product B,'02/03/2021',45.89

8198,product C,'03/17/2021',36.23

8199,product C,'04/23/2021',25.66

8200,product B,'05/04/2021',82.77

8201,product D,'06/30/2021',69.98

8202,product D,'07/26/2021',76.11

8203,product D,'12/27/2021',25.12

8204,product C,'06/06/2022',46.23

8205,product C,'07/18/2022',84.21

8206,product A,'11/14/2022',96.24

8207,product B,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:product_type.

Create a measure that calculates the sum of each product that was manufactured in 2021 before
July 27:

=sum(if(inyeartodate(manufacture_date,makedate(2021,07,26),0),cost_price,0))

Set the measure's Number formatting to Money.

product_type
=sum(if(inyeartodate(manufacture_date,makedate
(2021,07,26),0),cost_price,0))

product A $95.93

product B $128.66

product C $61.89

product D $146.09

Results table

The inyeartodate() function returns a Boolean value when evaluating the manufacturing dates of
each of the products. For any product manufactured in 2021 before July 27, the inyeartodate()

function returns a Boolean value of TRUE and sums the cost_price.

Product D is the only product that was also manufactured after July 26th in 2021. The entry with
product_ID 8203 was manufactured on December 27 and cost $25.12. Therefore, this cost was not
included in the total for Product D in the chart object.

lastworkdate
The lastworkdate function returns the earliest ending date to achieve no_of_
workdays (Monday-Friday) if starting at start_date taking into account any optionally
listed holiday. start_date and holiday should be valid dates or timestamps.

Syntax:
lastworkdate(start_date, no_of_workdays {, holiday})

Script syntax and chart functions - Qlik Sense, May 2024 839

8 Script and chart functions

Return data type: integer

A calendar that shows how the lastworkdate() function is used

Limitations

There is no method to modify the lastworkdate() function for regions or scenarios that involve
anything other than a work week that begins on Monday and ends on Friday.

The holiday parameter must be a string constant. It does not accept an expression.

When to use it

The lastworkdate() function is commonly used as part of an expression when the user would like to
calculate the proposed end date of a project or assignment, based on when the project begins and
the holidays that will occur in that period.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Script syntax and chart functions - Qlik Sense, May 2024 840

8 Script and chart functions

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Argument Description

start_date The start date to evaluate.

no_of_
workdays

The number of working days to achieve.

holiday Holiday periods to exclude from working days. A holiday is stated as a string
constant date. You can specify multiple holiday dates, separated by commas.

Example: '12/25/2013', '12/26/2013', '12/31/2013', '01/01/2014'

Arguments

Example 1 - Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing project IDs, project start dates, and the estimated effort, in days,
required for the projects. The dataset is loaded into a table called ‘Projects’.

l A preceding load which contains the lastworkdate() function which is set as the field ‘end_
date’ and identifies when each project is scheduled to end.

Load script

SET DateFormat='MM/DD/YYYY';

Projects:

Load

*,

LastWorkDate(start_date,effort) as end_date

;

Load

id,

start_date,

effort

Inline

[

id,start_date,effort

1,01/01/2022,14

Script syntax and chart functions - Qlik Sense, May 2024 841

8 Script and chart functions

2,02/10/2022,17

3,05/17/2022,5

4,06/01/2022,12

5,08/10/2022,26

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l start_date

l effort

l end_date

id start_date effort end_date

1 01/01/2022 14 01/20/2022

2 02/10/2022 17 03/04/2022

3 05/17/2022 5 05/23/2022

4 06/01/2022 12 06/16/2022

5 08/10/2022 26 09/14/2022

Results table

Because there are no scheduled holidays, the function adds the defined number of working days,
Monday to Friday, to the start date to find the earliest possible end date.

The following calendar shows the start and end date for project 3, with the working days
highlighted in green.

Script syntax and chart functions - Qlik Sense, May 2024 842

8 Script and chart functions

A calendar that shows the start and end date of project 3

Example 2 - Single holiday
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing project IDs, project start dates, and the estimated effort, in days,
required for the projects. The dataset is loaded into a table called ‘Projects’.

l A preceding load which contains the lastworkdate() function which is set as the field ‘end_
date’ and identifies when each project is scheduled to end.

However, there is one holiday scheduled on May 18, 2022. The lastworkdate() function in the
preceding load includes the holiday in its third argument to identify when each project is scheduled
to end.

Script syntax and chart functions - Qlik Sense, May 2024 843

8 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Projects:

Load

*,

LastWorkDate(start_date,effort, '05/18/2022') as end_date

;

Load

id,

start_date,

effort

Inline

[

id,start_date,effort

1,01/01/2022,14

2,02/10/2022,17

3,05/17/2022,5

4,06/01/2022,12

5,08/10/2022,26

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l start_date

l effort

l end_date

id start_date effort end_date

1 01/01/2022 14 01/20/2022

2 02/10/2022 17 03/04/2022

3 05/17/2022 5 05/24/2022

4 06/01/2022 12 06/16/2022

5 08/10/2022 26 09/14/2022

Results table

The single scheduled holiday is entered as the third argument in the lastworkdate() function. As a
result, the end date for project 3 is shifted one day later because the holiday takes place on one of
the working days before the end date.

The following calendar shows the start and end date for project 3 and shows that the holiday
changes the end date of the project by one day.

Script syntax and chart functions - Qlik Sense, May 2024 844

8 Script and chart functions

A calendar that shows the start and end date of project 3 with a holiday on May 18

Example 3 - Multiple holidays
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing project IDs, project start dates, and the estimated effort, in days,
required for the projects. The dataset is loaded into a table called ‘Projects’.

l A preceding load which contains the lastworkdate() function which is set as the field ‘end_
date’ and identifies when each project is scheduled to end.

However, there are three holidays scheduled for May 19, 20, 21, and 22. The lastworkdate()

function in the preceding load includes each of the holidays in its third argument to identify when
each project is scheduled to end.

Script syntax and chart functions - Qlik Sense, May 2024 845

8 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Projects:

Load

*,

LastWorkDate(start_date,effort, '05/19/2022','05/20/2022','05/21/2022','05/22/2022') as

end_date

;

Load

id,

start_date,

effort

Inline

[

id,start_date,effort

1,01/01/2022,14

2,02/10/2022,17

3,05/17/2022,5

4,06/01/2022,12

5,08/10/2022,26

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l start_date

l effort

l end_date

id start_date effort end_date

1 01/01/2022 14 01/20/2022

2 02/10/2022 17 03/04/2022

3 05/17/2022 5 05/25/2022

4 06/01/2022 12 06/16/2022

5 08/10/2022 26 09/14/2022

Results table

The four holidays are entered as a list of arguments in the lastworkdate() function after the start
date and number of working days.

The following calendar shows the start and end date for project 3 and shows that the holidays
change the end date of the project by three days.

Script syntax and chart functions - Qlik Sense, May 2024 846

8 Script and chart functions

A calendar that shows the start and end date of project 3 with holidays from May 19 to 22

Example 4 - Single holiday (chart)
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

However, in this example, the dataset is unchanged and loaded into the app. The end_date field is
calculated as a measure in a chart.

Load script

SET DateFormat='MM/DD/YYYY';

Projects:

Load

id,

start_date,

effort

Inline

[

Script syntax and chart functions - Qlik Sense, May 2024 847

8 Script and chart functions

id,start_date,effort

1,01/01/2022,14

2,02/10/2022,17

3,05/17/2022,5

4,06/01/2022,12

5,08/10/2022,26

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l start_date

l effort

To calculate the end_date, create the following measure:

l =LastWorkDate(start_date,effort,'05/18/2022')

id start_date effort =LastWorkDate(start_date,effort,'05/18/2022')

1 01/01/2022 14 01/20/2022

2 02/10/2022 17 03/04/2022

3 05/17/2022 5 05/23/2022

4 06/01/2022 12 06/16/2022

5 08/10/2022 26 09/14/2022

Results table

The single scheduled holiday is entered as a measure in the chart. As a result, the end date for
project 3 is shifted one day later because the holiday takes place on one of the working days before
the end date.

The following calendar shows the start and end date for project 3 and shows that the holiday
changes the end date of the project by one day.

Script syntax and chart functions - Qlik Sense, May 2024 848

8 Script and chart functions

A calendar that shows the start and end date of project 3 with a holiday on May 18

localtime
This function returns a timestamp of the current time for a specified time zone.

Syntax:
LocalTime([timezone [, ignoreDST]])

Script syntax and chart functions - Qlik Sense, May 2024 849

8 Script and chart functions

Return data type: dual

Argument Description

timezone The timezone is specified as a string containing any of the geographical places
listed under Time Zone in the Windows Control Panel for Date and Time or as a
string in the form 'GMT+hh:mm'. A list of accepted places and time zones is also
presented in the table below.

If no time zone is specified, the local time is returned.

If you use a DST offset (that is, you specify an ignoreDST argument
value evaluating to False), you must specify a place, rather than a
GMT offset, in the place argument. This is because adjusting for
Daylight Saving Time requires latitudinal information in addition to the
longitudinal information provided by a GMT offset. For more
information, see Using GMT offsets in combination with DST (page
852).

ignoreDST If this argument evaluates to True, DST (daylight saving time) is ignored. Valid
argument values evaluating to True include -1 and True().

If this argument evaluates to False, the timestamp is adjusted for daylight saving
time. Valid argument values evaluating to False include 0 and False().

If the ignoreDST argument value is invalid, the function evaluates the expression
as if the ignore_dst value evaluates to True. If the ignoreDST argument value is
not specified, the function evaluates the expression as if the ignore_dst value
evaluates to False.

Arguments

A-C D-K L-R S-Z

Abu Dhabi Darwin La Paz Samoa

Adelaide Dhaka Lima Santiago

Alaska Eastern Time (US &
Canada)

Lisbon Sapporo

Amsterdam Edinburgh Ljubljana Sarajevo

Arizona Ekaterinburg London Saskatchewan

Astana Fiji Madrid Seoul

Athens Georgetown Magadan Singapore

Valid places and time zones

Script syntax and chart functions - Qlik Sense, May 2024 850

8 Script and chart functions

A-C D-K L-R S-Z

Atlantic Time
(Canada)

Greenland Mazatlan Skopje

Auckland Greenwich Mean Time :
Dublin

Melbourne Sofia

Azores Guadalajara Mexico City Solomon Is.

Baghdad Guam Mid-Atlantic Sri
Jayawardenepura

Baku Hanoi Minsk St. Petersburg

Bangkok Harare Monrovia Stockholm

Beijing Hawaii Monterrey Sydney

Belgrade Helsinki Moscow Taipei

Berlin Hobart Mountain Time (US &
Canada)

Tallinn

Bern Hong Kong Mumbai Tashkent

Bogota Indiana (East) Muscat Tbilisi

Brasilia International Date Line
West

Nairobi Tehran

Bratislava Irkutsk New Caledonia Tokyo

Brisbane Islamabad New Delhi Urumqi

Brussels Istanbul Newfoundland Warsaw

Bucharest Jakarta Novosibirsk Wellington

Budapest Jerusalem Nuku'alofa West Central Africa

Buenos Aires Kabul Osaka Vienna

Cairo Kamchatka Pacific Time (US &
Canada)

Vilnius

Canberra Karachi Paris Vladivostok

Cape Verde Is. Kathmandu Perth Volgograd

Caracas Kolkata Port Moresby Yakutsk

Casablanca Krasnoyarsk Prague Yerevan

Central America Kuala Lumpur Pretoria Zagreb

Central Time (US &
Canada)

Kuwait Quito -

Chennai Kyiv Riga -

Script syntax and chart functions - Qlik Sense, May 2024 851

8 Script and chart functions

A-C D-K L-R S-Z

Chihuahua - Riyadh -

Chongqing - Rome -

Copenhagen - - -

Examples and results:

The examples below are based on the function being called on 2023-08-14 08:39:47 local time,
with the local time zone of the server or desktop environment being GMT-05:00, and in a region
which has implemented daylight saving time as of this listed date.

Example Result

localtime () Returns the local time 2023-08-14 08:39:47.

localtime

('London')
Returns the local time in London, 2023-08-14 13:39:47.

localtime

('GMT+02:00')
Returns the local time in the timezone of GMT+02:00, 2023-08-14 14:39:47.
No adjustment is made for daylight saving time because a GMT offset, rather
than a place, is specified.

localtime

('Paris',-1)
Returns the local time in Paris with daylight savings time ignored, 2023-08-14
13:39:47.

localtime

('Paris',True())
Returns the local time in Paris with daylight savings time ignored, 2023-08-14
13:39:47.

localtime

('Paris',0)
Returns the local time in Paris, taking daylight savings time into account,
2023-08-14 14:39:47.

localtime

('Paris',False

())

Returns the local time in Paris, taking daylight savings time into account,
2023-08-14 14:39:47.

Scripting examples

Using GMT offsets in combination with DST
Following the implementation of International Components for Unicode (ICU) libraries in Qlik Sense,
the use of GMT (Greenwich Mean Time) offsets in combination with DST (Daylight Saving Time)
requires additional latitudinal information.

GMT is a longitudinal (east-west) offset, whereas DST is a latitudinal (north-south) offset. For
example, Helsinki (Finland) and Johannesburg (South Africa) share the same GMT+02:00 offset,
but they do not share the same DST offset. This means that, further to the GMT offset, any DST
offset requires information on the latitudinal position of the local time zone (geographical time zone
input) in order to have full information about local DST conditions.

Script syntax and chart functions - Qlik Sense, May 2024 852

8 Script and chart functions

lunarweekend
This function returns a value corresponding to a timestamp of the last millisecond of
the last day of the lunar week containing date. Lunar weeks in Qlik Sense are defined
by counting January 1 as the first day of the week and, apart from the final week of the
year, will contain exactly seven days.

Syntax:
LunarweekEnd(date[, period_no[, first_week_day]])

Return data type: dual

Example diagram of lunarweekend() function

The lunarweekend() function determines which lunar week the date falls into. It then returns a
timestamp, in date format, for the last millisecond of that week.

Argument Description

date The date or timestamp to evaluate.

period_no period_no is an integer or expression resolving to an integer, where the value 0
indicates the lunar week which contains date. Negative values in period_no
indicate preceding lunar weeks and positive values indicate succeeding lunar
weeks.

first_week_
day

An offset that may be greater than or less than zero. This changes the beginning
of the year by the specified number of days and/or fractions of a day.

Arguments

When to use it
The lunarweekend() function is commonly used as part of an expression when the user would like
the calculation to use the fraction of the week that has not yet occurred. Unlike the weekend()

function, the final lunar week of each calendar year will end on December 31. For example, the
lunarweekend() function can be used to calculate interest not yet incurred during the week.

Example Result

lunarweekend('01/12/2013') Returns 01/14/2013 23:59:59.

Function examples

Script syntax and chart functions - Qlik Sense, May 2024 853

8 Script and chart functions

Example Result

lunarweekend('01/12/2013', -1) Returns 01/07/2013 23:59:59.

lunarweekend('01/12/2013', 0, 1) Returns 01/15/2013 23:59:59.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, end_of_week, that returns a timestamp for the end of the lunar week in

which the transactions took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

lunarweekend(date) as end_of_week,

timestamp(lunarweekend(date)) as end_of_week_timestamp

;

Load

*

Inline

[

id,date,amount

Script syntax and chart functions - Qlik Sense, May 2024 854

8 Script and chart functions

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l end_of_week

l end_of_week_timestamp

date end_of_week end_of_week_timestamp

1/7/2022 01/07/2022 1/7/2022 11:59:59 PM

1/19/2022 01/21/2022 1/21/2022 11:59:59 PM

2/5/2022 02/11/2022 2/11/2022 11:59:59 PM

2/28/2022 03/04/2022 3/4/2022 11:59:59 PM

3/16/2022 03/18/2022 3/18/2022 11:59:59 PM

4/1/2022 04/01/2022 4/1/2022 11:59:59 PM

5/7/2022 05/13/2022 5/13/2022 11:59:59 PM

5/16/2022 05/20/2022 5/20/2022 11:59:59 PM

6/15/2022 06/17/2022 6/17/2022 11:59:59 PM

6/26/2022 07/01/2022 7/1/2022 11:59:59 PM

7/9/2022 07/15/2022 7/15/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 855

8 Script and chart functions

date end_of_week end_of_week_timestamp

7/22/2022 07/22/2022 7/22/2022 11:59:59 PM

7/23/2022 07/29/2022 7/29/2022 11:59:59 PM

7/27/2022 07/29/2022 7/29/2022 11:59:59 PM

8/2/2022 08/05/2022 8/5/2022 11:59:59 PM

8/8/2022 08/12/2022 8/12/2022 11:59:59 PM

8/19/2022 08/19/2022 8/19/2022 11:59:59 PM

9/26/2022 09/30/2022 9/30/2022 11:59:59 PM

10/14/2022 10/14/2022 10/14/2022 11:59:59 PM

10/29/2022 11/04/2022 11/4/2022 11:59:59 PM

The end_of_week field is created in the preceding load statement by using the lunarweekend()

function, and passing the date field as the function’s argument.

The lunarweekend() function identifies which lunar week the date value falls into, returning a
timestamp for the last millisecond of that week.

Diagram of lunarweekend() function, example with no additional arguments

Transaction 8189 took place on January 19. The lunarweekend() function identifies that the lunar
week begins on January 15. Therefore, the end_of_week value for that transaction returns the last
millisecond of the lunar week, which is January 21 at 11:59:59 PM.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2024 856

8 Script and chart functions

l The same dataset and scenario as the first example.
l The creation of a field, previous_lunar_week_end, that returns the timestamp for the end of the

lunar week before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

lunarweekend(date,-1) as previous_lunar_week_end,

timestamp(lunarweekend(date,-1)) as previous_lunar_week_end_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_lunar_week_end

l previous_lunar_week_end_timestamp

Script syntax and chart functions - Qlik Sense, May 2024 857

8 Script and chart functions

date previous_lunar_week_end previous_lunar_week_end_timestamp

1/7/2022 12/31/2021 12/31/2021 11:59:59 PM

1/19/2022 01/14/2022 1/14/2022 11:59:59 PM

2/5/2022 02/04/2022 2/4/2022 11:59:59 PM

2/28/2022 02/25/2022 2/25/2022 11:59:59 PM

3/16/2022 03/11/2022 3/18/2022 11:59:59 PM

4/1/2022 03/25/2022 3/25/2022 11:59:59 PM

5/7/2022 05/06/2022 5/6/2022 11:59:59 PM

5/16/2022 05/13/2022 5/13/2022 11:59:59 PM

6/15/2022 06/10/2022 6/10/2022 11:59:59 PM

6/26/2022 06/24/2022 6/24/2022 11:59:59 PM

7/9/2022 07/08/2022 7/8/2022 11:59:59 PM

7/22/2022 07/15/2022 7/15/2022 11:59:59 PM

7/23/2022 07/22/2022 7/22/2022 11:59:59 PM

7/27/2022 07/22/2022 7/22/2022 11:59:59 PM

8/2/2022 07/29/2022 7/29/2022 11:59:59 PM

8/8/2022 08/05/2022 8/5/2022 11:59:59 PM

8/19/2022 08/12/2022 8/12/2022 11:59:59 PM

9/26/2022 09/23/2022 9/23/2022 11:59:59 PM

10/14/2022 10/07/2022 10/7/2022 11:59:59 PM

10/29/2022 10/28/2022 10/28/2022 11:59:59 PM

Results table

In this instance, because a period_no of -1 was used as the offset argument in the lunarweekend()

function, the function first identifies the lunar week in which the transactions took place. It then
shifts one week prior and identifies the final millisecond of that lunar week.

Script syntax and chart functions - Qlik Sense, May 2024 858

8 Script and chart functions

Diagram of lunarweekend() function, period_no example

Transaction 8189 took place on January 19. The lunarweekend() function identifies that the lunar
week begins on January 15. Therefore, the previous lunar week began on the January 8 and ended
on January 14 at 11:59:59 PM; this is the value that is returned for the previous_lunar_week_end field.

Example 3 – first_week_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. In this example, we set
lunar weeks to begin on January 5.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

lunarweekend(date,0,4) as end_of_week,

timestamp(lunarweekend(date,0,4)) as end_of_week_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

Script syntax and chart functions - Qlik Sense, May 2024 859

8 Script and chart functions

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l end_of_week

l end_of_week_timestamp

date end_of_week end_of_week_timestamp

1/7/2022 01/11/2022 1/11/2022 11:59:59 PM

1/19/2022 01/25/2022 1/25/2022 11:59:59 PM

2/5/2022 02/08/2022 2/8/2022 11:59:59 PM

2/28/2022 03/01/2022 3/1/2022 11:59:59 PM

3/16/2022 03/22/2022 3/22/2022 11:59:59 PM

4/1/2022 04/05/2022 4/5/2022 11:59:59 PM

5/7/2022 05/10/2022 5/10/2022 11:59:59 PM

5/16/2022 05/17/2022 5/17/2022 11:59:59 PM

6/15/2022 06/21/2022 6/21/2022 11:59:59 PM

6/26/2022 06/28/2022 6/28/2022 11:59:59 PM

7/9/2022 07/12/2022 7/12/2022 11:59:59 PM

7/22/2022 07/26/2022 7/26/2022 11:59:59 PM

7/23/2022 07/26/2022 7/26/2022 11:59:59 PM

7/27/2022 08/02/2022 8/2/2022 11:59:59 PM

8/2/2022 08/02/2022 8/2/2022 11:59:59 PM

8/8/2022 08/09/2022 8/9/2022 11:59:59 PM

8/19/2022 08/23/2022 8/23/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 860

8 Script and chart functions

date end_of_week end_of_week_timestamp

9/26/2022 09/27/2022 9/27/2022 11:59:59 PM

10/14/2022 10/18/2022 10/18/2022 11:59:59 PM

10/29/2022 11/01/2022 11/1/2022 11:59:59 PM

In this instance, because the first_week_date argument of 4 is used in the lunarweekend() function, it
offsets the start of the year from January 1 to January 5.

Diagram of lunarweekend() function, first_week_day example

Transaction 8189 took place on January 19. Due to lunar weeks beginning on January 5, the
lunarweekend() function identifies that the lunar week containing January 19 also begins on January
19. Therefore, the end of that lunar week occurs on January 25 at 11:59:59 PM; this is the value
returned for the end_of_week field.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation that
returns a timestamp for the end of the lunar week in which the transactions took place is created as
a measure in a chart object of the application.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

Script syntax and chart functions - Qlik Sense, May 2024 861

8 Script and chart functions

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Add the following measures:

=lunarweekend(date)

=timestamp(lunarweekend(date))

date =lunarweekend(date) =timestamp(lunarweekend(date))

1/7/2022 01/07/2022 1/7/2022 11:59:59 PM

1/19/2022 01/21/2022 1/21/2022 11:59:59 PM

2/5/2022 02/11/2022 2/11/2022 11:59:59 PM

2/28/2022 03/04/2022 3/4/2022 11:59:59 PM

3/16/2022 03/18/2022 3/18/2022 11:59:59 PM

4/1/2022 04/01/2022 4/1/2022 11:59:59 PM

5/7/2022 05/13/2022 5/13/2022 11:59:59 PM

5/16/2022 05/20/2022 5/20/2022 11:59:59 PM

6/15/2022 06/17/2022 6/17/2022 11:59:59 PM

6/26/2022 07/01/2022 7/1/2022 11:59:59 PM

7/9/2022 07/15/2022 7/15/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 862

8 Script and chart functions

date =lunarweekend(date) =timestamp(lunarweekend(date))

7/22/2022 07/22/2022 7/22/2022 11:59:59 PM

7/23/2022 07/29/2022 7/29/2022 11:59:59 PM

7/27/2022 07/29/2022 7/29/2022 11:59:59 PM

8/2/2022 08/05/2022 8/5/2022 11:59:59 PM

8/8/2022 08/12/2022 8/12/2022 11:59:59 PM

8/19/2022 08/19/2022 8/19/2022 11:59:59 PM

9/26/2022 09/30/2022 9/30/2022 11:59:59 PM

10/14/2022 10/14/2022 10/14/2022 11:59:59 PM

10/29/2022 11/04/2022 11/4/2022 11:59:59 PM

The end_of_week measure is created in the chart object by using the lunarweekend() function, and
passing the date field as the function’s argument.

The lunarweekend() function identifies which lunar week the date value falls into, returning a
timestamp for the last millisecond of that week.

Diagram of lunarweekend() function, chart object example

Transaction 8189 took place on January 19. The lunarweekend() function identifies that the lunar
week begins on January 15. Therefore, the end_of_week value for that transaction returns the last
millisecond of the lunar week, which is January 21 at 11:59:59 PM.

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2024 863

8 Script and chart functions

l A dataset which is loaded into a table called Employee_Expenses.
l The employee IDs, employee name and the average daily expense claims of each employee.

The end user would like a chart object that displays, by employee ID and employee name, the
estimated expense claims still to be incurred for the remainder of the lunar week.

Load script

Employee_Expenses:

Load

*

Inline

[

employee_id,employee_name,avg_daily_claim

182,Mark, $15

183,Deryck, $12.5

184,Dexter, $12.5

185,Sydney,$27

186,Agatha,$18

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table.
2. Add the following fields as dimensions.

l employee_id

l employee_name

3. Next, create the following measure to calculate the accumulated interest:
=(lunarweekend(today(1))-today(1))*avg_daily_claim

4. Set the measure's Number formatting to Money.

employee_id employee_name
=(lunarweekend(today(1))-today(1))*avg_
daily_claim

182 Mark $75.00

183 Deryck $62.50

184 Dexter $62.50

185 Sydney $135.00

186 Agatha $90.00

Results table

The lunarkweekend() function, by using today’s date as its only argument, returns the end date of
the current lunar week. Then, by subtracting today’s date from the lunar week end date, the
expression returns the number of days that remain this week.

Script syntax and chart functions - Qlik Sense, May 2024 864

8 Script and chart functions

This value is then multiplied by the average daily expense claim by each employee to calculate the
estimated value of claims each employee is expected to make in the remaining lunar week.

lunarweekname
This function returns a display value showing the year and lunar week number
corresponding to a timestamp of the first millisecond of the first day of the lunar week
containing date. Lunar weeks in Qlik Sense are defined by counting January 1as the
first day of the week and, apart from the final week of the year, will contain exactly
seven days.

Syntax:
LunarWeekName(date [, period_no[, first_week_day]])

Return data type: dual

Example diagram of lunarweekname() function

The lunarweekname() function determines which lunar week the date falls into, beginning a week
count from January 1. It then returns a value comprised of year/weekcount.

Argument Description

date The date or timestamp to evaluate.

period_no period_no is an integer or expression resolving to an integer, where the value 0
indicates the lunar week which contains date. Negative values in period_no
indicate preceding lunar weeks and positive values indicate succeeding lunar
weeks.

first_week_
day

An offset that may be greater than or less than zero. This changes the beginning
of the year by the specified number of days and/or fractions of a day.

Arguments

When to use it
The lunarweekname() function is useful when you would like to compare aggregations by lunar
weeks. For example, the function could be used to determine the total sales of products by lunar
week. Lunar weeks are useful when you would like to ensure that all values contained in the first
week of the year contain only values from January 1 at the earliest.

Script syntax and chart functions - Qlik Sense, May 2024 865

8 Script and chart functions

These dimensions can be created in the load script by using the function to create a field in a
Master Calendar table. The function can also be used directly in a chart as a calculated dimension.

Example Result

lunarweekname('01/12/2013') Returns 2006/02.

lunarweekname('01/12/2013', -1) Returns 2006/01.

lunarweekname('01/12/2013', 0, 1) Returns 2006/02.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – date with no additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, lunar_week_name, that returns the year and week number for the lunar

week in which the transactions took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

lunarweekname(date) as lunar_week_name

;

Script syntax and chart functions - Qlik Sense, May 2024 866

8 Script and chart functions

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l lunar_week_name

date lunar_week_name

1/7/2022 2022/01

1/19/2022 2022/03

2/5/2022 2022/06

2/28/2022 2022/09

3/16/2022 2022/11

4/1/2022 2022/13

5/7/2022 2022/19

5/16/2022 2022/20

6/15/2022 2022/24

Results table

Script syntax and chart functions - Qlik Sense, May 2024 867

8 Script and chart functions

date lunar_week_name

6/26/2022 2022/26

7/9/2022 2022/28

7/22/2022 2022/29

7/23/2022 2022/30

7/27/2022 2022/30

8/2/2022 2022/31

8/8/2022 2022/32

8/19/2022 2022/33

9/26/2022 2022/39

10/14/2022 2022/41

10/29/2022 2022/44

The lunar_week_name field is created in the preceding load statement by using the lunarweekname()

function, and passing the date field as the function’s argument.

The lunarweekname() function identifies which lunar week the date value falls into, returning the year
and week number of that date.

Diagram of lunarweekname() function, example with no additional arguments

Transaction 8189 took place on January 19. The lunarweekname() function identifies that this date
falls into the lunar week beginning on January 15; this is the third lunar week of the year. Therefore,
the lunar_week_name value returned for that transaction is 2022/03.

Example 2 – date with period_no argument
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2024 868

8 Script and chart functions

l The same dataset and scenario as the first example.
l The creation of a field, previous_lunar_week_name, that returns the year and week number for

the lunar week prior to when the transactions took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

lunarweekname(date,-1) as previous_lunar_week_name

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_lunar_week_name

date previous_lunar_week_name

1/7/2022 2021/52

Results table

Script syntax and chart functions - Qlik Sense, May 2024 869

8 Script and chart functions

date previous_lunar_week_name

1/19/2022 2022/02

2/5/2022 2022/05

2/28/2022 2022/08

3/16/2022 2022/10

4/1/2022 2022/12

5/7/2022 2022/18

5/16/2022 2022/19

6/15/2022 2022/23

6/26/2022 2022/25

7/9/2022 2022/27

7/22/2022 2022/28

7/23/2022 2022/29

7/27/2022 2022/29

8/2/2022 2022/30

8/8/2022 2022/31

8/19/2022 2022/32

9/26/2022 2022/38

10/14/2022 2022/40

10/29/2022 2022/43

In this instance, because a period_no of -1 was used as the offset argument in the lunarweekname()

function, the function first identifies the lunar week in which the transactions took place. It then
returns the year and the number of one week prior.

Diagram of lunarweekname() function, period_no example

Script syntax and chart functions - Qlik Sense, May 2024 870

8 Script and chart functions

Transaction 8189 took place on January 19. The lunarweekname() function identifies that this
transaction took place in the third lunar week of the year, so it then returns the year and value for
one week prior, 2022/02, for the previous_lunar_week_name field.

Example 3 – date with first_week_day argument
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. In this example, we set
lunar weeks to begin on January 5.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

lunarweekname(date,0,4) as lunar_week_name

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Script syntax and chart functions - Qlik Sense, May 2024 871

8 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l lunar_week_name

date lunar_week_name

1/7/2022 2022/01

1/19/2022 2022/03

2/5/2022 2022/05

2/28/2022 2022/08

3/16/2022 2022/11

4/1/2022 2022/13

5/7/2022 2022/18

5/16/2022 2022/19

6/15/2022 2022/24

6/26/2022 2022/25

7/9/2022 2022/27

7/22/2022 2022/29

7/23/2022 2022/29

7/27/2022 2022/30

8/2/2022 2022/30

8/8/2022 2022/31

8/19/2022 2022/33

9/26/2022 2022/38

10/14/2022 2022/41

10/29/2022 2022/43

Results table

Script syntax and chart functions - Qlik Sense, May 2024 872

8 Script and chart functions

Diagram of lunarweekname() function, first_week_day example

In this instance, because the first_week_date argument of 4 is used in the lunarweekname() function,
it offsets the start of lunar weeks from January 1 to January 5.

Transaction 8188 took place on January 7. Due to lunar weeks beginning on January 5, the
lunarweekname() function identifies that the lunar week containing January 7 is the first lunar week
of the year. Therefore, the returned lunar_week_name value for that transaction is 2022/01.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation that
returns the lunar week number and year in which the transactions took place is created as a
measure in a chart object of the application.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

Script syntax and chart functions - Qlik Sense, May 2024 873

8 Script and chart functions

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

To calculate the start date of the lunar week in which a transaction takes place, create the following
measure:

=lunarweekname(date)

date =lunarweekname(date)

1/7/2022 2022/01

1/19/2022 2022/03

2/5/2022 2022/06

2/28/2022 2022/09

3/16/2022 2022/11

4/1/2022 2022/13

5/7/2022 2022/19

5/16/2022 2022/20

6/15/2022 2022/24

6/26/2022 2022/26

7/9/2022 2022/28

7/22/2022 2022/29

7/23/2022 2022/30

7/27/2022 2022/30

8/2/2022 2022/31

8/8/2022 2022/32

8/19/2022 2022/33

Results table

Script syntax and chart functions - Qlik Sense, May 2024 874

8 Script and chart functions

date =lunarweekname(date)

9/26/2022 2022/39

10/14/2022 2022/41

10/29/2022 2022/44

The lunar_week_name measure is created in the chart object by using the lunarweekname() function
and passing the date field as the function’s argument.

The lunarweekname() function identifies which lunar week the date value falls into, returning the year
and week number of that date.

Diagram of lunarweekname() function, chart object example

Transaction 8189 took place on January 19. The lunarweekname() function identifies that this date
falls into the lunar week beginning on January 15; this is the third lunar week of the year. Therefore,
the lunar_week_name value for that transaction is 2022/03.

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.

The end user would like a chart object that presents the total sales by week for the current year.
Week 1, with a length of seven days, should begin on January 1. This could be achieved even when
this dimension is not available in the data model by using the lunarweekname() function as a
calculated dimension in the chart.

Script syntax and chart functions - Qlik Sense, May 2024 875

8 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table.
2. Create a calculated dimension using the following expression:

=lunarweekname(date)

3. Calculate total sales using the following aggregation measure:
=sum(amount)

4. Set the measure's Number formatting to Money.

=lunarweekname(date) =sum(amount)

2022/01 $17.17

2022/03 $37.23

2022/06 $57.42

Results table

Script syntax and chart functions - Qlik Sense, May 2024 876

8 Script and chart functions

=lunarweekname(date) =sum(amount)

2022/09 $88.27

2022/11 $53.80

2022/13 $82.06

2022/19 $40.39

2022/20 $87.21

2022/24 $95.93

2022/26 $45.89

2022/28 $36.23

2022/29 $25.66

2022/30 $152.75

2022/31 $76.11

2022/32 $25.12

2022/33 $46.23

2022/39 $84.21

2022/41 $96.24

2022/44 $67.67

lunarweekstart
This function returns a value corresponding to a timestamp of the first millisecond of
the first day of the lunar week containing date. Lunar weeks in Qlik Sense are defined
by counting January 1 as the first day of the week and, apart from the final week of the
year, will contain exactly seven days.

Syntax:
LunarweekStart(date[, period_no[, first_week_day]])

Return data type: dual

The lunarweekstart() function determines which lunar week the date falls into. It then returns a
timestamp, in date format, for the first millisecond of that week.

Script syntax and chart functions - Qlik Sense, May 2024 877

8 Script and chart functions

Example diagram of lunarweekstart() function

Argument Description

date The date or timestamp to evaluate.

period_no period_no is an integer or expression resolving to an integer, where the value 0
indicates the lunar week which contains date. Negative values in period_no
indicate preceding lunar weeks and positive values indicate succeeding lunar
weeks.

first_week_
day

An offset that may be greater than or less than zero. This changes the beginning
of the year by the specified number of days and/or fractions of a day.

Arguments

When to use it
The lunarweekstart() function is commonly used as part of an expression when the user would like
the calculation to use the fraction of the week that has elapsed thus far. Unlike the weekstart()

function, at the start of each new calendar year, week’s begin on January 1 and each subsequent
week begins seven days later. The lunarweekstart() function is not affected by the FirstWeekDay

system variable.

For example, the lunarweekstart() can be used to calculate the interest that has been accumulated
in a week to date.

Example Result

lunarweekstart

('01/12/2013')
Returns 01/08/2013.

lunarweekstart

('01/12/2013', -1)
Returns 01/01/2013.

lunarweekstart

('01/12/2013', 0, 1)
Returns 01/09/2013, because setting first_week_day to 1 means the
beginning of the year is changed to 01/02/2013.

Function examples

Script syntax and chart functions - Qlik Sense, May 2024 878

8 Script and chart functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field start_of_week, that returns a timestamp for the start of the lunar week

in which the transactions took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

lunarweekstart(date) as start_of_week,

timestamp(lunarweekstart(date)) as start_of_week_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

Script syntax and chart functions - Qlik Sense, May 2024 879

8 Script and chart functions

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l start_of_week

l start_of_week_timestamp

date start_of_week start_of_week_timestamp

1/7/2022 01/01/2022 1/1/2022 12:00:00 AM

1/19/2022 01/15/2022 1/15/2022 12:00:00 AM

2/5/2022 02/05/2022 2/5/2022 12:00:00 AM

2/28/2022 02/26/2022 2/26/2022 12:00:00 AM

3/16/2022 03/12/2022 3/12/2022 12:00:00 AM

4/1/2022 03/26/2022 3/26/2022 12:00:00 AM

5/7/2022 05/07/2022 5/7/2022 12:00:00 AM

5/16/2022 05/14/2022 5/14/2022 12:00:00 AM

6/15/2022 06/11/2022 6/11/2022 12:00:00 AM

6/26/2022 06/25/2022 6/25/2022 12:00:00 AM

7/9/2022 07/09/2022 7/9/2022 12:00:00 AM

7/22/2022 07/16/2022 7/16/2022 12:00:00 AM

7/23/2022 07/23/2022 7/23/2022 12:00:00 AM

7/27/2022 07/23/2022 7/23/2022 12:00:00 AM

8/2/2022 07/30/2022 7/30/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 880

8 Script and chart functions

date start_of_week start_of_week_timestamp

8/8/2022 08/06/2022 8/6/2022 12:00:00 AM

8/19/2022 08/13/2022 8/13/2022 12:00:00 AM

9/26/2022 09/24/2022 9/24/2022 12:00:00 AM

10/14/2022 10/08/2022 10/8/2022 12:00:00 AM

10/29/2022 10/29/2022 10/29/2022 12:00:00 AM

The start_of_week field is created in the preceding load statement by using the lunarweekstart()

function and passing the date field as the function’s argument.

The lunarweekstart() function identifies the lunar week into which the date falls, returning a
timestamp for the first millisecond of that week.

Diagram of lunarweekstart() function, example with no additional arguments

Transaction 8189 took place on January 19. The lunarweekstart() function identifies that the lunar
week begins on January 15. Therefore, the start_of_week value for that transaction returns the first
millisecond of that day, which is January 15 at 12:00:00 AM.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, previous_lunar_week_start, that returns the timestamp for the start of

the lunar week before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Script syntax and chart functions - Qlik Sense, May 2024 881

8 Script and chart functions

Transactions:

Load

*,

lunarweekstart(date,-1) as previous_lunar_week_start,

timestamp(lunarweekstart(date,-1)) as previous_lunar_week_start_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

date previous_lunar_week_start previous_lunar_week_start_timestamp

1/7/2022 12/24/2021 12/24/2021 12:00:00 AM

1/19/2022 01/08/2022 1/8/2022 12:00:00 AM

2/5/2022 01/29/2022 1/29/2022 12:00:00 AM

2/28/2022 02/19/2022 2/19/2022 12:00:00 AM

3/16/2022 03/05/2022 3/5/2022 12:00:00 AM

4/1/2022 03/19/2022 3/19/2022 12:00:00 AM

5/7/2022 04/30/2022 4/30/2022 12:00:00 AM

5/16/2022 05/07/2022 5/7/2022 12:00:00 AM

6/15/2022 06/04/2022 6/4/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 882

8 Script and chart functions

date previous_lunar_week_start previous_lunar_week_start_timestamp

6/26/2022 06/18/2022 6/18/2022 12:00:00 AM

7/9/2022 07/02/2022 7/2/2022 12:00:00 AM

7/22/2022 07/09/2022 7/9/2022 12:00:00 AM

7/23/2022 07/16/2022 7/16/2022 12:00:00 AM

7/27/2022 07/16/2022 7/16/2022 12:00:00 AM

8/2/2022 07/23/2022 7/23/2022 12:00:00 AM

8/8/2022 07/30/2022 7/30/2022 12:00:00 AM

8/19/2022 08/06/2022 8/6/2022 12:00:00 AM

9/26/2022 09/17/2022 9/17/2022 12:00:00 AM

10/14/2022 10/01/2022 10/1/2022 12:00:00 AM

10/29/2022 10/22/2022 10/22/2022 12:00:00 AM

In this instance, because a period_no of -1 was used as the offset argument in the lunarweekstart()

function, the function first identifies the lunar week that the transactions take place in. It then shifts
one week prior and identifies the first millisecond of that lunar week.

Diagram of lunarweekstart() function, period_no example

Transaction 8189 took place on January 19. The lunarweekstart() function identifies that the lunar
week begins on January 15. Therefore, the previous lunar week began on January 8 at 12:00:00 AM;
this is the value returned for the previous_lunar_week_start field.

Example 3 – first_week_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, May 2024 883

8 Script and chart functions

The load script contains the same dataset and scenario as the first example. In this example, we set
lunar weeks to begin on January 5.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

lunarweekstart(date,0,4) as start_of_week,

timestamp(lunarweekstart(date,0,4)) as start_of_week_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l start_of_week

l start_of_week_timestamp

Script syntax and chart functions - Qlik Sense, May 2024 884

8 Script and chart functions

date start_of_week start_of_week_timestamp

1/7/2022 01/05/2022 1/5/2022 12:00:00 AM

1/19/2022 01/19/2022 1/19/2022 12:00:00 AM

2/5/2022 02/02/2022 2/2/2022 12:00:00 AM

2/28/2022 02/23/2022 2/23/2022 12:00:00 AM

3/16/2022 03/16/2022 3/16/2022 12:00:00 AM

4/1/2022 03/30/2022 3/30/2022 12:00:00 AM

5/7/2022 05/04/2022 5/4/2022 12:00:00 AM

5/16/2022 05/11/2022 5/11/2022 12:00:00 AM

6/15/2022 06/15/2022 6/15/2022 12:00:00 AM

6/26/2022 06/22/2022 6/22/2022 12:00:00 AM

7/9/2022 07/06/2022 7/6/2022 12:00:00 AM

7/22/2022 07/20/2022 7/20/2022 12:00:00 AM

7/23/2022 07/20/2022 7/20/2022 12:00:00 AM

7/27/2022 07/27/2022 7/27/2022 12:00:00 AM

8/2/2022 07/27/2022 7/27/2022 12:00:00 AM

8/8/2022 08/03/2022 8/3/2022 12:00:00 AM

8/19/2022 08/17/2022 8/17/2022 12:00:00 AM

9/26/2022 09/21/2022 9/21/2022 12:00:00 AM

10/14/2022 10/12/2022 10/12/2022 12:00:00 AM

10/29/2022 10/26/2022 10/26/2022 12:00:00 AM

Results table

In this instance, because the first_week_date argument of 4 is used in the lunarweekstart()

function, it offsets the start of the year from January 1 to January 5.

Diagram of lunarweekstart() function, first_week_day example

Script syntax and chart functions - Qlik Sense, May 2024 885

8 Script and chart functions

Transaction 8189 took place on January 19. Due to lunar weeks beginning on January 5, the
lunarweekstart() function identifies that the lunar week containing January 19 begins on January 19
at 12:00:00 AM as well. Therefore, that is the value returned for the start_of_week field.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation that
returns a timestamp for the start of the lunar week in which the transactions took place is created
as a measure in a chart object of the application.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Script syntax and chart functions - Qlik Sense, May 2024 886

8 Script and chart functions

Add the following measures:

=lunarweekstart(date)

=timestamp(lunarweekstart(date))

date =lunarweekstart(date) =timestamp(lunarweekstart(date))

1/7/2022 01/01/2022 1/1/2022 12:00:00 AM

1/19/2022 01/15/2022 1/15/2022 12:00:00 AM

2/5/2022 02/05/2022 2/5/2022 12:00:00 AM

2/28/2022 02/26/2022 2/26/2022 12:00:00 AM

3/16/2022 03/12/2022 3/12/2022 12:00:00 AM

4/1/2022 03/26/2022 3/26/2022 12:00:00 AM

5/7/2022 05/07/2022 5/7/2022 12:00:00 AM

5/16/2022 05/14/2022 5/14/2022 12:00:00 AM

6/15/2022 06/11/2022 6/11/2022 12:00:00 AM

6/26/2022 06/25/2022 6/25/2022 12:00:00 AM

7/9/2022 07/09/2022 7/9/2022 12:00:00 AM

7/22/2022 07/16/2022 7/16/2022 12:00:00 AM

7/23/2022 07/23/2022 7/23/2022 12:00:00 AM

7/27/2022 07/23/2022 7/23/2022 12:00:00 AM

8/2/2022 07/30/2022 7/30/2022 12:00:00 AM

8/8/2022 08/06/2022 8/6/2022 12:00:00 AM

8/19/2022 08/13/2022 8/13/2022 12:00:00 AM

9/26/2022 09/24/2022 9/24/2022 12:00:00 AM

10/14/2022 10/08/2022 10/8/2022 12:00:00 AM

10/29/2022 10/29/2022 10/29/2022 12:00:00 AM

Results table

The start_of_week measure is created in the chart object by using the lunarweekstart() function,
and passing the date field as the function’s argument.

The lunarweekstart() function identifies which lunar week the date value falls into, returning a
timestamp for the last millisecond of that week.

Script syntax and chart functions - Qlik Sense, May 2024 887

8 Script and chart functions

Diagram of lunarweekstart() function, chart object example

Transaction 8189 took place on January 19. The lunarweekstart() function identifies that the lunar
week begins on January 15. Therefore, the start_of_week value for that transaction is first
millisecond of that day, which is the January 15 at 12:00:00 AM.

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of loan balances, which is loaded into a table called Loans.
l Data consisting of loan IDs, the balance at the beginning of the week, and the simple interest

rate charged on each loan per annum.

The end user would like a chart object that displays, by loan ID, the current interest that has been
accrued on each loan in the week to date.

Load script

Loans:

Load

*

Inline

[

loan_id,start_balance,rate

8188,$10000.00,0.024

8189,$15000.00,0.057

8190,$17500.00,0.024

8191,$21000.00,0.034

8192,$90000.00,0.084

];

Script syntax and chart functions - Qlik Sense, May 2024 888

8 Script and chart functions

Results

Do the following:

1. Load the data and open a sheet. Create a new table.
2. Add the following fields as dimensions.

l loan_id

l start_balance

3. Next, create the following measure to calculate the accumulated interest:
=start_balance*(rate*(today(1)-lunarweekstart(today(1)))/365)

4. Set the measure's Number formatting to Money.

loan_id start_balance
=start_balance*(rate*(today(1)-
lunarweekstart (today(1)))/365)

8188 $10000.00 $15.07

8189 $15000.00 $128.84

8190 $17500.00 $63.29

8191 $21000.00 $107.59

8192 $90000.00 $1139.18

Results table

The lunarweekstart() function, using today’s date as its only argument, returns the start date of the
current year. By subtracting that result from the current date, the expression returns the number of
days that have elapsed so far this week.

This value is then multiplied by the interest rate and divided by 365 to return the effective interest
rate incurred for this period. The result is then multiplied by the starting balance of the loan to
return the interest that has been accrued so far this week.

makedate
This function returns a date calculated from the year YYYY, the month MM and the day
DD.

Syntax:
MakeDate(YYYY [, MM [, DD]])

Return data type: dual

Argument Description

YYYY The year as an integer.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 889

8 Script and chart functions

Argument Description

MM The month as an integer. If no month is stated, 1 (January) is assumed.

DD The day as an integer. If no day is stated, 1 (the 1st) is assumed.

When to use it
The makedate() function would commonly be used in the script for data generation to generate a
calendar. This could also be used when the date field is not directly available as date, but needs
some transformations to extract year, month and day components.

These examples use the date format MM/DD/YYYY. The date format is specified in the SET

DateFormat statement at the top of your data load script Change the format in the examples to suit
your requirements.

Example Result

makedate(2012) Returns 01/01/2012.

makedate(12) Returns 01/01/2012.

makedate(2012,12) Returns 12/01/2012.

makedate(2012,2,14) Returns 02/14/2012.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2024 890

8 Script and chart functions

l A dataset containing a set of transactions for 2018, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, transaction_date, that returns a date in the format MM/DD/YYYY.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

makedate(transaction_year, transaction_month, transaction_day) as transaction_date

;

Load * Inline [

transaction_id, transaction_year, transaction_month, transaction_day, transaction_amount,

transaction_quantity, customer_id

3750, 2018, 08, 30, 12423.56, 23, 2038593

3751, 2018, 09, 07, 5356.31, 6, 203521

3752, 2018, 09, 16, 15.75, 1, 5646471

3753, 2018, 09, 22, 1251, 7, 3036491

3754, 2018, 09, 22, 21484.21, 1356, 049681

3756, 2018, 09, 22, -59.18, 2, 2038593

3757, 2018, 09, 23, 3177.4, 21, 203521

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l transaction_year

l transaction_month

l transaction_day

l transaction_date

transaction_year transaction_month transaction_day transaction_date

2018 08 30 08/30/2018

2018 09 07 09/07/2018

2018 09 16 09/16/2018

2018 09 22 09/22/2018

2018 09 23 09/23/2018

Results table

The transaction_date field is created in the preceding load statement by using the makedate()

function and passing the year, month, day fields as function arguments.

Script syntax and chart functions - Qlik Sense, May 2024 891

8 Script and chart functions

The function then combines and converts these values into a date field, returning the results in the
format of the DateFormat system variable.

Example 2 – Modified DateFormat
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, transaction_date, in the format DD/MM/YYYY without modifying the

DateFormat system variable.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

date(makedate(transaction_year, transaction_month, transaction_day), ‘DD/MM/YYYY’) as

transaction_date

;

Load * Inline [

transaction_id, transaction_year, transaction_month, transaction_day, transaction_amount,

transaction_quantity, customer_id

3750, 2018, 08, 30, 12423.56, 23, 2038593

3751, 2018, 09, 07, 5356.31, 6, 203521

3752, 2018, 09, 16, 15.75, 1, 5646471

3753, 2018, 09, 22, 1251, 7, 3036491

3754, 2018, 09, 22, 21484.21, 1356, 049681

3756, 2018, 09, 22, -59.18, 2, 2038593

3757, 2018, 09, 23, 3177.4, 21, 203521

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l transaction_year

l transaction_month

l transaction_day

l transaction_date

Script syntax and chart functions - Qlik Sense, May 2024 892

8 Script and chart functions

transaction_year transaction_month transaction_day transaction_date

2018 08 30 30/08/2018

2018 09 07 07/09/2018

2018 09 16 16/09/2018

2018 09 22 22/09/2018

2018 09 23 23/09/2018

Results table

In this instance, the makedate() function is nested inside the date() function. The second argument
of the date() function sets the format of the makedate() function results as the required
DD/MM/YYYY.

Example 3 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2018, which is loaded into a table called
Transactions.

l The transaction dates provided across two fields: year and month.

Create a chart object measure transaction_date, that returns a date in the format MM/DD/YYYY.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load * Inline [

transaction_id, transaction_year, transaction_month, transaction_amount, transaction_quantity,

customer_id

3750, 2018, 08, 12423.56, 23, 2038593

3751, 2018, 09, 5356.31, 6, 203521

3752, 2018, 09, 15.75, 1, 5646471

3753, 2018, 09, 1251, 7, 3036491

3754, 2018, 09, 21484.21, 1356, 049681

3756, 2018, 09, -59.18, 2, 2038593

3757, 2018, 09, 3177.4, 21, 203521

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 893

8 Script and chart functions

l year

l month

To determine the transaction_date, create this measure:

=makedate(transaction_year,transaction_month)

transaction_year transaction_month transaction_date

2018 08 08/01/2018

2018 09 09/01/2018

Results table

The transaction_date measure is created in the chart object by using the makedate() function, and
passing the year and month fields as function arguments.

The function then combines these values, as well as the assumed day value of 01. These values are
then converted into a date field, returning the results in the format of the DateFormat system
variable.

Example 4 – Scenario
Load script and chart expression

Overview

Create a calendar dataset for the calendar year of 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Calendar:

load

*

where year(date)=2022;

load

date(recno()+makedate(2021,12,31)) as date

AutoGenerate 400;

Results

date

01/01/2022

01/02/2022

Results table

Script syntax and chart functions - Qlik Sense, May 2024 894

8 Script and chart functions

date

01/03/2022

01/04/2022

01/05/2022

01/06/2022

01/07/2022

01/08/2022

01/09/2022

01/10/2022

01/11/2022

01/12/2022

01/13/2022

01/14/2022

01/15/2022

01/16/2022

01/17/2022

01/18/2022

01/19/2022

01/20/2022

01/21/2022

01/22/2022

01/23/2022

01/24/2022

01/25/2022

+ 340 more rows

The makedate() function creates a date value for December 31, 2021. The recno() function provides
the record number of the current record being loaded into the table, starting from 1. Therefore, the
first record has the date January 1, 2022. Each successive recno() will then increment this date by
1. This expression is wrapped in a date() function to convert the value into a date. This process is
repeated 400 times by the autogenerate function. Finally, by using a preceding load, a where

condition can be used to only load dates from year 2022. This script generates a calendar
containing every date in 2022.

Script syntax and chart functions - Qlik Sense, May 2024 895

8 Script and chart functions

maketime
This function returns a time calculated from the hour hh, the minute mm, and the
second ss.

Syntax:
MakeTime(hh [, mm [, ss]])

Return data type: dual

Argument Description

hh The hour as an integer.

mm The minute as an integer.

If no minute is stated, 00 is assumed.

ss The second as an integer.

If no second is stated, 00 is assumed.

Arguments

When to use it
The maketime() function would commonly be used in the script for data generation to generate a
time field. Sometimes, when the time field is derived from input text, this function could be used to
construct the time using its components.

These examples use the time format h:mm:ss. The time format is specified in the SET

TimeFormatstatement at the top of your data load script Change the format in the examples to suit
your requirements.

Example Result

maketime(22) Returns 22:00:00.

maketime(22, 17) Returns 22:17:00.

maketime(22,17,52) Returns 22:17:52.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Script syntax and chart functions - Qlik Sense, May 2024 896

8 Script and chart functions

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – maketime()
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions , which is loaded into a table called Transactions.
l Transaction times provided across three fields: hours, minutes, and seconds.
l The creation of a field, transaction_time, that returns the time in the format of the TimeFormat

system variable.

Load script

SET TimeFormat='h:mm:ss TT';

Transactions:

Load

*,

maketime(transaction_hour, transaction_minute, transaction_second) as transaction_time

;

Load * Inline [

transaction_id, transaction_hour, transaction_minute, transaction_second, transaction_amount,

transaction_quantity, customer_id

3750, 18, 43, 30, 12423.56, 23, 2038593

3751, 6, 32, 07, 5356.31, 6, 203521

3752, 12, 09, 16, 15.75, 1, 5646471

3753, 21, 43, 41, 7, 3036491

3754, 17, 55, 22, 21484.21, 1356, 049681

3756, 2, 52, 22, -59.18, 2, 2038593

3757, 9, 25, 23, 3177.4, 21, 203521

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l transaction_hour

l transaction_minute

Script syntax and chart functions - Qlik Sense, May 2024 897

8 Script and chart functions

l transaction_second

l transaction_time

transaction_hour transaction_minute transaction_second transaction_time

2 52 22 2:52:22 AM

6 32 07 6:32:07 AM

9 25 23 9:25:23 AM

12 09 16 12:09:16 PM

17 55 22 5:55:22 PM

18 43 30 6:43:30 PM

21 43 41 9:43:41 PM

Results table

The transaction_time field is created in the preceding load statement by using the maketime()

function, and passing the hour, minute, and second fields as function arguments.

The function then combines and converts these values into a time field, returning the results in the
time format of the TimeFormat system variable.

Example 2 – time() function
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, transaction_time, which will allow us to show the results in 24-hour

time format without modifying the TimeFormat system variable.

Load script

SET TimeFormat='h:mm:ss TT';

Transactions:

Load

*,

time(maketime(transaction_hour, transaction_minute, transaction_second),'h:mm:ss') as

transaction_time

;

Load * Inline [

transaction_id, transaction_hour, transaction_minute, transaction_second, transaction_amount,

transaction_quantity, customer_id

Script syntax and chart functions - Qlik Sense, May 2024 898

8 Script and chart functions

3750, 18, 43, 30, 12423.56, 23, 2038593

3751, 6, 32, 07, 5356.31, 6, 203521

3752, 12, 09, 16, 15.75, 1, 5646471

3753, 21, 43, 41, 7, 3036491

3754, 17, 55, 22, 21484.21, 1356, 049681

3756, 2, 52, 22, -59.18, 2, 2038593

3757, 9, 25, 23, 3177.4, 21, 203521

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l transaction_hour

l transaction_minute

l transaction_second

l transaction_time

transaction_hour transaction_minute transaction_second transaction_time

2 52 22 2:52:22

6 32 07 6:32:07

9 25 23 9:25:23

12 09 16 12:09:16

17 55 22 17:55:22

18 43 30 18:43:30

21 43 41 21:43:41

Results table

In this instance, the maketime() function is nested inside the time() function. The second argument
of the time() function sets the format of the maketime() function results as the required h:mm:ss.

Example 3 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions , which is loaded into a table called Transactions.
l Transaction times provided across two fields: hours and minutes.

Script syntax and chart functions - Qlik Sense, May 2024 899

8 Script and chart functions

l The creation of a field, transaction_time, that returns the time in the format of the TimeFormat

system variable.

Create a chart object measure transaction_time, that returns a time in the format h:mm:ss TT.

Load script

SET TimeFormat='h:mm:ss TT';

Transactions:

Load * Inline [

transaction_id, transaction_hour, transaction_minute, transaction_amount, transaction_

quantity, customer_id

3750, 18, 43, 12423.56, 23, 2038593

3751, 6, 32, 5356.31, 6, 203521

3752, 12, 09, 15.75, 1, 5646471

3753, 21, 43, 7, 3036491

3754, 17, 55, 21484.21, 1356, 049681

3756, 2, 52, -59.18, 2, 2038593

3757, 9, 25, 3177.4, 21, 203521

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l transaction_hour

l transaction_minute

To calculate the transaction_time, create this measure:

=maketime(transaction_hour,transaction_minute)

transaction_hour transaction_minute =maketime(transaction_hour, transaction_minute)

2 52 2:52:00 AM

6 32 6:32:00 AM

9 25 9:25:00 AM

12 09 12:09:00 PM

17 55 5:55:00 PM

18 43 6:43:00 PM

21 43 9:43:00 PM

Results table

The transaction_time measure is created in the chart object by using the maketime() function, and
passing the hour and minute fields as function arguments.

Script syntax and chart functions - Qlik Sense, May 2024 900

8 Script and chart functions

The function then combines these values, and seconds are assumed to be 00. These values are
then converted into a time field, returning the results in the format of the TimeFormat system
variable.

Example 4 – Scenario
Load script and chart expression

Overview

Create a calendar dataset for the month of January 2022, broken out into eight-hour increments.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

tmpCalendar:

load

*

where year(date)=2022;

load

date(recno()+makedate(2021,12,31)) as date

AutoGenerate 31;

Left join(tmpCalendar)

load

maketime((recno()-1)*8,00,00) as time

autogenerate 3;

Calendar:

load

timestamp(date + time) as timestamp

resident tmpCalendar;

drop table tmpCalendar;

Results

timestamp

1/1/2022 12:00:00 AM

1/1/2022 8:00:00 AM

1/1/2022 4:00:00 PM

1/2/2022 12:00:00 AM

1/2/2022 8:00:00 AM

1/2/2022 4:00:00 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 901

8 Script and chart functions

timestamp

1/3/2022 12:00:00 AM

1/3/2022 8:00:00 AM

1/3/2022 4:00:00 PM

1/4/2022 12:00:00 AM

1/4/2022 8:00:00 AM

1/4/2022 4:00:00 PM

1/5/2022 12:00:00 AM

1/5/2022 8:00:00 AM

1/5/2022 4:00:00 PM

1/6/2022 12:00:00 AM

1/6/2022 8:00:00 AM

1/6/2022 4:00:00 PM

1/7/2022 12:00:00 AM

1/7/2022 8:00:00 AM

1/7/2022 4:00:00 PM

1/8/2022 12:00:00 AM

1/8/2022 8:00:00 AM

1/8/2022 4:00:00 PM

1/9/2022 12:00:00 AM

+ 68 more rows

The initial autogenerate function creates a calendar containing all the dates in January in a table
called tmpCalendar.

A second table, containing three records, is created. For each record, recno() – 1 is taken (values
0, 1, 2) and the result is multiplied by 8. As a result, this generates the values 0, 8 16. These values
are used as the hour parameter in a maketime() function, with minute and second values of 0. As a
result, the table contains three time fields: 12:00:00 AM, 8:00:00 AM, and 4:00:00 PM.

This table is joined to the tmpCalendar table. Because there are no matching fields between the two
tables for the join, the time rows are added to each date row. As a result, each date row is now
repeated three times with each time value.

Finally, the Calendar table is created from a resident load of the tmpCalendar table. The date and
time fields are concatenated and wrapped in the timestamp() function to create the timestamp field.

The tmpCalendar table is then dropped.

Script syntax and chart functions - Qlik Sense, May 2024 902

8 Script and chart functions

makeweekdate
This function returns a date calculated from the year, the week number, and the day of
week .

Syntax:
MakeWeekDate(weekyear [, week [, weekday [, first_week_day [, broken_weeks [,

reference_day]]]]])

Return data type: dual

The makeweekdate() function is available both as script and chart function. The function will calculate
the date based on the parameters passed into the function.

Argument Description

weekyear The year as defined by the WeekYear() function for the specific date, that is the
year to which the week number belongs.

The week year can in some cases be different from the calendar year,
for example if week 1 starts already in December of the previous year.

week The week number as defined by the Week() function for the specific date.

If no week number is stated, 1 is assumed.

weekday The day-of-week as defined by the WeekDay() function for the date in question. 0
is the first day of the week, and 6 is the last day of the week.

If no day-of-week is stated, 0 is assumed.

Even though 0 always means first day of the week and 6 is always the
last, which weekdays that corresponds to is determined by the first_
week_day parameter. If omitted, the value of variable FirstWeekDay
is used.

If broken weeks are used, together with an impossible combination of
parameters, this may lead to a result that does not belong to the chosen year.

Example:

MakeWeekDate(2021,1,0,6,1)

Returns ‘Dec 27 2020’ since this day is the first day (the Sunday) of the specified
week. Jan 1 2021 was a Friday.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 903

8 Script and chart functions

Argument Description

first_week_
day

Specifies the day on which the week starts. If omitted, the value of variable
FirstWeekDay is used.

The possible values first_week_day are 0 for Monday, 1 for Tuesday, 2 for
Wednesday, 3 for Thursday, 4 for Friday, 5 for Saturday, and 6 for Sunday.

For more information about the system variable, see FirstWeekDay (page 228).

broken_
weeks

If you don't specify broken_weeks, the value of variable BrokenWeeks is used
to define whether weeks are broken or not.

reference_
day

If you don't specify reference_day, the value of variable ReferenceDay is used
to define which day in January to set as reference day to define week 1.

When to use it
The makeweekdate() function would commonly be used in the script for data generation to generate
a list of dates, or to construct dates when the year, week and day-of-week are provided in the input
data.

The following examples assume:

SET FirstWeekDay=0;

SET BrokenWeeks=0;

SET ReferenceDay=4;

Example Result

makeweekdate(2014,6,6) returns 02/09/2014

makeweekdate(2014,6,1) returns 02/04/2014

makeweekdate(2014,6) returns 02/03/2014 (weekday 0 is assumed)

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Script syntax and chart functions - Qlik Sense, May 2024 904

8 Script and chart functions

Example 1 – day included
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing weekly sales total for 2022 in a table called Sales.
l Transaction dates provided across three fields: year, week, and sales.
l A preceding load which is used to create a measure end_of_week, using the makeweekdate()

function to return the date for the Friday of that week in the format MM/DD/YYYY.

To prove that the date returned is a Friday, the end_of_week expression is also wrapped in the
weekday() function to show the day of the week.

Load script

SET DateFormat='MM/DD/YYYY';

SET FirstWeekDay=0;

SET BrokenWeeks=0;

SET ReferenceDay=4;

Transactions:

Load

*,

makeweekdate(transaction_year, transaction_week,4) as end_of_week,

weekday(makeweekdate(transaction_year, transaction_week,4)) as week_day

;

Load * Inline [

transaction_year, transaction_week, sales

2022, 01, 10000

2022, 02, 11250

2022, 03, 9830

2022, 04, 14010

2022, 05, 28402

2022, 06, 9992

2022, 07, 7292

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l transaction_year

l transaction_week

l end_of_week

l week_day

Script syntax and chart functions - Qlik Sense, May 2024 905

8 Script and chart functions

transaction_year transaction_week end_of_week week_day

2022 01 01/07/2022 Fri

2022 02 01/14/2022 Fri

2022 03 01/21/2022 Fri

2022 04 01/28/2022 Fri

2022 05 02/04/2022 Fri

2022 06 02/11/2022 Fri

2022 07 02/18/2022 Fri

Results table

The end_of_week field is created in the preceding load statement by using the makeweekdate()

function. The transaction_year, transaction_week fields are passed through the function as the year
and week arguments. A value of 4 is used for the day argument.

The function then combines and converts these values into a date field, returning the results in the
format of the DateFormat system variable.

The makeweekdate() function, and its arguments are also wrapped in a weekday() function to return
the week_day field; and as can be seen in the table above, the week_day field shows that these dates
do occur on a Friday.

Example 2 – day excluded
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing weekly sales totals for 2022 in a table called Sales.
l Transaction dates provided across three fields: year, week, and sales.
l A preceding load, which is used to create a measure, first_day_of_week, using the

makeweekdate() function. This will return the date for the Monday of that week in the format
MM/DD/YYYY.

To prove that the date returned is a Monday, the first_day_of_week expression is also wrapped in
the weekday() function to show the day of the week.

Load script

SET DateFormat='MM/DD/YYYY';

SET FirstWeekDay=0;

SET BrokenWeeks=0;

Script syntax and chart functions - Qlik Sense, May 2024 906

8 Script and chart functions

SET ReferenceDay=4;

Transactions:

Load

*,

makeweekdate(transaction_year, transaction_week) as first_day_of_week,

weekday(makeweekdate(transaction_year, transaction_week)) as week_day

;

Load * Inline [

transaction_year, transaction_week, sales

2022, 01, 10000

2022, 02, 11250

2022, 03, 9830

2022, 04, 14010

2022, 05, 28402

2022, 06, 9992

2022, 07, 7292

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l transaction_year

l transaction_week

l first_day_of_week

l week_day

transaction_year transaction_week first_day_of_week week_day

2022 01 01/03/2022 Mon

2022 02 01/10/2022 Mon

2022 03 01/17/2022 Mon

2022 04 01/24/2022 Mon

2022 05 01/31/2022 Mon

2022 06 02/07/2022 Mon

2022 07 02/14/2022 Mon

Results table

The first_day_of_week field is created in the preceding load statement by using the makeweekdate()

function. The transaction_year and transaction_week parameters are passed as function arguments,
and the day parameter is left blank.

The function then combines and converts these values into a date field, returning the results in the
format of the DateFormat system variable.

Script syntax and chart functions - Qlik Sense, May 2024 907

8 Script and chart functions

The makeweekdate() function and its arguments are also wrapped in a weekday() function to return
the week_day field. As can be seen in the table above, the week_day field returns Monday in all cases
since that parameter was left blank in the makeweekdate() function, which defaults to 0 (first day of
the week), and first day of the week is set to Monday by the FirstWeekDay system variable.

Example 3 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing weekly sales totals for 2022 in a table called Sales.
l Transaction dates provided across three fields: year, week, and sales.

In this example, a chart object will be used to create a measure equivalent to the end_of_week

calculation from the first example. This measure will use the makeweekdate() function to return the
date for the Friday of that week in the format MM/DD/YYYY.

To prove that the date returned is a Friday, a second measure is created to return the day of the
week.

Load script

SET DateFormat='MM/DD/YYYY';

SET FirstWeekDay=0;

SET BrokenWeeks=0;

SET ReferenceDay=4;

Master_Calendar:

Load * Inline [

transaction_year, transaction_week, sales

2022, 01, 10000

2022, 02, 11250

2022, 03, 9830

2022, 04, 14010

2022, 05, 28402

2022, 06, 9992

2022, 07, 7292

];

Script syntax and chart functions - Qlik Sense, May 2024 908

8 Script and chart functions

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add these fields as dimensions:
l transaction_year

l transaction_week

2. To perform the calculation equivalent to that of the end_of_weekfield from the first example,
create the following measure:
=makeweekdate(transaction_year,transaction_week,4)

3. To calculate the day of the week for each transaction, create the following measure:
=weekday(makeweekdate(transaction_year,transaction_week,4))

transaction_
year

transaction_
week

=makeweekdate
(transaction_
year,transaction_week,4)

=weekday(makeweekdate
(transaction_
year,transaction_week,4))

2022 01 01/07/2022 Fri

2022 02 01/14/2022 Fri

2022 03 01/21/2022 Fri

2022 04 01/28/2022 Fri

2022 05 02/04/2022 Fri

2022 06 02/11/2022 Fri

2022 07 02/18/2022 Fri

Results table

An equivalent field to end_of_week is created in the chart object as a measure by using the
makeweekdate() function. The transaction_year and transaction_week fields are passed as year and
week arguments. A value of 4 is used for the day argument.

The function then combines and converts these values into a date field, returning the results in the
format of the DateFormat system variable.

The makeweekdate() function and its arguments are also wrapped in a weekday() function to return a
calculation equivalent to that of the week_day field from the first example. As can be seen in the table
above, the last column on the right shows that these dates do occur on a Friday.

Example 4 – Scenario
Load script and chart expression

Overview

In this example, create a list of dates containing all the Fridays for the year 2022.

Script syntax and chart functions - Qlik Sense, May 2024 909

8 Script and chart functions

Open the Data load editor and add the load script below to a new tab.

Load script

SET DateFormat='MM/DD/YYYY';

SET FirstWeekDay=0;

SET BrokenWeeks=0;

SET ReferenceDay=4;

Calendar:

load

*,

weekday(date) as weekday

where year(date)=2022;

load

makeweekdate(2022,recno()-2,4) as date

AutoGenerate 60;

Results

date weekday

01/07/2022 Fri

01/14/2022 Fri

01/21/2022 Fri

01/28/2022 Fri

02/04/2022 Fri

02/11/2022 Fri

02/18/2022 Fri

02/25/2022 Fri

03/04/2022 Fri

03/11/2022 Fri

03/18/2022 Fri

03/25/2022 Fri

04/01/2022 Fri

04/08/2022 Fri

04/15/2022 Fri

04/22/2022 Fri

04/29/2022 Fri

Results table

Script syntax and chart functions - Qlik Sense, May 2024 910

8 Script and chart functions

date weekday

05/06/2022 Fri

05/13/2022 Fri

05/20/2022 Fri

05/27/2022 Fri

06/03/2022 Fri

06/10/2022 Fri

06/17/2022 Fri

+ 27 more rows

The makeweekdate() function finds each Friday in 2022. Using a week parameter of -2 ensures that
no dates are missed. Finally, a preceding load creates an additional weekday field for clarity, to show
that each date value is a Friday.

minute
This function returns an integer representing the minute when the fraction of the
expression is interpreted as a time according to the standard number interpretation.

Syntax:
minute(expression)

Return data type: integer

When to use it
The minute() function is useful when you would like to compare aggregations by minute. For
example, you could use the function if you would like to see activity count distribution by minute.

These dimensions can be created either in the load script by using the function to create a field in a
Master Calendar table. Alternatively, they can be used directly in a chart as a calculated dimension.

Example Result

minute ('09:14:36') Returns 14.

minute ('0.5555') Returns 19 (Because 0.5555 = 13:19:55).

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default

Script syntax and chart functions - Qlik Sense, May 2024 911

8 Script and chart functions

date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – Variable (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing transactions by timestamp, which is loaded into a table called
Transactions.

l The default TimeStamp system variable (M/D/YYYY h:mm:ss[.fff] TT) is used.
l The creation of a field, minute, to calculate when transactions took place.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*,

minute(timestamp) as minute

;

Load

*

Inline

[

id,timestamp,amount

9497,'2022-01-05 19:04:57',47.25,

9498,'2022-01-03 14:21:53',51.75,

9499,'2022-01-03 05:40:49',73.53,

9500,'2022-01-04 18:49:38',15.35,

9501,'2022-01-01 22:10:22',31.43,

9502,'2022-01-05 19:34:46',13.24,

9503,'2022-01-04 22:58:34',74.34,

9504,'2022-01-06 11:29:38',50.00,

9505,'2022-01-02 08:35:54',36.34,

9506,'2022-01-06 08:49:09',74.23

];

Script syntax and chart functions - Qlik Sense, May 2024 912

8 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l timestamp

l minute

timestamp minute

2022-01-01 22:10:22 10

2022-01-02 08:35:54 35

2022-01-03 05:40:49 40

2022-01-03 14:21:53 21

2022-01-04 18:49:38 49

2022-01-04 22:58:34 58

2022-01-05 19:04:57 4

2022-01-05 19:34:46 34

2022-01-06 08:49:09 49

2022-01-06 11:29:38 29

Results table

The values in the minute field are created by using the minute() function and passing the timestamp

as the expression in the preceding load statement.

Example 2 – Chart object (chart)
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The default TimeStamp system variable (M/D/YYYY h:mm:ss[.fff] TT) is used.

However, in this example, the unchanged dataset is loaded into the application. The minute values
are calculated via a measure in a chart object.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Script syntax and chart functions - Qlik Sense, May 2024 913

8 Script and chart functions

Transactions:

Load

*

Inline

[

id,timestamp,amount

9497,'2022-01-05 19:04:57',47.25,

9498,'2022-01-03 14:21:53',51.75,

9499,'2022-01-03 05:40:49',73.53,

9500,'2022-01-04 18:49:38',15.35,

9501,'2022-01-01 22:10:22',31.43,

9502,'2022-01-05 19:34:46',13.24,

9503,'2022-01-04 22:58:34',74.34,

9504,'2022-01-06 11:29:38',50.00,

9505,'2022-01-02 08:35:54',36.34,

9506,'2022-01-06 08:49:09',74.23

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: timestamp.

Create the following measure:

=minute(timestamp)

timestamp minute

2022-01-01 22:10:22 10

2022-01-02 08:35:54 35

2022-01-03 05:40:49 40

2022-01-03 14:21:53 21

2022-01-04 18:49:38 49

2022-01-04 22:58:34 58

2022-01-05 19:04:57 4

2022-01-05 19:34:46 34

2022-01-06 08:49:09 49

2022-01-06 11:29:38 29

Results table

The values for minute are created by using the minute() function and passing the timestamp as the
expression in a measure for the chart object.

Script syntax and chart functions - Qlik Sense, May 2024 914

8 Script and chart functions

Example 3 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of timestamps, which is generated to represent entries at a ticket barrier.
l Information with each timestamp and its corresponding id, which is loaded into a table called

Ticket_Barrier_Tracker.
l The default TimeStamp system variable (M/D/YYYY h:mm:ss[.fff] TT) is used.

The user would like a chart object that shows, by minute, the count of barrier entries.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

tmpTimeStampCreator:

load

*

where year(date)=2022;

load

date(recno()+makedate(2021,12,31)) as date

AutoGenerate 1;

join load

maketime(floor(rand()*24),floor(rand()*59),floor(rand()*59)) as time

autogenerate 10000;

Ticket_Barrier_Tracker:

load

recno() as id,

timestamp(date + time) as timestamp

resident tmpTimeStampCreator;

drop table tmpTimeStampCreator;

Results

Do the following:

1. Load the data and open a sheet. Create a new table.
2. Create a calculated dimension using the following expression:

=minute(timestamp)

3. Add the following aggregation measure to calculate total count of entries:

Script syntax and chart functions - Qlik Sense, May 2024 915

8 Script and chart functions

=count(id)

4. Set the measure's Number formatting to Money.

minute(timestamp) =count(id)

0 174

1 171

2 175

3 165

4 188

5 176

6 158

7 187

8 178

9 178

10 197

11 161

12 166

13 184

14 159

15 161

16 152

17 160

18 176

19 164

20 170

21 170

22 142

23 145

24 155

+ 35 more rows

Results table

Script syntax and chart functions - Qlik Sense, May 2024 916

8 Script and chart functions

month
This function returns a dual value: a month name as defined in the environment variable
MonthNames and an integer between 1-12. The month is calculated from the date
interpretation of the expression, according to the standard number interpretation.

The function returns the name of the month in the format of the MonthName system variable for a
particular date. It is commonly used to create a day field as a dimension in a Master Calendar.

Syntax:
month(expression)

Return data type: integer

Example Result

month(2012-10-12) returns Oct

month(35648) returns Aug, because 35648 = 1997-08-06

Function examples

Example 1 – DateFormat dataset (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates named Master_Calendar. The DateFormat system variable is set to
DD/MM/YYYY.

l A preceding load that creates an additional field, namedmonth_name, using the month()

function.
l An additional field, namedlong_date, using the date() function to express the full date.

Load script

SET DateFormat='DD/MM/YYYY';

Master_Calendar:

Load

date,

date(date,'dd-MMMM-YYYY') as long_date,

month(date) as month_name

Inline

[

Script syntax and chart functions - Qlik Sense, May 2024 917

8 Script and chart functions

date

03/01/2022

03/02/2022

03/03/2022

03/04/2022

03/05/2022

03/06/2022

03/07/2022

03/08/2022

03/09/2022

03/10/2022

03/11/2022

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l long_date

l month_name

date long_date month_name

03/01/2022 03-January- 2022 Jan

03/02/2022 03-February- 2022 Feb

03/03/2022 03-March- 2022 Mar

03/04/2022 03-April- 2022 Apr

03/05/2022 03-May- 2022 May

03/06/2022 03-June- 2022 Jun

03/07/2022 03-July- 2022 Jul

03/08/2022 03-August- 2022 Aug

03/09/2022 03-September- 2022 Sep

03/10/2022 03-October- 2022 Oct

03/11/2022 03-November- 2022 Nov

Results table

The month name is correctly evaluated by the month() function in the script.

Example 2 – ANSI dates (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, May 2024 918

8 Script and chart functions

The load script contains:

l A dataset of dates named Master_Calendar. The DateFormat system variable DD/MM/YYYY is
used. However, the dates that are included in the dataset are in ANSI standard date format.

l A preceding load that creates an additional field, namedmonth_name, using the month()
function.

l An additional field, namedlong_date, using the date() function to express the full date.

Load script

SET DateFormat='DD/MM/YYYY';

Master_Calendar:

Load

date,

date(date,'dd-MMMM-YYYY') as long_date,

month(date) as month_name

Inline

[

date

2022-01-11

2022-02-12

2022-03-13

2022-04-14

2022-05-15

2022-06-16

2022-07-17

2022-08-18

2022-09-19

2022-10-20

2022-11-21

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l long_date

l month_name

date long_date month_name

03/11/2022 11-March- 2022 11

03/12/2022 12-March- 2022 12

03/13/2022 13-March- 2022 13

03/14/2022 14-March- 2022 14

Results table

Script syntax and chart functions - Qlik Sense, May 2024 919

8 Script and chart functions

date long_date month_name

03/15/2022 15-March- 2022 15

03/16/2022 16-March- 2022 16

03/17/2022 17-March- 2022 17

03/18/2022 18-March- 2022 18

03/19/2022 19-March- 2022 19

03/20/2022 20-March- 2022 20

03/21/2022 21-March- 2022 21

The month name is correctly evaluated by the month() function in the script.

Example 3 – Unformatted dates (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates named Master_Calendar. The DateFormat system variable DD/MM/YYYY is
used.

l A preceding load that creates an additional field, named month_name, using the month()

function.
l The original unformatted date, named unformatted_date.
l An additional field, named long_date, using the date() function to express the full date.

Load script

SET DateFormat='DD/MM/YYYY';

Master_Calendar:

Load

unformatted_date,

date(unformatted_date,'dd-MMMM-YYYY') as long_date,

month(unformatted_date) as month_name

Inline

[

unformatted_date

44868

44898

44928

44958

44988

Script syntax and chart functions - Qlik Sense, May 2024 920

8 Script and chart functions

45018

45048

45078

45008

45038

45068

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l unformatted_date

l long_date

l month_name

unformatted_date long_date month_name

44868 03-January- 2022 Jan

44898 03-February- 2022 Feb

44928 03-March- 2022 Mar

44958 03-April- 2022 Apr

44988 03-May- 2022 May

45018 03-June- 2022 Jun

45048 03-July- 2022 Jul

45078 03-August- 2022 Aug

45008 03-September- 2022 Sep

45038 03-October- 2022 Oct

45068 03-November- 2022 Nov

Results table

The month name is correctly evaluated by the month() function in the script.

Example 4 – Calculating expiry month
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2024 921

8 Script and chart functions

l A dataset of orders placed in March named Subscriptions. The table contains three fields:
o id
o order_date
o amount

Load script

Subscriptions:

Load

id,

order_date,

amount

Inline

[

id,order_date,amount

1,03/01/2022,231.24

2,03/02/2022,567.28

3,03/03/2022,364.28

4,03/04/2022,575.76

5,03/05/2022,638.68

6,03/06/2022,785.38

7,03/07/2022,967.46

8,03/08/2022,287.67

9,03/09/2022,764.45

10,03/10/2022,875.43

11,03/11/2022,957.35

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: order_date.

To calculate the month an order will expire, create this measure =month(order_date+180).

order_date =month(order_date+180)

03/01/2022 Jul

03/02/2022 Aug

03/03/2022 Aug

03/04/2022 Sep

03/05/2022 Oct

03/06/2022 Nov

03/07/2022 Dec

03/08/2022 Jan

Results table

Script syntax and chart functions - Qlik Sense, May 2024 922

8 Script and chart functions

order_date =month(order_date+180)

03/09/2022 Mar

03/10/2022 Apr

03/11/2022 May

The month() function correctly determines that an order placed on the 11th of March would expire in
July.

monthend
This function returns a value corresponding to a timestamp of the last millisecond of
the last day of the month containing date. The default output format will be the
DateFormat set in the script.

Syntax:
MonthEnd(date[, period_no])

In other words, the monthend() function determines which month the date falls into. It then returns a
timestamp, in date format, for the last millisecond of that month.

Diagram of monthend function.

When to use it

The monthend() function is used as part of an expression when you would like the calculation to use
the fraction of the month that has not yet occurred. For example, if you want to calculate the total
interest not yet incurred during the month.

Return data type: dual

Argument Description

date The date or timestamp to evaluate.

period_no period_no is an integer, which, if 0 or omitted, indicates the month that contains
date. Negative values in period_no indicate preceding months and positive
values indicate succeeding months.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 923

8 Script and chart functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example Result

monthend('02/19/2012') Returns 02/29/2012 23:59:59.

monthend('02/19/2001', -1) Returns 01/31/2001 23:59:59.

Function examples

Example 1 – Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022 that is loaded into a table called
‘Transactions’.

l A date field in theDateFormat system variable (MM/DD/YYYY) format.
l A preceding load statement that contains:

l The monthend() function which is set as the ‘end_of_month’ field.
l The timestamp function which is set as the ‘end_of_month_timestamp’ field.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

monthend(date) as end_of_month,

timestamp(monthend(date)) as end_of_month_timestamp

;

Load

Script syntax and chart functions - Qlik Sense, May 2024 924

8 Script and chart functions

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l end_of_month

l end_of_month_timestamp

id date end_of_month end_of_month_timestamp

8188 1/7/2022 01/31/2022 1/31/2022 11:59:59 PM

8189 1/19/2022 01/31/2022 1/31/2022 11:59:59 PM

8190 2/5/2022 02/28/2022 2/28/2022 11:59:59 PM

8191 2/28/2022 02/28/2022 2/28/2022 11:59:59 PM

8192 3/16/2022 03/31/2022 3/31/2022 11:59:59 PM

8193 4/1/2022 04/30/2022 4/30/2022 11:59:59 PM

8194 5/7/2022 05/31/2022 5/31/2022 11:59:59 PM

8195 5/16/2022 05/31/2022 5/31/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 925

8 Script and chart functions

id date end_of_month end_of_month_timestamp

8196 6/15/2022 06/30/2022 6/30/2022 11:59:59 PM

8197 6/26/2022 06/30/2022 6/30/2022 11:59:59 PM

8198 7/9/2022 07/31/2022 7/31/2022 11:59:59 PM

8199 7/22/2022 07/31/2022 7/31/2022 11:59:59 PM

8200 7/23/2022 07/31/2022 7/31/2022 11:59:59 PM

8201 7/27/2022 07/31/2022 7/31/2022 11:59:59 PM

8202 8/2/2022 08/31/2022 8/31/2022 11:59:59 PM

8203 8/8/2022 08/31/2022 8/31/2022 11:59:59 PM

8204 8/19/2022 08/31/2022 8/31/2022 11:59:59 PM

8205 9/26/2022 09/30/2022 9/30/2022 11:59:59 PM

8206 10/14/2022 10/31/2022 10/31/2022 11:59:59 PM

8207 10/29/2022 10/31/2022 10/31/2022 11:59:59 PM

The ‘end_of_month’ field is created in the preceding load statement by using the monthend() function
and passing the date field as the function’s argument.

The monthend() function identifies which month the date value falls into returning a timestamp for
the last millisecond of that month.

Diagram of monthend function with March as the selected month.

Transaction 8192 took place on March 16. The monthend() function returns the last millisecond of
that month, which is March 31 at 11:59:59 PM.

Example 2 – period_no
Load script and results

Overview

The same dataset and scenario as the first example are used.

Script syntax and chart functions - Qlik Sense, May 2024 926

8 Script and chart functions

In this example, the task is to create a field, ‘previous_month_end’, that returns the timestamp for the
end of the month before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

monthend(date,-1) as previous_month_end,

timestamp(monthend(date,-1)) as previous_month_end_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l previous_month_end

l previous_month_end_timestamp

Script syntax and chart functions - Qlik Sense, May 2024 927

8 Script and chart functions

id date previous_month_end previous_month_end_timestamp

8188 1/7/2022 12/31/2021 12/31/2021 11:59:59 PM

8189 1/19/2022 12/31/2021 12/31/2021 11:59:59 PM

8190 2/5/2022 01/31/2022 1/31/2022 11:59:59 PM

8191 2/28/2022 01/31/2022 1/31/2022 11:59:59 PM

8192 3/16/2022 02/28/2022 2/28/2022 11:59:59 PM

8193 4/1/2022 03/31/2022 3/31/2022 11:59:59 PM

8194 5/7/2022 04/30/2022 4/30/2022 11:59:59 PM

8195 5/16/2022 04/30/2022 4/30/2022 11:59:59 PM

8196 6/15/2022 05/31/2022 5/31/2022 11:59:59 PM

8197 6/26/2022 05/31/2022 5/31/2022 11:59:59 PM

8198 7/9/2022 06/30/2022 6/30/2022 11:59:59 PM

8199 7/22/2022 06/30/2022 6/30/2022 11:59:59 PM

8200 7/23/2022 06/30/2022 6/30/2022 11:59:59 PM

8201 7/27/2022 06/30/2022 6/30/2022 11:59:59 PM

8202 8/2/2022 07/31/2022 7/31/2022 11:59:59 PM

8203 8/8/2022 07/31/2022 7/31/2022 11:59:59 PM

8204 8/19/2022 07/31/2022 7/31/2022 11:59:59 PM

8205 9/26/2022 08/31/2022 8/31/2022 11:59:59 PM

8206 10/14/2022 09/30/2022 9/30/2022 11:59:59 PM

8207 10/29/2022 09/30/2022 9/30/2022 11:59:59 PM

Results table

The monthend()function first identifies the month that the transactions take place in as aperiod_no of
-1 is used as the offset argument. It then shifts one month prior and identifies the final millisecond
of that month.

Diagram of monthend function with the period_no variable.

Script syntax and chart functions - Qlik Sense, May 2024 928

8 Script and chart functions

Transaction 8192 took place on March 16. The monthend() function identifies that the month before
the transaction took place in was February. It then returns the final millisecond of that month,
February 28 at 11:59:59 PM.

Example 3 – Chart example
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

In this example, the dataset is unchanged and loaded into the app. The task is to create a
calculation that returns a timestamp for the end of the month when the transactions took place as a
measure in a chart of the app.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l id

Script syntax and chart functions - Qlik Sense, May 2024 929

8 Script and chart functions

To calculate the end date of the month that a transaction takes place in, create the following
measures:

l =monthend(date)

l =timestamp(monthend(date))

id date =monthend(date) =timestamp(monthend(date))

8188 10/14/2022 10/31/2022 10/31/2022 11:59:59 PM

8189 10/29/2022 10/31/2022 10/31/2022 11:59:59 PM

8190 9/26/2022 09/30/2022 9/30/2022 11:59:59 PM

8191 8/2/2022 08/31/2022 8/31/2022 11:59:59 PM

8192 8/8/2022 08/31/2022 8/31/2022 11:59:59 PM

8193 8/19/2022 08/31/2022 8/31/2022 11:59:59 PM

8194 7/9/2022 07/31/2022 7/31/2022 11:59:59 PM

8195 7/22/2022 07/31/2022 7/31/2022 11:59:59 PM

8196 7/23/2022 07/31/2022 7/31/2022 11:59:59 PM

8197 7/27/2022 07/31/2022 7/31/2022 11:59:59 PM

8198 6/15/2022 06/30/2022 6/30/2022 11:59:59 PM

8199 6/26/2022 06/30/2022 6/30/2022 11:59:59 PM

8200 5/7/2022 05/31/2022 5/31/2022 11:59:59 PM

8201 5/16/2022 05/31/2022 5/31/2022 11:59:59 PM

8202 4/1/2022 04/30/2022 4/30/2022 11:59:59 PM

8203 3/16/2022 03/31/2022 3/31/2022 11:59:59 PM

8204 2/5/2022 02/28/2022 2/28/2022 11:59:59 PM

8205 2/28/2022 02/28/2022 2/28/2022 11:59:59 PM

8206 1/7/2022 01/31/2022 1/31/2022 11:59:59 PM

8207 1/19/2022 01/31/2022 1/31/2022 11:59:59 PM

Results table

The ‘end_of_month’ measure is created in the chart by using themonthend() function and passing the
date field as the function’s argument.

The monthend() function identifies which month the date value falls into and returns a timestamp for
the last millisecond of that month.

Script syntax and chart functions - Qlik Sense, May 2024 930

8 Script and chart functions

Diagram of monthend function with the period_no variable.

Transaction 8192 took place on March 16. The monthend() function returns the last millisecond of
that month, which is March 31 at 11:59:59 PM.

Example 4 – Scenario
Load script and results

Overview

In this example, a dataset is loaded into a table called ‘Employee_Expenses’. The table contains the
following fields:

l Employee IDs
l Employee names
l The average daily expense claims of each employee.

The end user would like a chart that displays, by employee id and employee name, the estimated
expense claim for the remainder of the month.

Load script

Employee_Expenses:

Load

*

Inline

[

employee_id,employee_name,avg_daily_claim

182,Mark, $15

183,Deryck, $12.5

184,Dexter, $12.5

185,Sydney,$27

186,Agatha,$18

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 931

8 Script and chart functions

l employee_id

l employee_name

To calculate the accumulated interest, create this measure:

=floor(monthend(today(1),0)-today(1))*avg_daily_claim

This measure is dynamic and will produce different table results depending on the date
when you load the data.

Set the measure’s Number formatting to Money.

employee_id employee_name =floor(monthend(today(1),0)-today(1))*avg_daily_claim

182 Mark $30.00

183 Deryck $25.00

184 Dexter $25.00

185 Sydney $54.00

186 Agatha $36.00

Results table

The monthend()function returns the end date of the current month by using today’s date as its only
argument. The expression returns the number of days that remain this month by subtracting today’s
date from the month end date.

This value is then multiplied by the average daily expense claim by each employee to calculate the
estimated value of claims each employee is expected to make in the remaining month.

monthname
This function returns a display value showing the month (formatted according to the
MonthNames script variable) and year with an underlying numeric value corresponding
to a timestamp of the first millisecond of the first day of the month.

Syntax:
MonthName(date[, period_no])

Script syntax and chart functions - Qlik Sense, May 2024 932

8 Script and chart functions

Return data type: dual

Diagram of monthname function

Argument Description

date The date or timestamp to evaluate.

period_no period_no is an integer, which, if 0 or omitted, indicates the month that contains
date. Negative values in period_no indicate preceding months and positive
values indicate succeeding months.

Arguments

Example Result

monthname('10/19/2013') Returns Oct 2013

monthname('10/19/2013', -1) Returns Sep 2013

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Script syntax and chart functions - Qlik Sense, May 2024 933

8 Script and chart functions

Example 1 – Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, transaction_month, that returns the month in which the transactions

took place.

Load script

SET DateFormat='MM/DD/YYYY';

SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec';

Transactions:

Load

*,

monthname(date) as transaction_month

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Script syntax and chart functions - Qlik Sense, May 2024 934

8 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l transaction_month

date transaction_month

1/7/2022 Jan 2022

1/19/2022 Jan 2022

2/5/2022 Feb 2022

2/28/2022 Feb 2022

3/16/2022 Mar 2022

4/1/2022 Apr 2022

5/7/2022 May 2022

5/16/2022 May 2022

6/15/2022 Jun 2022

6/26/2022 Jun 2022

7/9/2022 Jul 2022

7/22/2022 Jul 2022

7/23/2022 Jul 2022

7/27/2022 Jul 2022

8/2/2022 Aug 2022

8/8/2022 Aug 2022

8/19/2022 Aug 2022

9/26/2022 Sep 2022

10/14/2022 Oct 2022

10/29/2022 Oct 2022

Results table

The transaction_month field is created in the preceding load statement by using the monthname()

function and passing the date field as the function’s argument.

Script syntax and chart functions - Qlik Sense, May 2024 935

8 Script and chart functions

Diagram of monthname function, basic example

The monthname() function identifies that transaction 8192 took place in March 2022, and returns this
value using the MonthNames system variable.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same inline dataset and scenario as the first example.
l The creation of a field, transaction_previous_month, that returns the timestamp for the end of

the month before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec';

Transactions:

Load

*,

monthname(date,-1) as transaction_previous_month

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

Script syntax and chart functions - Qlik Sense, May 2024 936

8 Script and chart functions

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l transaction_previous_month

date transaction_previous_month

1/7/2022 Dec 2021

1/19/2022 Dec 2021

2/5/2022 Jan 2022

2/28/2022 Jan 2022

3/16/2022 Feb 2022

4/1/2022 Mar 2022

5/7/2022 Apr 2022

5/16/2022 Apr 2022

6/15/2022 May 2022

6/26/2022 May 2022

7/9/2022 Jun 2022

7/22/2022 Jun 2022

7/23/2022 Jun 2022

7/27/2022 Jun 2022

8/2/2022 Jul 2022

8/8/2022 Jul 2022

8/19/2022 Jul 2022

Results table

Script syntax and chart functions - Qlik Sense, May 2024 937

8 Script and chart functions

date transaction_previous_month

9/26/2022 Aug 2022

10/14/2022 Sep 2022

10/29/2022 Sep 2022

In this instance, because a period_no of -1 was used as the offset argument in the monthname()

function, the function first identifies the month that the transactions take place in. It then shifts to
one month prior and returns the month name and year.

Diagram of monthname function, period_no example

Transaction 8192 took place on March 16. The monthname() function identifies that the month before
the transaction took place was February and returns the month, in the MonthNames system variable
format, along with the year 2022.

Example 3 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same inline dataset and scenario as the first example. However, in this
example, the unchanged dataset is loaded into the application. The calculation that returns a
timestamp for the end of the month when the transactions took place is created as a measure in a
chart object of the application.

Load script

SET DateFormat='MM/DD/YYYY';

SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec';

Transactions:

Load

Script syntax and chart functions - Qlik Sense, May 2024 938

8 Script and chart functions

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:date.

Create the following measure:

=monthname(date)

date =monthname(date)

1/7/2022 Jan 2022

1/19/2022 Jan 2022

2/5/2022 Feb 2022

2/28/2022 Feb 2022

3/16/2022 Mar 2022

4/1/2022 Apr 2022

5/7/2022 May 2022

5/16/2022 May 2022

6/15/2022 Jun 2022

Results table

Script syntax and chart functions - Qlik Sense, May 2024 939

8 Script and chart functions

date =monthname(date)

6/26/2022 Jun 2022

7/9/2022 Jul 2022

7/22/2022 Jul 2022

7/23/2022 Jul 2022

7/27/2022 Jul 2022

8/2/2022 Aug 2022

8/8/2022 Aug 2022

8/19/2022 Aug 2022

9/26/2022 Sep 2022

10/14/2022 Oct 2022

10/29/2022 Oct 2022

The month_name measure is created in the chart object by using the monthname() function and passing
the date field as the function’s argument.

Diagram of monthname function, chart object example

The monthname() function identifies that transaction 8192 took place in March 2022, and returns this
value using the MonthNames system variable.

monthsend
This function returns a value corresponding to the timestamp of the last millisecond of
the month, bi-month, quarter, four-month period, or half-year containing a base date. It
is also possible to find the timestamp for the end of a previous or following time period.
The default output format is the DateFormat set in the script.

Syntax:
MonthsEnd(n_months, date[, period_no [, first_month_of_year]])

Script syntax and chart functions - Qlik Sense, May 2024 940

8 Script and chart functions

Return data type: dual

Diagram of monthsend function.

Argument Description

n_months The number of months that defines the period. An integer or expression that
resolves to an integer that must be one of: 1 (equivalent to the inmonth()
function), 2 (bi-month), 3 (equivalent to the inquarter()function), 4 (four-month
period), or 6 (half year).

date The date or timestamp to evaluate.

period_no The period can be offset by period_no, an integer, or expression resolving to an
integer, where the value 0 indicates the period that contains base_date. Negative
values in period_no indicate preceding periods and positive values indicate
succeeding periods.

first_
month_of_
year

If you want to work with (fiscal) years not starting in January, indicate a value
between 2 and 12 in first_month_of_year.

Arguments

The monthsend() function divides the year into segments based on the n_months argument provided.
It then evaluates what segment each date provided falls into and returns the last millisecond, in
date format, of that segment. The function can return the end timestamp from preceding or
following segments as well as redefine the first month of the year.

The following segments of the year are available in the function as n_month arguments.

Period Number of months

month 1

bi-month 2

quarter 3

four months 4

half-year 6

n_month arguments

Script syntax and chart functions - Qlik Sense, May 2024 941

8 Script and chart functions

When to use it

The monthsend() function is used as part of an expression when the user would like the calculation
to use the fraction of the month that has elapsed so far. The user has the opportunity, using a
variable to select the period of their choosing. For example, the monthsend() can provide an input
variable to let the user calculate the total interest not yet incurred during the month, quarter, or
half-year.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example Result

monthsend(4, '07/19/2013') Returns 08/31/2013.

monthsend(4, '10/19/2013', -1) Returns 08/31/2013.

monthsend(4, '10/19/2013', 0, 2) Returns 01/31/2014.
Because the start of the year becomes month 2.

Function examples

Example 1 - Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022 is loaded into a table called ‘Transactions’.
l A date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l A preceding load statement containing:

l The monthsend function which is set as the field, ‘bi_monthly_end’. This groups
transactions into bi-monthly segments.

Script syntax and chart functions - Qlik Sense, May 2024 942

8 Script and chart functions

l The timestamp function which returns the starting timestamp of the segment for each
transaction.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

monthsend(2,date) as bi_monthly_end,

timestamp(monthsend(2,date)) as bi_monthly_end_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/22/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l bi_monthly_end

l bi_monthly_end_timestamp

Script syntax and chart functions - Qlik Sense, May 2024 943

8 Script and chart functions

id date bi_monthly_end bi_monthly_end_timestamp

8188 1/7/2022 02/28/2022 2/28/2022 11:59:59 PM

8189 1/19/2022 02/28/2022 2/28/2022 11:59:59 PM

8190 2/5/2022 02/28/2022 2/28/2022 11:59:59 PM

8191 2/28/2022 02/28/2022 2/28/2022 11:59:59 PM

8192 3/16/2022 04/30/2022 4/30/2022 11:59:59 PM

8193 4/1/2022 04/30/2022 4/30/2022 11:59:59 PM

8194 5/7/2022 06/30/2022 6/30/2022 11:59:59 PM

8195 5/22/2022 06/30/2022 6/30/2022 11:59:59 PM

8196 6/15/2022 06/30/2022 6/30/2022 11:59:59 PM

8197 6/26/2022 06/30/2022 6/30/2022 11:59:59 PM

8198 7/9/2022 08/31/2022 8/31/2022 11:59:59 PM

8199 7/22/2022 08/31/2022 8/31/2022 11:59:59 PM

8200 7/23/2022 08/31/2022 8/31/2022 11:59:59 PM

8201 7/27/2022 08/31/2022 8/31/2022 11:59:59 PM

8202 8/2/2022 08/31/2022 8/31/2022 11:59:59 PM

8203 8/8/2022 08/31/2022 8/31/2022 11:59:59 PM

8204 8/19/2022 08/31/2022 8/31/2022 11:59:59 PM

8205 9/26/2022 10/31/2022 10/31/2022 11:59:59 PM

8206 10/14/2022 10/31/2022 10/31/2022 11:59:59 PM

8207 10/29/2022 10/31/2022 10/31/2022 11:59:59 PM

Results table

The ‘bi_monthly_end’ field is created in the preceding load statement by using the monthsend()

function. The first argument provided is 2, dividing the year into bi-monthly segments. The second
argument identifies which field is being evaluated.

Diagram of monthsend function with bi-monthly segments.

Script syntax and chart functions - Qlik Sense, May 2024 944

8 Script and chart functions

Transaction 8195 takes place on May 22. The monthsend() function initially divides the year into bi-
monthly segments. Transaction 8195 falls into the segment between May 1 and June 30. As a
result, the function returns the last millisecond of this segment, 06/30/2022 11:59:59 PM.

Example 2 - period_no
Load script and results

Overview

The same dataset and scenario as the first example are used.

In this example, the task is to create a field, ‘prev_bi_monthly_end’, that returns the first millisecond
of the bi-monthly segment before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

monthsend(2,date,-1) as prev_bi_monthly_end,

timestamp(monthsend(2,date,-1)) as prev_bi_monthly_end_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/22/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Script syntax and chart functions - Qlik Sense, May 2024 945

8 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l prev_bi_monthly_end

l prev_bi_monthly_end_timestamp

id date prev_bi_monthly_end prev_bi_monthly_end_timestamp

8188 1/7/2022 12/31/2021 12/31/2021 11:59:59 PM

8189 1/19/2022 12/31/2021 12/31/2021 11:59:59 PM

8190 2/5/2022 12/31/2021 12/31/2021 11:59:59 PM

8191 2/28/2022 12/31/2021 12/31/2021 11:59:59 PM

8192 3/16/2022 02/28/2022 2/28/2022 11:59:59 PM

8193 4/1/2022 02/28/2022 2/28/2022 11:59:59 PM

8194 5/7/2022 04/30/2022 4/30/2022 11:59:59 PM

8195 5/22/2022 04/30/2022 4/30/2022 11:59:59 PM

8196 6/15/2022 04/30/2022 4/30/2022 11:59:59 PM

8197 6/26/2022 04/30/2022 4/30/2022 11:59:59 PM

8198 7/9/2022 06/30/2022 6/30/2022 11:59:59 PM

8199 7/22/2022 06/30/2022 6/30/2022 11:59:59 PM

8200 7/23/2022 06/30/2022 6/30/2022 11:59:59 PM

8201 7/27/2022 06/30/2022 6/30/2022 11:59:59 PM

8202 8/2/2022 06/30/2022 6/30/2022 11:59:59 PM

8203 8/8/2022 06/30/2022 6/30/2022 11:59:59 PM

8204 8/19/2022 06/30/2022 6/30/2022 11:59:59 PM

8205 9/26/2022 08/31/2022 8/31/2022 11:59:59 PM

8206 10/14/2022 08/31/2022 8/31/2022 11:59:59 PM

8207 10/29/2022 08/31/2022 8/31/2022 11:59:59 PM

Results table

By using -1 as the period_no argument in the monthsend() function, after initially dividing a year into
bi-monthly segments, the function returns the last millisecond of the previous bi-monthly segment
to when a transaction takes place.

Script syntax and chart functions - Qlik Sense, May 2024 946

8 Script and chart functions

Diagram of monthsend function that returns the previous bi-monthly segment.

Transaction 8195 occurs in the segment between May and June. As a result, the previous bi-
monthly segment was between March 1 and April 30 and so the function returns the last millisecond
of this segment, 04/30/2022 11:59:59 PM.

Example 3 – first_month_of_year
Load script and results

Overview

The same dataset and scenario as the first example are used.

In this example, the organizational policy is for April to be the first month of the financial year.

Create a field, ‘bi_monthly_end’, that groups transactions into bi-monthly segments and returns the
last millisecond timestamp of the segment for each transaction.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

monthsend(2,date,0,4) as bi_monthly_end,

timestamp(monthsend(2,date,0,4)) as bi_monthly_end_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/22/2022,87.21

8196,6/15/2022,95.93

Script syntax and chart functions - Qlik Sense, May 2024 947

8 Script and chart functions

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l bi_monthly_end

l bi_monthly_end_timestamp

id date bi_monthly_end bi_monthly_end_timestamp

8188 1/7/2022 01/31/2022 1/31/2022 11:59:59 PM

8189 1/19/2022 01/31/2022 1/31/2022 11:59:59 PM

8190 2/5/2022 03/31/2022 3/31/2022 11:59:59 PM

8191 2/28/2022 03/31/2022 3/31/2022 11:59:59 PM

8192 3/16/2022 03/31/2022 3/31/2022 11:59:59 PM

8193 4/1/2022 05/31/2022 5/31/2022 11:59:59 PM

8194 5/7/2022 05/31/2022 5/31/2022 11:59:59 PM

8195 5/22/2022 05/31/2022 5/31/2022 11:59:59 PM

8196 6/15/2022 07/31/2022 7/31/2022 11:59:59 PM

8197 6/26/2022 07/31/2022 7/31/2022 11:59:59 PM

8198 7/9/2022 07/31/2022 7/31/2022 11:59:59 PM

8199 7/22/2022 07/31/2022 7/31/2022 11:59:59 PM

8200 7/23/2022 07/31/2022 7/31/2022 11:59:59 PM

8201 7/27/2022 07/31/2022 7/31/2022 11:59:59 PM

8202 8/2/2022 09/30/2022 9/30/2022 11:59:59 PM

8203 8/8/2022 09/30/2022 9/30/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 948

8 Script and chart functions

id date bi_monthly_end bi_monthly_end_timestamp

8204 8/19/2022 09/30/2022 9/30/2022 11:59:59 PM

8205 9/26/2022 09/30/2022 9/30/2022 11:59:59 PM

8206 10/14/2022 11/30/2022 11/30/2022 11:59:59 PM

8207 10/29/2022 11/30/2022 11/30/2022 11:59:59 PM

By using 4 as the first_month_of_year argument in the monthsend() function, the function begins the
year on April 1. It then divides the year into bi-monthly segments: Apr-May, Jun-Jul, Aug-Sep, Oct-
Nov, Dec-Jan, Feb-Mar.

Diagram of monthsend function with the first month of the year set as April

Transaction 8195 took place on May 22 and falls into the segment between April 1 and May 31. As a
result, the function returns the last millisecond of this segment, 05/31/2022 11:59:59 PM.

Example 4 - Chart object example
Load script and chart expression

Overview

The same dataset and scenario as the first example are used. However in this example, the dataset
is unchanged, and loaded into the app.

In this example, the task is to create a calculation that groups transactions into bi-monthly
segments and returns the last millisecond timestamp of the segment for each transaction as a
measure in a chart object of an app.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,2/19/2022,37.23

Script syntax and chart functions - Qlik Sense, May 2024 949

8 Script and chart functions

8189,3/7/2022,17.17

8190,3/30/2022,88.27

8191,4/5/2022,57.42

8192,4/16/2022,53.80

8193,5/1/2022,82.06

8194,5/7/2022,40.39

8195,5/22/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

date

To fetch the last millisecond timestamp of the bi-monthly segment when the transaction took place,
create the following measures:

l =monthsEnd(2,date)

l =timestamp(monthsend(2,date))

id date =monthsend(2,date) =timestamp(monthsend(2,date))

8188 1/7/2022 02/28/2022 2/28/2022 11:59:59 PM

8189 1/19/2022 02/28/2022 2/28/2022 11:59:59 PM

8190 2/5/2022 02/28/2022 2/28/2022 11:59:59 PM

8191 2/28/2022 02/28/2022 2/28/2022 11:59:59 PM

8192 3/16/2022 04/30/2022 4/30/2022 11:59:59 PM

8193 4/1/2022 04/30/2022 4/30/2022 11:59:59 PM

8194 5/7/2022 06/30/2022 6/30/2022 11:59:59 PM

8195 5/22/2022 06/30/2022 6/30/2022 11:59:59 PM

8196 6/15/2022 06/30/2022 6/30/2022 11:59:59 PM

8197 6/26/2022 06/30/2022 6/30/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 950

8 Script and chart functions

id date =monthsend(2,date) =timestamp(monthsend(2,date))

8198 7/9/2022 08/31/2022 8/31/2022 11:59:59 PM

8199 7/22/2022 08/31/2022 8/31/2022 11:59:59 PM

8200 7/23/2022 08/31/2022 8/31/2022 11:59:59 PM

8201 7/27/2022 08/31/2022 8/31/2022 11:59:59 PM

8202 8/2/2022 08/31/2022 8/31/2022 11:59:59 PM

8203 8/8/2022 08/31/2022 8/31/2022 11:59:59 PM

8204 8/19/2022 08/31/2022 8/31/2022 11:59:59 PM

8205 9/26/2022 10/31/2022 10/31/2022 11:59:59 PM

8206 10/14/2022 10/31/2022 10/31/2022 11:59:59 PM

8207 10/29/2022 10/31/2022 10/31/2022 11:59:59 PM

The ‘bi_monthly_end’ field is created as a measure in the chart object by using the monthsend()

function. The first argument provided is 2, which divides the year into bi-monthly segments. The
second argument identifies which field is being evaluated.

Diagram of monthsend function with bi-monthly segments.

Transaction 8195 takes place on May 22. The monthsend() function initially divides the year into bi-
monthly segments. Transaction 8195 falls into the segment between May 1 and June 30. As a
result, the function returns the first millisecond of this segment, 06/30/2022 11:59:59 PM.

Example 5 – Scenario
Load script and results

Overview

Open the data load editor and add the load script below to a new tab.

In this example, a dataset is loaded into a table called ‘Employee_Expenses’. The table contains the
following fields:

l Employee IDs
l Employee names

Script syntax and chart functions - Qlik Sense, May 2024 951

8 Script and chart functions

l The average daily expense claims of each employee.

The end user would like a chart that displays, by employee id and employee name, the estimated
expense claim for the remainder of a period of their own choosing. The financial year begins in
January.

Load script

SET vPeriod = 1;

Employee_Expenses:

Load

*

Inline

[

employee_id,employee_name,avg_daily_claim

182,Mark, $15

183,Deryck, $12.5

184,Dexter, $12.5

185,Sydney,$27

186,Agatha,$18

];

Results

Load the data and open a new sheet.

At the start of the load script, a variable, vPeriod, is created that is tied to the variable input control.

Do the following:

1. In the assets panel, click Custom objects.
2. Select Qlik Dashboard bundle, create a Variable input object.
3. Enter a title for the chart object.
4. Under Variable, select vPeriod as the name and set the object to show as a Drop down.
5. Under Values, click Dynamic values. Enter the following:

='1~month|2~bi-month|3~quarter|4~tertial|6~half-year'.

Create a new table and these fields as dimensions:

l employee_id

l employee_name

To calculate the accumulated interest, create this measure:

=floor(monthsend($(vPeriod),today(1))-today(1))*avg_daily_claim

This measure is dynamic and will produce different table results depending on the date
when you load the data.

Set the measure’s Number formatting to Money.

Script syntax and chart functions - Qlik Sense, May 2024 952

8 Script and chart functions

employee_id
employee_
name

=floor(monthsend($(vPeriod),today(1))-today(1))*avg_
daily_claim

182 Mark $1410.00

183 Deryck $1175.00

184 Dexter $1175.00

185 Sydney $2538.00

186 Agatha $1692.00

Results table

The monthsend() function uses the user input as its first argument and today’s date as its second
argument. This returns the end date for the user selected period of time. Then, the expression
returns the number of days that remain the selected period of time by subtracting today’s date from
this end date.

This value is then multiplied by the average daily expense claim by each employee to calculate the
estimated value of claims each employee is expected to make in the remaining days of this period.

monthsname
This function returns a display value representing the range of the months of the period
(formatted according to the MonthNames script variable) as well as the year. The
underlying numeric value corresponds to a timestamp of the first millisecond of the
month, bi-month, quarter, four-month period, or half-year containing a base date.

Syntax:
MonthsName(n_months, date[, period_no[, first_month_of_year]])

Return data type: dual

Diagram of monthsname function

The monthsname() function divides the year into segments based on the n_months agrument
provided. It then evaluates the segment to which each provided date belongs, and returns the start

Script syntax and chart functions - Qlik Sense, May 2024 953

8 Script and chart functions

and end month names of that segment, as well as the year. The function also provides the ability to
return these boundaries from preceding or following segments, as well as redefining which is the
first month of the year.

The following segments of the year are available in the function as n_month arguments:

Periods Number of months

month 1

bi-month 2

quarter 3

four months 4

half-year 6

Possible n_month arguments

Argument Description

n_months The number of months that defines the period. An integer or expression that
resolves to an integer that must be one of: 1 (equivalent to the inmonth()
function), 2 (bi-month), 3 (equivalent to the inquarter()function), 4 (four-month
period), or 6 (half year).

date The date or timestamp to evaluate.

period_no The period can be offset by period_no, an integer, or expression resolving to an
integer, where the value 0 indicates the period that contains base_date. Negative
values in period_no indicate preceding periods and positive values indicate
succeeding periods.

first_
month_of_
year

If you want to work with (fiscal) years not starting in January, indicate a value
between 2 and 12 in first_month_of_year.

Arguments

When to use it
The monthsname() function is useful when you would like to provide the user with the functionality to
compare aggregations by a period of their choosing. For example, you could provide an input
variable to let the user see the total sales of products by month, quarter, or half-year.

These dimensions can be created either in the load script by adding the function as a field in a
Master Calendar table, or alternatively, by creating the dimension directly in a chart as a calculated
dimension.

Script syntax and chart functions - Qlik Sense, May 2024 954

8 Script and chart functions

Example Result

monthsname(4,

'10/19/2013')
Returns 'Sep-Dec 2013.' In this and the other examples, the
SET Monthnames statement is set to Jan;Feb;Mar, and so on.

monthsname(4,

'10/19/2013', -

1)

Returns 'May-Aug 2013'.

monthsname(4,

'10/19/2013', 0,

2)

Returns 'Oct-Jan 2014', since the year is specified to begin in month 2.
Therefore, the four-month period ends on the first month of the following
year.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, bi_monthly_range, that groups transactions into bi-monthly segments

and returns the boundary names of that segment for each transaction.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

Script syntax and chart functions - Qlik Sense, May 2024 955

8 Script and chart functions

monthsname(2,date) as bi_monthly_range

;

Load

*

Inline

[

id,date,amount

8188,2/19/2022,37.23

8189,3/7/2022,17.17

8190,3/30/2022,88.27

8191,4/5/2022,57.42

8192,4/16/2022,53.80

8193,5/1/2022,82.06

8194,5/7/2022,40.39

8195,5/22/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l bi_monthly_range

date bi_monthly_range

2/19/2022 Jan-Feb 2022

3/7/2022 Mar-Apr 2022

3/30/2022 Mar-Apr 2022

4/5/2022 Mar-Apr 2022

4/16/2022 Mar-Apr 2022

5/1/2022 May-Jun 2022

5/7/2022 May-Jun 2022

5/22/2022 May-Jun 2022

Results table

Script syntax and chart functions - Qlik Sense, May 2024 956

8 Script and chart functions

date bi_monthly_range

6/15/2022 May-Jun 2022

6/26/2022 May-Jun 2022

7/9/2022 Jul-Aug 2022

7/22/2022 Jul-Aug 2022

7/23/2022 Jul-Aug 2022

7/27/2022 Jul-Aug 2022

8/2/2022 Jul-Aug 2022

8/8/2022 Jul-Aug 2022

8/19/2022 Jul-Aug 2022

9/26/2022 Sep-Oct 2022

10/14/2022 Sep-Oct 2022

10/29/2022 Sep-Oct 2022

The bi_monthly_range field is created in the preceding load statement by using the monthsname()

function. The first argument provided is 2, dividing the year into bi-monthly segments. The second
argument identifies which field is being evaluated.

Diagram of monthsname function, basic example

Transaction 8195 takes place on May 22. The monthsname() function initially divides the year into bi-
monthly segments. Transaction 8195 falls into the segment between May 1 and June 30. Therefore,
the function returns these months in the MonthNames system variable format, as well as the year,
May-Jun 2022.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, May 2024 957

8 Script and chart functions

The load script contains:

l The same inline dataset and scenario as the first example.
l The creation of a field, prev_bi_monthly_range, that groups transactions into bi-monthly

segments and returns the previous segment boundary names for each transaction.

Add your other text here, as needed, with lists etc.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

MonthsName(2,date,-1) as prev_bi_monthly_range

;

Load

*

Inline

[

id,date,amount

8188,2/19/2022,37.23

8189,3/7/2022,17.17

8190,3/30/2022,88.27

8191,4/5/2022,57.42

8192,4/16/2022,53.80

8193,5/1/2022,82.06

8194,5/7/2022,40.39

8195,5/22/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l prev_bi_monthly_range

Script syntax and chart functions - Qlik Sense, May 2024 958

8 Script and chart functions

date prev_bi_monthly_range

2/19/2022 Nov-Dec 2021

3/7/2022 Jan-Feb 2022

3/30/2022 Jan-Feb 2022

4/5/2022 Jan-Feb 2022

4/16/2022 Jan-Feb 2022

5/1/2022 Mar-Apr 2022

5/7/2022 Mar-Apr 2022

5/22/2022 Mar-Apr 2022

6/15/2022 Mar-Apr 2022

6/26/2022 Mar-Apr 2022

7/9/2022 May-Jun 2022

7/22/2022 May-Jun 2022

7/23/2022 May-Jun 2022

7/27/2022 May-Jun 2022

8/2/2022 May-Jun 2022

8/8/2022 May-Jun 2022

8/19/2022 May-Jun 2022

9/26/2022 Jul-Aug 2022

10/14/2022 Jul-Aug 2022

10/29/2022 Jul-Aug 2022

Results table

In this example, -1 is used as the period_no argument in the monthsname() function. After initially
dividing a year into bi-monthly segments, the function then returns the previous segment
boundaries for when a transaction takes place.

Script syntax and chart functions - Qlik Sense, May 2024 959

8 Script and chart functions

Diagram of monthsname function, period_no example

Transaction 8195 occurs in the segment between May and June. Therefore, the previous bi-
monthly segment was between March 1 and April 30, and so the function returns Mar-Apr 2022.

Example 3 – first_month_of_year
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same inline dataset and scenario as the first example.
l The creation of a different field, bi_monthly_range, that groups transactions into bi-monthly

segments and returns the segment boundaries for each transaction.

However, in this example, we also need to set April as the first month of the financial year.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

MonthsName(2,date,0,4) as bi_monthly_range

;

Load

*

Inline

[

id,date,amount

8188,2/19/2022,37.23

8189,3/7/2022,17.17

8190,3/30/2022,88.27

8191,4/5/2022,57.42

Script syntax and chart functions - Qlik Sense, May 2024 960

8 Script and chart functions

8192,4/16/2022,53.80

8193,5/1/2022,82.06

8194,5/7/2022,40.39

8195,5/22/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l bi_monthly_range

date bi_monthly_range

2/19/2022 Feb-Mar 2021

3/7/2022 Feb-Mar 2021

3/30/2022 Feb-Mar 2021

4/5/2022 Apr-May 2022

4/16/2022 Apr-May 2022

5/1/2022 Apr-May 2022

5/7/2022 Apr-May 2022

5/22/2022 Apr-May 2022

6/15/2022 Jun-Jul 2022

6/26/2022 Jun-Jul 2022

7/9/2022 Jun-Jul 2022

7/22/2022 Jun-Jul 2022

7/23/2022 Jun-Jul 2022

7/27/2022 Jun-Jul 2022

Results table

Script syntax and chart functions - Qlik Sense, May 2024 961

8 Script and chart functions

date bi_monthly_range

8/2/2022 Aug-Sep 2022

8/8/2022 Aug-Sep 2022

8/19/2022 Aug-Sep 2022

9/26/2022 Aug-Sep 2022

10/14/2022 Oct-Nov 2022

10/29/2022 Oct-Nov 2022

By using 4 as the first_month_of_year argument in the monthsname() function, the function begins
the year on April 1. It then divides the year into bi-monthly segments: Apr-May,Jun-Jul,Aug-
Sep,Oct-Nov,Dec-Jan,Feb-Mar.

Paragraph text for Results.

Transaction 8195 took place on May 22 and falls into the segment between April 1 and May 31.
Therefore, the function returns Apr-May 2022.

Diagram of monthsname function, first_month_of_year example

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same inline dataset and scenario as the first example. However, in this
example, the unchanged dataset is loaded into the application. The calculation that groups
transactions into bi-monthly segments and returns the segment boundaries for each transaction is
created as a measure in a chart object of the application.

Script syntax and chart functions - Qlik Sense, May 2024 962

8 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,2/19/2022,37.23

8189,3/7/2022,17.17

8190,3/30/2022,88.27

8191,4/5/2022,57.42

8192,4/16/2022,53.80

8193,5/1/2022,82.06

8194,5/7/2022,40.39

8195,5/22/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:date.

Create the following measure:

=monthsname(2,date)

date =monthsname(2,date)

2/19/2022 Jan-Feb 2022

3/7/2022 Mar-Apr 2022

3/30/2022 Mar-Apr 2022

4/5/2022 Mar-Apr 2022

4/16/2022 Mar-Apr 2022

5/1/2022 May-Jun 2022

Results table

Script syntax and chart functions - Qlik Sense, May 2024 963

8 Script and chart functions

date =monthsname(2,date)

5/7/2022 May-Jun 2022

5/22/2022 May-Jun 2022

6/15/2022 May-Jun 2022

6/26/2022 May-Jun 2022

7/9/2022 Jul-Aug 2022

7/22/2022 Jul-Aug 2022

7/23/2022 Jul-Aug 2022

7/27/2022 Jul-Aug 2022

8/2/2022 Jul-Aug 2022

8/8/2022 Jul-Aug 2022

8/19/2022 Jul-Aug 2022

9/26/2022 Sep-Oct 2022

10/14/2022 Sep-Oct 2022

10/29/2022 Sep-Oct 2022

The bi_monthly_range field is created as a measure in the chart object by using the monthsname()

function. The first argument provided is 2, dividing the year into bi-monthly segments. The second
argument identifies which field is being evaluated.

Diagram of monthsname function, chart object example

Transaction 8195 takes place on May 22. The monthsname() function initially divides the year into bi-
monthly segments. Transaction 8195 falls into the segment between May 1 and June 30. Therefore,
the function returns these months in the MonthNames system variable format, as well as the year,
May-Jun 2022.

Script syntax and chart functions - Qlik Sense, May 2024 964

8 Script and chart functions

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing transactions for 2022, which is loaded into a table called Transactions.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.

The end user would like a chart object that displays total sales by a period of their own choosing.
This could be achieved even when this dimension is not available in the data model, using the
monthsname() function as a calculated dimension that is dynamically modified by a variable input
control.

Load script

SET vPeriod = 1;

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'1/7/2022',17.17

8189,'1/19/2022',37.23

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Script syntax and chart functions - Qlik Sense, May 2024 965

8 Script and chart functions

Results

Load the data and open a sheet.

At the start of the load script, a variable (vPeriod) has been created that will be tied to the variable
input control. Next, configure the variable as a custom object in the sheet.

Do the following:

1. In the assets panel, click Custom objects.
2. Select Qlik Dashboard bundle, and create a Variable input object.
3. Enter a title for the chart object.
4. Under Variable, select vPeriod as the Name and set the object to show as a Drop down.
5. Under Values, configure the object to use dynamic values. Enter the following:

='1~month|2~bi-month|3~quarter|4~tertial|6~half-year'

Next, create the results table.

Do the following:

1. Create a new table and add the following calculated dimension:
=monthsname($(vPeriod),date)

2. Add this measure to calculate the total sales:
=sum(amount)

3. Set the measure's Number formatting to Money. Click Done editing. You can now modify
the data shown in the table by adjusting the time segment in the variable object.

This is what the results table will look like when the tertial option is selected:

monthsname($(vPeriod),date) =sum(amount)

Jan-Apr 2022 253.89

May-Aug 2022 713.58

Sep-Dec 2022 248.12

Results table

monthsstart
This function returns a value corresponding to the timestamp of the first millisecond of
the month, bi-month, quarter, four-month period, or half-year containing a base date. It
is also possible to find the timestamp for a previous or following time period.The
default output format is the DateFormat set in the script.

Syntax:
MonthsStart(n_months, date[, period_no [, first_month_of_year]])

Script syntax and chart functions - Qlik Sense, May 2024 966

8 Script and chart functions

Return data type: dual

Diagram of monthsstart() function

The monthsstart() function divides the year into segments based on the n_months argument
provided. It then evaluates what segment each date provided falls into and returns the first
millisecond of that segment, in date format. The function also provides the ability to return the start
timestamp from preceding or following segments, as well as redefining which is the first month of
the year.

The following segments of the year are available in the function as n_month arguments:

Periods Number of months

month 1

bi-month 2

quarter 3

four months 4

half-year 6

Possible n_month arguments

Argument Description

n_months The number of months that defines the period. An integer or expression that
resolves to an integer that must be one of: 1 (equivalent to the inmonth()
function), 2 (bi-month), 3 (equivalent to the inquarter()function), 4 (four-month
period), or 6 (half year).

date The date or timestamp to evaluate.

period_no The period can be offset by period_no, an integer, or expression resolving to an
integer, where the value 0 indicates the period that contains base_date. Negative
values in period_no indicate preceding periods and positive values indicate
succeeding periods.

first_
month_of_
year

If you want to work with (fiscal) years not starting in January, indicate a value
between 2 and 12 in first_month_of_year.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 967

8 Script and chart functions

When to use it
The monthsstart() function is commonly used as part of an expression when the user would like the
calculation to use the fraction of a period that has not yet occurred. This could be used, for
example, to provide an input variable to let the user calculate the total interest that has been
accumulated so far in the month, quarter, or half-year.

Example Result

monthsstart(4, '10/19/2013') Returns 09/01/2013.

monthsstart(4, '10/19/2013, -1) Returns 05/01/2013.

monthsstart(4, '10/19/2013', 0,

2)
Returns 10/01/2013, because the start of the year becomes
month 2.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, bi_monthly_start, that groups transactions into bi-monthly segments

and returns the starting timestamp of the segment for each transaction.

Script syntax and chart functions - Qlik Sense, May 2024 968

8 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

monthsstart(2,date) as bi_monthly_start,

timestamp(monthsstart(2,date)) as bi_monthly_start_timestamp

;

Load

*

Inline

[

id,date,amount

8188,2/19/2022,37.23

8189,3/7/2022,17.17

8190,3/30/2022,88.27

8191,4/5/2022,57.42

8192,4/16/2022,53.80

8193,5/1/2022,82.06

8194,5/7/2022,40.39

8195,5/22/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l bi_monthly_start

l bi_monthly_start_timestamp

date bi_monthly_start bi_monthly_start_timestamp

2/19/2022 01/01/2022 1/1/2022 12:00:00 AM

3/7/2022 03/01/2022 3/1/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 969

8 Script and chart functions

date bi_monthly_start bi_monthly_start_timestamp

3/30/2022 03/01/2022 3/1/2022 12:00:00 AM

4/5/2022 03/01/2022 3/1/2022 12:00:00 AM

4/16/2022 03/01/2022 3/1/2022 12:00:00 AM

5/1/2022 05/01/2022 5/1/2022 12:00:00 AM

5/7/2022 05/01/2022 5/1/2022 12:00:00 AM

5/22/2022 05/01/2022 5/1/2022 12:00:00 AM

6/15/2022 05/01/2022 5/1/2022 12:00:00 AM

6/26/2022 05/01/2022 5/1/2022 12:00:00 AM

7/9/2022 07/01/2022 7/1/2022 12:00:00 AM

7/22/2022 07/01/2022 7/1/2022 12:00:00 AM

7/23/2022 07/01/2022 7/1/2022 12:00:00 AM

7/27/2022 07/01/2022 7/1/2022 12:00:00 AM

8/2/2022 07/01/2022 7/1/2022 12:00:00 AM

8/8/2022 07/01/2022 7/1/2022 12:00:00 AM

8/19/2022 07/01/2022 7/1/2022 12:00:00 AM

9/26/2022 09/01/2022 9/1/2022 12:00:00 AM

10/14/2022 09/01/2022 9/1/2022 12:00:00 AM

10/29/2022 09/01/2022 9/1/2022 12:00:00 AM

The bi_monthly_start field is created in the preceding load statement by using the monthsstart()

function. The first argument provided is 2, dividing the year into bi-monthly segments. The second
argument identifies which field is being evaluated.

Diagram of monthsstart() function, example with no additional arguments

Transaction 8195 takes place on May 22. The monthsstart() function initially divides the year into
bi-monthly segments. Transaction 8195 falls into the segment between May 1 and June 30.
Therefore, the function returns the first millisecond of this segment, May 1, 2022 at 12:00:00 AM.

Script syntax and chart functions - Qlik Sense, May 2024 970

8 Script and chart functions

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, prev_bi_monthly_start, that returns the first millisecond of the bi-

monthly segment before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

monthsstart(2,date,-1) as prev_bi_monthly_start,

timestamp(monthsstart(2,date,-1)) as prev_bi_monthly_start_timestamp

;

Load

*

Inline

[

id,date,amount

8188,2/19/2022,37.23

8189,3/7/2022,17.17

8190,3/30/2022,88.27

8191,4/5/2022,57.42

8192,4/16/2022,53.80

8193,5/1/2022,82.06

8194,5/7/2022,40.39

8195,5/22/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Script syntax and chart functions - Qlik Sense, May 2024 971

8 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l prev_bi_monthly_start

l prev_bi_monthly_start_timestamp

date prev_bi_monthly_start prev_bi_monthly_start_timestamp

2/19/2022 11/01/2021 11/1/2021 12:00:00 AM

3/7/2022 01/01/2022 1/1/2022 12:00:00 AM

3/30/2022 01/01/2022 1/1/2022 12:00:00 AM

4/5/2022 01/01/2022 1/1/2022 12:00:00 AM

4/16/2022 01/01/2022 1/1/2022 12:00:00 AM

5/1/2022 03/01/2022 3/1/2022 12:00:00 AM

5/7/2022 03/01/2022 3/1/2022 12:00:00 AM

5/22/2022 03/01/2022 3/1/2022 12:00:00 AM

6/15/2022 03/01/2022 3/1/2022 12:00:00 AM

6/26/2022 03/01/2022 3/1/2022 12:00:00 AM

7/9/2022 05/01/2022 5/1/2022 12:00:00 AM

7/22/2022 05/01/2022 5/1/2022 12:00:00 AM

7/23/2022 05/01/2022 5/1/2022 12:00:00 AM

7/27/2022 05/01/2022 5/1/2022 12:00:00 AM

8/2/2022 05/01/2022 5/1/2022 12:00:00 AM

8/8/2022 05/01/2022 5/1/2022 12:00:00 AM

8/19/2022 05/01/2022 5/1/2022 12:00:00 AM

9/26/2022 07/01/2022 7/1/2022 12:00:00 AM

10/14/2022 07/01/2022 7/1/2022 12:00:00 AM

10/29/2022 07/01/2022 7/1/2022 12:00:00 AM

Results table

By using -1 as the period_no argument in the monthsstart() function, after initially dividing a year into
bi-monthly segments, the function then returns the first millisecond of the previous bi-monthly
segment to when a transaction takes place.

Script syntax and chart functions - Qlik Sense, May 2024 972

8 Script and chart functions

Diagram of monthsstart() function, period_no example

Transaction 8195 occurs in the segment between May and June. Therefore, the previous bi-
monthly segment was between March 1 and April 30, so the function returns the first millisecond of
this segment, March 1, 2022 at 12:00:00 AM.

Example 3 – first_month_of_year
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, bi_monthly_start, that groups transactions into bi-monthly segments

and returns the starting timestamp of the set for each transaction.

However, in this example, we also need to set April as the first month of the financial year.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

monthsstart(2,date,0,4) as bi_monthly_start,

timestamp(monthsstart(2,date,0,4)) as bi_monthly_start_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

Script syntax and chart functions - Qlik Sense, May 2024 973

8 Script and chart functions

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l bi_monthly_start

l bi_monthly_start_timestamp

date bi_monthly_start bi_monthly_start_timestamp

2/19/2022 02/01/2022 2/1/2022 12:00:00 AM

3/7/2022 02/01/2022 2/1/2022 12:00:00 AM

3/30/2022 02/01/2022 2/1/2022 12:00:00 AM

4/5/2022 04/01/2022 4/1/2022 12:00:00 AM

4/16/2022 04/01/2022 4/1/2022 12:00:00 AM

5/1/2022 04/01/2022 4/1/2022 12:00:00 AM

5/7/2022 04/01/2022 4/1/2022 12:00:00 AM

5/22/2022 04/01/2022 4/1/2022 12:00:00 AM

6/15/2022 06/01/2022 6/1/2022 12:00:00 AM

6/26/2022 06/01/2022 6/1/2022 12:00:00 AM

7/9/2022 06/01/2022 6/1/2022 12:00:00 AM

7/22/2022 06/01/2022 6/1/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 974

8 Script and chart functions

date bi_monthly_start bi_monthly_start_timestamp

7/23/2022 06/01/2022 6/1/2022 12:00:00 AM

7/27/2022 06/01/2022 6/1/2022 12:00:00 AM

8/2/2022 08/01/2022 8/1/2022 12:00:00 AM

8/8/2022 08/01/2022 8/1/2022 12:00:00 AM

8/19/2022 08/01/2022 8/1/2022 12:00:00 AM

9/26/2022 08/01/2022 8/1/2022 12:00:00 AM

10/14/2022 10/01/2022 10/1/2022 12:00:00 AM

10/29/2022 10/01/2022 10/1/2022 12:00:00 AM

By using 4 as the first_month_of_year argument in the monthsstart() function, the function begins
the year on April 1. It then divides the year into bi-monthly segments: Apr-May,Jun-Jul,Aug-
Sep,Oct-Nov,Dec-Jan,Feb-Mar.

Diagram of monthsstart() function, first_month_of_year example

Transaction 8195 took place on May 22 and falls into the segment between April 1 and May 31.
Therefore, the function returns the first millisecond of this segment, April 1, 2022 at 12:00:00 AM.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation
which groups transactions into bi-monthly segments and returns the starting timestamp of the set
for each transaction is created as a measure in a chart object of the application.

Script syntax and chart functions - Qlik Sense, May 2024 975

8 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,2/19/2022,37.23

8189,3/7/2022,17.17

8190,3/30/2022,88.27

8191,4/5/2022,57.42

8192,4/16/2022,53.80

8193,5/1/2022,82.06

8194,5/7/2022,40.39

8195,5/22/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Create the following measures:

=monthsstart(2,date)

=timestamp(monthsstart(2,date))

These calculations will retrieve the starting timestamp of the bi-monthly segment in which each
transaction took place.

date =monthsstart(2,date) =timestamp(monthsstart(2,date))

9/26/2022 09/01/2022 9/1/2022 12:00:00 AM

10/14/2022 09/01/2022 9/1/2022 12:00:00 AM

10/29/2022 09/01/2022 9/1/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 976

8 Script and chart functions

date =monthsstart(2,date) =timestamp(monthsstart(2,date))

7/9/2022 07/01/2022 7/1/2022 12:00:00 AM

7/22/2022 07/01/2022 7/1/2022 12:00:00 AM

7/23/2022 07/01/2022 7/1/2022 12:00:00 AM

7/27/2022 07/01/2022 7/1/2022 12:00:00 AM

8/2/2022 07/01/2022 7/1/2022 12:00:00 AM

8/8/2022 07/01/2022 7/1/2022 12:00:00 AM

8/19/2022 07/01/2022 7/1/2022 12:00:00 AM

5/1/2022 05/01/2022 5/1/2022 12:00:00 AM

5/7/2022 05/01/2022 5/1/2022 12:00:00 AM

5/22/2022 05/01/2022 5/1/2022 12:00:00 AM

6/15/2022 05/01/2022 5/1/2022 12:00:00 AM

6/26/2022 05/01/2022 5/1/2022 12:00:00 AM

3/7/2022 03/01/2022 3/1/2022 12:00:00 AM

3/30/2022 03/01/2022 3/1/2022 12:00:00 AM

4/5/2022 03/01/2022 3/1/2022 12:00:00 AM

4/16/2022 03/01/2022 3/1/2022 12:00:00 AM

2/19/2022 01/01/2022 1/1/2021 12:00:00 AM

Diagram of monthsstart() function, chart object example

Transaction 8195 took place on May 22. The monthsstart() function initially divides the year into bi-
monthly segments. Transaction 8195 falls into the segment between May 1 and June 30. Therefore,
the function returns the first millisecond of this segment, 05/01/2022 12:00:00 AM.

Script syntax and chart functions - Qlik Sense, May 2024 977

8 Script and chart functions

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of loan balances, which is loaded into a table called Loans.
l Data consisting of loan IDs, the balance at the start of the month, and the simple interest rate

charged on each loan per annum.

The end user would like a chart object that displays, by loan ID, the current interest that has been
accrued on each loan for the period of their choosing. The financial year begins in January.

Load script

SET DateFormat='MM/DD/YYYY';

Loans:

Load

*

Inline

[

loan_id,start_balance,rate

8188,$10000.00,0.024

8189,$15000.00,0.057

8190,$17500.00,0.024

8191,$21000.00,0.034

8192,$90000.00,0.084

];

Results

Load the data and open a sheet.

At the start of the load script, a variable (vPeriod) has been created that will be tied to the variable
input control. Next, configure the variable as a custom object in the sheet.

Do the following:

1. In the assets panel, click Custom objects.
2. Select Qlik Dashboard bundle, and create a Variable input object.
3. Enter a title for the chart object.
4. Under Variable, select vPeriod as the Name and set the object to show as a Drop down.
5. Under Values, configure the object to use dynamic values. Enter the following:

='1~month|2~bi-month|3~quarter|4~tertial|6~half-year'

Script syntax and chart functions - Qlik Sense, May 2024 978

8 Script and chart functions

Next, create the results table.

Do the following:

1. Create a new table. Add the following fields as dimensions.
l employee_id

l employee_name

2. Create a measure to calculate the accumulated interest:
=start_balance*(rate*(today(1)-monthsstart($(vPeriod),today(1)))/365)

3. Set the measure's Number formatting to Money. Click Done editing. You can now modify
the data shown in the table by adjusting the time segment in the variable object.

This is what the results table will look like when the month period option is selected:

loan_id
start_
balance

=start_balance*(rate*(today(1)-monthsstart($(vPeriod),today
(1)))/365)

8188 $10000.00 $7.95

8189 $15000.00 $67.93

8190 $17500.00 $33.37

8191 $21000.00 $56.73

8192 $90000.00 $600.66

Results table

The monthsstart() function, using the user’s input as its first argument and today’s date as its
second argument, returns the start date of the period of the user’s choosing. By subtracting that
result from the current date, the expression returns the number of days that have elapsed so far in
this period.

This value is then multiplied by the interest rate and divided by 365 to return the effective interest
rate incurred for this period. The result is then multiplied by the starting balance of the loan to
return the interest that has been accrued so far this period.

monthstart
This function returns a value corresponding to a timestamp of the first millisecond of
the first day of the month containing date. The default output format will be the
DateFormat set in the script.

Syntax:
MonthStart(date[, period_no])

Script syntax and chart functions - Qlik Sense, May 2024 979

8 Script and chart functions

Return data type: dual

Diagram of monthstart() function

The monthstart() function determines which month the date falls into. It then returns a timestamp,
in date format, for the first millisecond of that month.

Argument Description

date The date or timestamp to evaluate.

period_no period_no is an integer, which, if 0 or omitted, indicates the month that contains
date. Negative values in period_no indicate preceding months and positive
values indicate succeeding months.

Arguments

When to use it
The monthstart() function is commonly used as part of an expression when the user would like the
calculation to use the fraction of the month that has elapsed thus far. For example, it can be used to
calculate the interest that has been accumulated in a month up to a certain date.

Example Result

monthstart('10/19/2001') Returns 10/01/2001.

monthstart('10/19/2001', -1) Returns 09/01/2001.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Script syntax and chart functions - Qlik Sense, May 2024 980

8 Script and chart functions

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, start_of_month, which returns a timestamp for the start of the month

when the transactions took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

monthstart(date) as start_of_month,

timestamp(monthstart(date)) as start_of_month_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

Script syntax and chart functions - Qlik Sense, May 2024 981

8 Script and chart functions

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l start_of_month

l start_of_month_timestamp

date start_of_month start_of_month_timestamp

1/7/2022 01/01/2022 1/1/2022 12:00:00 AM

1/19/2022 01/01/2022 1/1/2022 12:00:00 AM

2/5/2022 02/01/2022 2/1/2022 12:00:00 AM

2/28/2022 02/01/2022 2/1/2022 12:00:00 AM

3/16/2022 03/01/2022 3/1/2022 12:00:00 AM

4/1/2022 04/01/2022 4/1/2022 12:00:00 AM

5/7/2022 05/01/2022 5/1/2022 12:00:00 AM

5/16/2022 05/01/2022 5/1/2022 12:00:00 AM

6/15/2022 06/01/2022 6/1/2022 12:00:00 AM

6/26/2022 07/01/2022 6/1/2022 12:00:00 AM

7/9/2022 07/01/2022 7/1/2022 12:00:00 AM

7/22/2022 07/01/2022 7/1/2022 12:00:00 AM

7/23/2022 07/01/2022 7/1/2022 12:00:00 AM

7/27/2022 07/01/2022 7/1/2022 12:00:00 AM

8/2/2022 08/01/2022 8/1/2022 12:00:00 AM

8/8/2022 08/01/2022 8/1/2022 12:00:00 AM

8/19/2022 08/01/2022 8/1/2022 12:00:00 AM

9/26/2022 09/01/2022 9/1/2022 12:00:00 AM

10/14/2022 10/01/2022 10/1/2022 12:00:00 AM

10/29/2022 10/01/2022 10/1/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 982

8 Script and chart functions

The start_of_month field is created in the preceding load statement by using the monthstart()

function and passing the date field as the function’s argument.

The monthstart() function identifies which month the date value falls into, returning a timestamp for
the first millisecond of that month.

Diagram of monthstart() function, example with no additional arguments

Transaction 8192 took place on March 16. The monthstart() function returns the first millisecond of
that month, which is March 1 at 12:00:00 AM.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, previous_month_start, which returns the timestamp for the start of the

month before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

monthstart(date,-1) as previous_month_start,

timestamp(monthstart(date,-1)) as previous_month_start_timestamp

;

Load

*

Inline

[

id,date,amount

Script syntax and chart functions - Qlik Sense, May 2024 983

8 Script and chart functions

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_month_start

l previous_month_start_timestamp

date previous_month_start previous_month_start_timestamp

1/7/2022 12/01/2021 12/1/2021 12:00:00 AM

1/19/2022 12/01/2021 12/1/2021 12:00:00 AM

2/5/2022 01/01/2022 1/1/2022 12:00:00 AM

2/28/2022 01/01/2022 1/1/2022 12:00:00 AM

3/16/2022 02/01/2022 2/1/2022 12:00:00 AM

4/1/2022 03/01/2022 3/1/2022 12:00:00 AM

5/7/2022 04/01/2022 4/1/2022 12:00:00 AM

5/16/2022 04/01/2022 4/1/2022 12:00:00 AM

6/15/2022 05/01/2022 5/1/2022 12:00:00 AM

6/26/2022 05/01/2022 5/1/2022 12:00:00 AM

7/9/2022 06/01/2022 6/1/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 984

8 Script and chart functions

date previous_month_start previous_month_start_timestamp

7/22/2022 06/01/2022 6/1/2022 12:00:00 AM

7/23/2022 06/01/2022 6/1/2022 12:00:00 AM

7/27/2022 06/01/2022 6/1/2022 12:00:00 AM

8/2/2022 07/01/2022 7/1/2022 12:00:00 AM

8/8/2022 07/01/2022 7/1/2022 12:00:00 AM

8/19/2022 07/01/2022 7/1/2022 12:00:00 AM

9/26/2022 08/01/2022 8/1/2022 12:00:00 AM

10/14/2022 09/01/2022 9/1/2022 12:00:00 AM

10/29/2022 09/01/2022 9/1/2022 12:00:00 AM

In this instance, because a period_no of -1 was used as the offset argument in the monthstart()

function, the function first identifies the month that the transactions take place in. It then shifts one
month prior and identifies the first millisecond of that month.

Diagram of monthstart() function, period_no example

Transaction 8192 took place on March 16. The monthstart() function identifies that the month
before the transaction took place in was February. It then returns the first millisecond of that month,
February 1 at 12:00:00 AM.

Example 3 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

Script syntax and chart functions - Qlik Sense, May 2024 985

8 Script and chart functions

However, in this example, the unchanged dataset is loaded into the application. The calculation that
returns a timestamp for the start of the month when the transactions took place is created as a
measure in a chart object of the application.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

To calculate the start date of the month that a transaction takes place in, create the following
measures:

l =monthstart(date)

l =timestamp(monthstart(date))

date =monthstart(date) =timestamp(monthstart(date))

10/14/2022 10/01/2022 10/1/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 986

8 Script and chart functions

date =monthstart(date) =timestamp(monthstart(date))

10/29/2022 10/01/2022 10/1/2022 12:00:00 AM

9/26/2022 09/01/2022 9/1/2022 12:00:00 AM

8/2/2022 08/01/2022 8/1/2022 12:00:00 AM

8/8/2022 08/01/2022 8/1/2022 12:00:00 AM

8/19/2022 08/01/2022 8/1/2022 12:00:00 AM

7/9/2022 07/01/2022 7/1/2022 12:00:00 AM

7/22/2022 07/01/2022 7/1/2022 12:00:00 AM

7/23/2022 07/01/2022 7/1/2022 12:00:00 AM

7/27/2022 07/01/2022 7/1/2022 12:00:00 AM

6/15/2022 06/01/2022 6/1/2022 12:00:00 AM

6/26/2022 06/01/2022 6/1/2022 12:00:00 AM

5/7/2022 05/01/2022 5/1/2022 12:00:00 AM

5/16/2022 05/01/2022 5/1/2022 12:00:00 AM

4/1/2022 04/01/2022 4/1/2022 12:00:00 AM

3/16/2022 03/01/2022 3/1/2022 12:00:00 AM

2/5/2022 02/01/2022 2/1/2022 12:00:00 AM

2/28/2022 02/01/2022 2/1/2022 12:00:00 AM

1/7/2022 01/01/2022 1/1/2022 12:00:00 AM

1/19/2022 01/01/2022 1/1/2022 12:00:00 AM

The start_of_month measure is created in the chart object by using the monthstart() function and
passing the date field as the function’s argument.

The monthstart() function identifies which month the date value falls into returning a timestamp for
the first millisecond of that month.

Script syntax and chart functions - Qlik Sense, May 2024 987

8 Script and chart functions

Diagram of monthstart() function, chart object example

Transaction 8192 took place on March 16. The monthstart() function identifies that the transaction
took place in March and returns the first millisecond of that month, which is March 1 at 12:00:00 AM.

Example 4 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of loan balances, which is loaded into a table called Loans.
l Data consisting of loan IDs, the balance at the start of the month, and the simple interest rate

charged on each loan per annum.

The end user would like a chart object that displays, by loan ID, the current interest that has been
accrued on each loan in the month to date.

Load script

SET DateFormat='MM/DD/YYYY';

Loans:

Load

*

Inline

[

loan_id,start_balance,rate

8188,$10000.00,0.024

8189,$15000.00,0.057

8190,$17500.00,0.024

8191,$21000.00,0.034

8192,$90000.00,0.084

];

Script syntax and chart functions - Qlik Sense, May 2024 988

8 Script and chart functions

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add these fields as dimensions:
l loan_id

l start_balance

2. Next, create a measure to calculate the accumulated interest:
=start_balance*(rate*(today(1)-monthstart(today(1)))/365)

3. Set the measure's Number formatting to Money.

loan_id start_balance =start_balance*(rate*(today(1)-monthstart(today(1)))/365)

8188 $10000.00 $16.44

8189 $15000.00 $58.56

8190 $17500.00 $28.77

8191 $21000.00 $48.90

8192 $90000.00 $517.81

Results table

The monthstart() function, using today’s date as its only argument, returns the start date of the
current month. By subtracting that result from the current date, the expression returns the number
of days that have elapsed so far this month.

This value is then multiplied by the interest rate and divided by 365 to return the effective interest
rate incurred for this period. The result is then multiplied by the starting balance of the loan to
return the interest that has been accrued so far this month.

networkdays
The networkdays function returns the number of working days (Monday-Friday)
between and including start_date and end_date taking into account any optionally
listed holiday.

Syntax:
networkdays (start_date, end_date [, holiday])

Script syntax and chart functions - Qlik Sense, May 2024 989

8 Script and chart functions

Return data type: integer

Calendar diagram displaying date range returned by networkdays function

The networkdays function has the following limitations:

l There is no method to modify workdays. In other words, there is no way to modify the
function for regions or situations that involve anything other than working Monday to Friday.

l The holiday parameter must be a string constant. Expressions are not accepted.

Argument Description

start_date The start date to evaluate.

end_date The end date to evaluate.

holiday Holiday periods to exclude from working days. A holiday is stated as a string
constant date. You can specify multiple holiday dates, separated by commas.

Example: '12/25/2013', '12/26/2013', '12/31/2013', '01/01/2014'

Arguments

When to use it
The networkdays() function is commonly used as part of an expression when the user would like the
calculation to use the number of working week days that occur between two dates. For example, if
a user would like to calculate the total wages that will be earned by an employee on a PAYE (pay-
as-you-earn) contract.

Script syntax and chart functions - Qlik Sense, May 2024 990

8 Script and chart functions

Example Result

networkdays ('12/19/2013', '01/07/2014') Returns 14. This example does not take
holidays into account.

networkdays ('12/19/2013', '01/07/2014',

'12/25/2013', '12/26/2013')
Returns 12. This example takes the
holiday 12/25/2013 to 12/26/2013 into
account.

networkdays ('12/19/2013', '01/07/2014',

'12/25/2013', '12/26/2013', '12/31/2013',

'01/01/2014')

Returns 10. This example takes two
holiday periods into account.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing project IDs, their start dates, and their end dates. This information is
loaded into a table called Projects.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of an additional field, net_work_days, to calculate the number of working days

involved in each project.

Load script

SET DateFormat='MM/DD/YYYY';

Projects:

Load

*,

Script syntax and chart functions - Qlik Sense, May 2024 991

8 Script and chart functions

networkdays(start_date,end_date) as net_work_days

;

Load

id,

start_date,

end_date

Inline

[

id,start_date,end_date

1,01/01/2022,01/18/2022

2,02/10/2022,02/17/2022

3,05/17/2022,07/05/2022

4,06/01/2022,06/12/2022

5,08/10/2022,08/26/2022

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l start_date

l end_date

l net_work_days

id start_date end_date net_work_days

1 01/01/2022 01/18/2022 12

2 02/10/2022 02/17/2022 6

3 05/17/2022 07/05/2022 36

4 06/01/2022 06/12/2022 8

5 08/10/2022 08/26/2022 13

Results table

Because there are no scheduled holidays (this would have been present in the third argument of the
networkdays() function), the function subtracts the start_date from the end_date, as well as all
weekends, to calculate the number of working days between the two dates.

Script syntax and chart functions - Qlik Sense, May 2024 992

8 Script and chart functions

Calendar diagram highlighting work days for project 5 (no holidays)

The calendar above visually outlines the project with id of 5. Project 5 begins on Wednesday,
August 10, 2022 and ends on August 26, 2022. With all Saturdays and Sundays ignored, there are
13 working days between, and including, these two dates.

Example 2 – Single holiday
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario from the previous example.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of an additional field, net_work_days, to calculate the number of working days

involved in each project.

In this example, there is a one-day holiday scheduled on August 19, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Projects:

Script syntax and chart functions - Qlik Sense, May 2024 993

8 Script and chart functions

Load

*,

networkdays(start_date,end_date,'08/19/2022') as net_work_days

;

Load

id,

start_date,

end_date

Inline

[

id,start_date,end_date

1,01/01/2022,01/18/2022

2,02/10/2022,02/17/2022

3,05/17/2022,07/05/2022

4,06/01/2022,06/12/2022

5,08/10/2022,08/26/2022

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l start_date

l end_date

l net_work_days

id start_date end_date net_work_days

1 01/01/2022 01/18/2022 12

2 02/10/2022 02/17/2022 6

3 05/17/2022 07/05/2022 36

4 06/01/2022 06/12/2022 8

5 08/10/2022 08/26/2022 12

Results table

The single scheduled holiday is entered as the third argument in the networkdays() function.

Script syntax and chart functions - Qlik Sense, May 2024 994

8 Script and chart functions

Calendar diagram highlighting work days for project 5 (single holiday)

The calendar above visually outlines project 5, demonstrating this adjustment to include the
holiday. This holiday occurs during project 5 on Friday, August 19, 2022. As a result, the total net_
work_days value for project 5 decreases by one day, from 13 to 12 days.

Example 3 – Multiple holidays
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario from the first example.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of an additional field, net_work_days, to calculate the number of working days

involved in each project.

However, in this example, there are four holidays scheduled from August 18 to August 21, 2022.

Script syntax and chart functions - Qlik Sense, May 2024 995

8 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Projects:

Load

*,

networkdays(start_date,end_date,'08/18/2022','08/19/2022','08/20/2022','08/21/2022')

as net_work_days

;

Load

id,

start_date,

end_date

Inline

[

id,start_date,end_date

1,01/01/2022,01/18/2022

2,02/10/2022,02/17/2022

3,05/17/2022,07/05/2022

4,06/01/2022,06/12/2022

5,08/10/2022,08/26/2022

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l start_date

l end_date

l net_work_days

id start_date end_date net_work_days

1 01/01/2022 01/18/2022 12

2 02/10/2022 02/17/2022 6

3 05/17/2022 07/05/2022 36

4 06/01/2022 06/12/2022 8

5 08/10/2022 08/26/2022 11

Results table

The four scheduled holidays are entered as a comma separated list, from the third argument
onwards in the networkdays() function.

Script syntax and chart functions - Qlik Sense, May 2024 996

8 Script and chart functions

Calendar diagram highlighting work days for project 5 (multiple holidays)

The calendar above visually outlines project 5, demonstrating this adjustment to include these
holidays. This period of scheduled holidays occurs during project 5, with two of the days occurring
on a Thursday and Friday. As a result, the total net_work_days value for project 5 decreases from 13
to 11 days.

Example 4 – Single holiday
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario from the first example.
l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.

There is a one-day holiday scheduled on August 19, 2022.

Script syntax and chart functions - Qlik Sense, May 2024 997

8 Script and chart functions

However, in this example, the unchanged dataset is loaded into the application. The net_work_days

field is calculated as a measure in a chart object.

Load script

SET DateFormat='MM/DD/YYYY';

Projects:

Load

id,

start_date,

end_date

Inline

[

id,start_date,end_date

1,01/01/2022,01/18/2022

2,02/10/2022,02/17/2022

3,05/17/2022,07/05/2022

4,06/01/2022,06/12/2022

5,08/10/2022,08/26/2022

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l start_date

l end_date

Create the following measure:

= networkdays(start_date,end_date,’08/19/2022’)

id start_date end_date net_work_days

1 01/01/2022 01/18/2022 12

2 02/10/2022 02/17/2022 6

3 05/17/2022 07/05/2022 36

4 06/01/2022 06/12/2022 8

5 08/10/2022 08/26/2022 12

Results table

The single scheduled holiday is entered as the third argument in the networkdays() function.

Script syntax and chart functions - Qlik Sense, May 2024 998

8 Script and chart functions

Calendar diagram showing net work days with single holiday (chart object)

The calendar above visually outlines project 5, demonstrating this adjustment to include the
holiday. This holiday occurs during project 5 on Friday, August 19, 2022. As a result, the total net_
work_days value for project 5 decreases by one day, from 13 to 12 days.

now
This function returns a timestamp of the current time. The function returns values in the
TimeStamp system variable format. The default timer_mode value is 1.

Syntax:
now([timer_mode])

Return data type: dual

The now() function can be used either in the load script or in chart objects.

Script syntax and chart functions - Qlik Sense, May 2024 999

8 Script and chart functions

Argument Description

timer_mode Can have the following values:

0 (time at last finished data load)
1 (time at function call)
2 (time when the app was opened)

If you use the function in a data load script, timer_mode=0 will result
in the time of the last finished data load, while timer_mode=1 will give
the time of the function call in the current data load.

Arguments

The now() function has a high-performance impact, which might result in scrolling issues
if the function is used within tables' expressions. Whenever its use is not strictly
necessary, we recommend using the today() function instead. If the use of now() is
required in a layout, we recommend using the non-default settings now(0) or now(2)
when possible, as they do not require constant recalculations

When to use it
The now() function is commonly used as a component within an expression. For example, it can be
used to calculate the time remaining in a product's lifecycle. The now() function would be used
instead of the today() function when the expression requires the use of a fraction of a day.

The following table provides an explanation of the result returned by the now() function, given
different values for the timer_mode argument:

timer_
mode
value

Result if used in load script Result if used in chart object

0 Returns a timestamp, in the TimeStamp

system variable format, of the last
successful data reload prior to the
latest data reload.

Returns a timestamp, in the TimeStamp system
variable format, for the latest data reload.

1 Returns a timestamp, in the TimeStamp

system variable format, for the latest
data reload.

Returns a timestamp, in the TimeStamp system
variable format, of the function call.

2 Returns a timestamp, in the TimeStamp

system variable format, for when the
user’s session in the application
began. This will not be updated
unless the user reloads the script.

Returns the timestamp, in the TimeStamp

system variable format, for when the user’s
session in the application began. This will be
refreshed once a new session begins or the
data in the application is reloaded.

Function examples

Script syntax and chart functions - Qlik Sense, May 2024 1000

8 Script and chart functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – Generation of objects using load script
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

This example creates three variables using the now() function. Each variable uses one of the timer_

mode options to demonstrate their effect.

For the variables to demonstrate their purpose, reload the script and then, after a short period of
time, reload the script a second time. This will result in the now(0) and now(1) variables showing
different values, thereby correctly demonstrating their purpose.

Load script

LET vPreviousDataLoad = now(0);

LET vCurrentDataLoad = now(1);

LET vApplicationOpened = now(2);

Results

Once the data has been loaded for a second time, create three textboxes using the directions
below.

First, create a textbox for the data which has previously been loaded.

Do the following:

1. Using the Text & Image chart object, create a textbox.
2. Add the following measure to the object:

=vPreviousDataLoad

3. Under Appearance, select Show titles and add the title 'Previous Reload Time' to the object.

Script syntax and chart functions - Qlik Sense, May 2024 1001

8 Script and chart functions

Next, create a textbox for the data which is currently being loaded.

Do the following:

1. Using the Text & Image chart object, create a textbox.
2. Add the following measure to the object:

=vCurrentDataLoad

3. Under Appearance, select Show titles and add the title 'Current Reload Time' to the object.

Create a final textbox to show when the user's session in the application was started.

Do the following:

1. Using the Text & Image chart object, create a textbox.
2. Add the following measure to the object:

=vApplicationOpened

3. Under Appearance, select Show titles and add the title 'User Session Started' to the object.

now() load script variables

The above image shows example values for each of the created variables. For example, the values
could be as follows:

l Previous Reload Time: 6/22/2022 8:54:03 AM
l Current Reload Time: 6/22/2022 9:02:08 AM
l User Session Began: 6/22/2022 8:40:40 AM

Example 2 – Generation of objects without load script
Load script and chart expression

Overview

In this example, you will create three chart objects using the now() function, without loading any
variables or data into the application. Each chart object uses one of the timer_mode options to
demonstrate their effect.

There is no load script for this example.

Script syntax and chart functions - Qlik Sense, May 2024 1002

8 Script and chart functions

Do the following:

1. Open the Data load editor.
2. Without changing the existing load script, click Load data.
3. After a short period of time, load the script a second time.

Results

Once the data has been loaded for a second time, create three textboxes.

First, create a textbox for the latest data reload.

Do the following:

1. Using the Text & Image chart object, create a textbox.
2. Add the following measure.

=now(0)

3. Under Appearance, select Show titles and add the title 'Latest Data Reload' to the object.

Next, create a textbox to show the current time.

Do the following:

1. Using the Text & Image chart object, create a textbox.
2. Add the following measure:

=now(1)

3. Under Appearance, select Show titles and add the title 'Current Time' to the object.

Create a final textbox to show when the user's session in the application was started.

Do the following:

1. Using the Text & Image chart object, create a textbox.
2. Add the following measure:

=now(2)

3. Under Appearance, select Show titles and add the title 'User Session Began' to the object.

now() chart object examples

The above image shows example values for each of the created objects. For example, the values
could be as follows:

Script syntax and chart functions - Qlik Sense, May 2024 1003

8 Script and chart functions

l Latest Data Reload: 6/22/2022 9:02:08 AM
l Current Time: 6/22/2022 9:25:16 AM
l User Session Began: 6/22/2022 8:40:40 AM

The 'Latest Data Reload' chart object uses a timer_mode value of 0. This returns the timestamp for
the last time the data was successfully reloaded.

The 'Current Time' chart object uses a timer_mode value of 1. This returns the current time according
to the system clock. If the sheet or object is refreshed, this value will be updated.

The 'User Session Began' chart object uses a timer_mode value of 2. This returns the timestamp for
when the application was opened, and the user’s session began.

Example 3 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset consisting of inventory for a cryptocurrency mining operation, which is loaded into
a table called Inventory.

l Data with the following fields: id, purchase_date, and wph (watts per hour).

The user would like a table that displays, by id, the total cost each mining rig has incurred in the
month so far, in terms of power consumption.

This value should update whenever the chart object is refreshed. The current cost of electricity is
$0.0678 per kWH.

Load script

SET DateFormat='MM/DD/YYYY';

Inventory:

Load

*

Inline

[

id,purchase_date,wph

8188,1/7/2022,1123

8189,1/19/2022,1432

8190,2/28/2022,1227

8191,2/5/2022,1322

8192,3/16/2022,1273

8193,4/1/2022,1123

8194,5/7/2022,1342

8195,5/16/2022,2342

Script syntax and chart functions - Qlik Sense, May 2024 1004

8 Script and chart functions

8196,6/15/2022,1231

8197,6/26/2022,1231

8198,7/9/2022,1123

8199,7/22/2022,1212

8200,7/23/2022,1223

8201,7/27/2022,1232

8202,8/2/2022,1232

8203,8/8/2022,1211

8204,8/19/2022,1243

8205,9/26/2022,1322

8206,10/14/2022,1133

8207,10/29/2022,1231

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: id.

Create the following measure:

=(now(1)-monthstart(now(1)))*24*wph/1000*0.0678

If the chart object was refreshed at 6/22/2022 10:39:05 AM, it would return the following results:

id =(now(1)-monthstart(now(1)))*24*wph/1000*0.0678

8188 $39.18

8189 $49.97

8190 $42.81

8191 $46.13

8192 $44.42

8193 $39.18

8194 $46.83

8195 $81.72

8196 $42.95

8197 $42.95

8198 $39.18

8199 $42.29

8200 $42.67

8201 $42.99

8202 $42.99

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1005

8 Script and chart functions

id =(now(1)-monthstart(now(1)))*24*wph/1000*0.0678

8203 $42.25

8204 $43.37

8205 $46.13

8206 $39.53

The user would like the object results to refresh every time the object is refreshed. Therefore, the
timer_mode argument of supplied for instances of the now() function in the expression. The
timestamp for the start of the month, identified by using the now() function as the timestamp
argument in the monthstart() function, is subtracted from the current time which is identified by the
now() function. This provides the total amount of time that has elapsed so far this month, in days.

This value is multiplied by 24 (the number of hours in a day) and then by the value in the wph field.

To convert from watts per hour to kilowatts per hour, the result is divided by 1000 before finally
being multiplied by the kWH rate supplied.

quarterend
This function returns a value corresponding to a timestamp of the last millisecond of
the quarter containing date. The default output format will be the DateFormat set in
the script.

Syntax:
QuarterEnd(date[, period_no[, first_month_of_year]])

Return data type: dual

Diagram of the quarterend() function

The quarterend() function determines which quarter the date falls into. It then returns a timestamp,
in date format, for the last millisecond of the last month of that quarter. The first month of the year
is, by default, January. However, you can change which month is set as first by using the first_

month_of_year argument in the quarterend() function.

Script syntax and chart functions - Qlik Sense, May 2024 1006

8 Script and chart functions

The quarterend() function does not consider the FirstMonthOfYear system variable. The
year begins on January 1 unless the first_month_of_year argument is used to change it.

When to use it

The quarterend() function is commonly used as part of an expression when you would like the
calculation to use the fraction of the quarter that has not yet occurred. For example, if you want to
calculate the total interest not yet incurred during the quarter.

Argument Description

date The date or timestamp to evaluate.

period_no period_no is an integer, where the value 0 indicates the quarter which contains
date. Negative values in period_no indicate preceding quarters and positive
values indicate succeeding quarters.

first_
month_of_
year

If you want to work with (fiscal) years not starting in January, indicate a value
between 2 and 12 in first_month_of_year.

Arguments

You can use the following values to set the first month of year in the first_month_of_year argument:

Month Value

February 2

March 3

April 4

May 5

June 6

July 7

August 8

September 9

October 10

November 11

December 12

first_month_of_year values

Script syntax and chart functions - Qlik Sense, May 2024 1007

8 Script and chart functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example Result

quarterend('10/29/2005') Returns 12/31/2005 23:59:59.

quarterend('10/29/2005', -1) Returns 09/30/2005 23:59:59.

quarterend('10/29/2005', 0, 3) Returns 11/30/2005 23:59:59.

Function examples

Example 1 - Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions in 2022 which is loaded into a table called
‘Transactions’.

l A preceding load which contains the following:
l The quarterend() function that is set as the ‘end_of_quarter’ field and returns a

timestamp for the end of the quarter when the transactions took place.
l The timestamp() function that is set as the ‘end_of_quarter_timestamp’ field and returns

the exact timestamp of the end of the selected quarter.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

quarterend(date) as end_of_quarter,

timestamp(quarterend(date)) as end_of_quarter_timestamp

Script syntax and chart functions - Qlik Sense, May 2024 1008

8 Script and chart functions

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l end_of_quarter

l end_of_quarter_timestamp

id date end_of_quarter end_of_quarter_timestamp

8188 1/7/2022 03/31/2022 3/31/2022 11:59:59 PM

8189 1/19/2022 03/31/2022 3/31/2022 11:59:59 PM

8190 2/5/2022 03/31/2022 3/31/2022 11:59:59 PM

8191 2/28/2022 03/31/2022 3/31/2022 11:59:59 PM

8192 3/16/2022 03/31/2022 3/31/2022 11:59:59 PM

8193 4/1/2022 06/30/2022 6/30/2022 11:59:59 PM

8194 5/7/2022 06/30/2022 6/30/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1009

8 Script and chart functions

id date end_of_quarter end_of_quarter_timestamp

8195 5/16/2022 06/30/2022 6/30/2022 11:59:59 PM

8196 6/15/2022 06/30/2022 6/30/2022 11:59:59 PM

8197 6/26/2022 06/30/2022 6/30/2022 11:59:59 PM

8198 7/9/2022 09/30/2022 9/30/2022 11:59:59 PM

8199 7/22/2022 09/30/2022 9/30/2022 11:59:59 PM

8200 7/23/2022 09/30/2022 9/30/2022 11:59:59 PM

8201 7/27/2022 09/30/2022 9/30/2022 11:59:59 PM

8202 8/2/2022 09/30/2022 9/30/2022 11:59:59 PM

8203 8/8/2022 09/30/2022 9/30/2022 11:59:59 PM

8204 8/19/2022 09/30/2022 9/30/2022 11:59:59 PM

8205 9/26/2022 09/30/2022 9/30/2022 11:59:59 PM

8206 10/14/2022 12/31/2022 12/31/2022 11:59:59 PM

8207 10/29/2022 12/31/2022 12/31/2022 11:59:59 PM

The ‘end_of_quarter’ field is created in the preceding load statement by using the quarterend()

function and passing the date field as the function’s argument.

The quarterend() function initially identifies which quarter the date value falls into and then returns
a timestamp for the last millisecond of that quarter.

Diagram of the quarterend() function with the quarter end of transaction 8203 identified

Transaction 8203 took place on August 8. The quarterend() function identifies that the transaction
took place in the third quarter, and returns the last millisecond of that quarter, which is September
30 at 11:59:59 PM.

Script syntax and chart functions - Qlik Sense, May 2024 1010

8 Script and chart functions

Example 2 - period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions in 2022 which is loaded into a table called
‘Transactions’.

l A preceding load which contains the following:
l The quarterend() function that is set as the ‘previous_quarter_end’ field and returns a

timestamp for the end of the quarter before the transaction took place.
l The timestamp() function that is set as the ‘previous_end_of_quarter_timestamp’ field

and returns the exact timestamp of the end of the quarter before the transaction took
place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

quarterend(date, -1) as previous_quarter_end,

timestamp(quarterend(date, -1)) as previous_quarter_end_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

Script syntax and chart functions - Qlik Sense, May 2024 1011

8 Script and chart functions

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l previous_quarter_end

l previous_quarter_end_timestamp

id date previous_quarter_end previous_quarter_end_timestamp

8188 1/7/2022 12/31/2021 12/31/2021 11:59:59 PM

8189 1/19/2022 12/31/2021 12/31/2021 11:59:59 PM

8190 2/5/2022 12/31/2021 12/31/2021 11:59:59 PM

8191 2/28/2022 12/31/2021 12/31/2021 11:59:59 PM

8192 3/16/2022 12/31/2021 12/31/2021 11:59:59 PM

8193 4/1/2022 03/31/2022 3/31/2022 11:59:59 PM

8194 5/7/2022 03/31/2022 3/31/2022 11:59:59 PM

8195 5/16/2022 03/31/2022 3/31/2022 11:59:59 PM

8196 6/15/2022 03/31/2022 3/31/2022 11:59:59 PM

8197 6/26/2022 03/31/2022 3/31/2022 11:59:59 PM

8198 7/9/2022 06/30/2022 6/30/2022 11:59:59 PM

8199 7/22/2022 06/30/2022 6/30/2022 11:59:59 PM

8200 7/23/2022 06/30/2022 6/30/2022 11:59:59 PM

8201 7/27/2022 06/30/2022 6/30/2022 11:59:59 PM

8202 8/2/2022 06/30/2022 6/30/2022 11:59:59 PM

8203 8/8/2022 06/30/2022 6/30/2022 11:59:59 PM

8204 8/19/2022 06/30/2022 6/30/2022 11:59:59 PM

8205 9/26/2022 06/30/2022 6/30/2022 11:59:59 PM

8206 10/14/2022 09/30/2022 9/30/2022 11:59:59 PM

8207 10/29/2022 09/30/2022 9/30/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1012

8 Script and chart functions

Because a period_no of -1 is used as the offset argument in the quarterend() function, the function
first identifies the quarter that the transactions take place in. It then shifts one quarter prior and
identifies the final millisecond of that quarter.

Diagram of the quarterend() function with a period_no of -1

Transaction 8203 took place on August 8. The quarterend() function identifies that the quarter
before the transaction took place was between April 1 and June 30. The function then returns the
final millisecond of that quarter, June 30 at 11:59:59 PM.

Example 3 - first_month_of_year
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions in 2022 which is loaded into a table called
‘Transactions’.

l A preceding load which contains the following:
l The quarterend() function that is set as the ‘end_of_quarter’ field and returns a

timestamp for the end of the quarter when the transactions took place.
l The timestamp() function that is set as the ‘end_of_quarter_timestamp’ field and returns

the exact timestamp of the end of the selected quarter.

However, in this example, the company policy is that the financial year begins on March 1.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

quarterend(date, 0, 3) as end_of_quarter,

Script syntax and chart functions - Qlik Sense, May 2024 1013

8 Script and chart functions

timestamp(quarterend(date, 0, 3)) as end_of_quarter_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

id date end_of_quarter end_of_quarter_timestamp

8188 1/7/2022 02/28/2022 2/28/2022 11:59:59 PM

8189 1/19/2022 02/28/2022 2/28/2022 11:59:59 PM

8190 2/5/2022 02/28/2022 2/28/2022 11:59:59 PM

8191 2/28/2022 02/28/2022 2/28/2022 11:59:59 PM

8192 3/16/2022 05/31/2022 5/31/2022 11:59:59 PM

8193 4/1/2022 05/31/2022 5/31/2022 11:59:59 PM

8194 5/7/2022 05/31/2022 5/31/2022 11:59:59 PM

8195 5/16/2022 05/31/2022 5/31/2022 11:59:59 PM

8196 6/15/2022 08/31/2022 8/31/2022 11:59:59 PM

8197 6/26/2022 08/31/2022 8/31/2022 11:59:59 PM

8198 7/9/2022 08/31/2022 8/31/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1014

8 Script and chart functions

id date end_of_quarter end_of_quarter_timestamp

8199 7/22/2022 08/31/2022 8/31/2022 11:59:59 PM

8200 7/23/2022 08/31/2022 8/31/2022 11:59:59 PM

8201 7/27/2022 08/31/2022 8/31/2022 11:59:59 PM

8202 8/2/2022 08/31/2022 8/31/2022 11:59:59 PM

8203 8/8/2022 08/31/2022 8/31/2022 11:59:59 PM

8204 8/19/2022 08/31/2022 8/31/2022 11:59:59 PM

8205 9/26/2022 11/30/2022 11/30/2022 11:59:59 PM

8206 10/14/2022 11/30/2022 11/30/2022 11:59:59 PM

8207 10/29/2022 11/30/2022 11/30/2022 11:59:59 PM

Because the first_month_of_year argument of 3 is used in the quarterend() function, the start of the
year moves from January 1 to March 1.

Diagram of the quarterend() function with March as the first month of the year

Transaction 8203 took place on August 8. Because the beginning of the year is March 1, the
quarters in the year occur between Mar-May, Jun-Aug, Sep-Nov, and Dec-Feb.

The quarterend() function identifies that the transaction took place in the quarter between the start
of June and of August and returns the last millisecond of that quarter, which is August 31 at
11:59:59 PM.

Example 4 - Chart object example
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

However, in this example, the dataset is unchanged and loaded into the application. The calculation
that returns a timestamp for the end of the quarter when the transactions took place is created as a
measure in a chart in the app.

Script syntax and chart functions - Qlik Sense, May 2024 1015

8 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

To calculate the end date of the quarter that a transaction takes place in, create the following
measures:

l =quarterend(date)

l =timestamp(quarterend(date))

id date =quarterend(date) =timestamp(quarterend(date))

8188 1/7/2022 03/31/2022 3/31/2022 11:59:59 PM

8189 1/19/2022 03/31/2022 3/31/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1016

8 Script and chart functions

id date =quarterend(date) =timestamp(quarterend(date))

8190 2/5/2022 03/31/2022 3/31/2022 11:59:59 PM

8191 2/28/2022 03/31/2022 3/31/2022 11:59:59 PM

8192 3/16/2022 03/31/2022 3/31/2022 11:59:59 PM

8193 4/1/2022 06/30/2022 6/30/2022 11:59:59 PM

8194 5/7/2022 06/30/2022 6/30/2022 11:59:59 PM

8195 5/16/2022 06/30/2022 6/30/2022 11:59:59 PM

8196 6/15/2022 06/30/2022 6/30/2022 11:59:59 PM

8197 6/26/2022 06/30/2022 6/30/2022 11:59:59 PM

8198 7/9/2022 09/30/2022 9/30/2022 11:59:59 PM

8199 7/22/2022 09/30/2022 9/30/2022 11:59:59 PM

8200 7/23/2022 09/30/2022 9/30/2022 11:59:59 PM

8201 7/27/2022 09/30/2022 9/30/2022 11:59:59 PM

8202 8/2/2022 09/30/2022 9/30/2022 11:59:59 PM

8203 8/8/2022 09/30/2022 9/30/2022 11:59:59 PM

8204 8/19/2022 09/30/2022 9/30/2022 11:59:59 PM

8205 9/26/2022 09/30/2022 9/30/2022 11:59:59 PM

8206 10/14/2022 12/31/2022 12/31/2022 11:59:59 PM

8207 10/29/2022 12/31/2022 12/31/2022 11:59:59 PM

The ‘end_of_quarter’ field is created in the preceding load statement by using the quarterend()

function and passing the date field as the function’s argument.

The quarterend() function initially identifies which quarter the date value falls into and then returns
a timestamp for the last millisecond of that quarter.

Diagram of the quarterend() function with the quarter end of transaction 8203 identified

Script syntax and chart functions - Qlik Sense, May 2024 1017

8 Script and chart functions

Transaction 8203 took place on August 8. The quarterend() function identifies that the transaction
took place in the third quarter, and returns the last millisecond of that quarter, which is September
30 at 11:59:59 PM.

Example 5 - Scenario
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset is loaded into a table called ‘Employee_Expenses’. The table contains the following
fields:

l Employee IDs
l Employee names
l The average daily expense claims of each employee.

The end user would like a chart object that displays, by employee id and employee name, the
estimated expense claims still to be incurred for the remainder of the quarter. The financial year
begins in January.

Load script

Employee_Expenses:

Load

*

Inline

[

employee_id,employee_name,avg_daily_claim

182,Mark, $15

183,Deryck, $12.5

184,Dexter, $12.5

185,Sydney,$27

186,Agatha,$18

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l employee_id

l employee_name

To calculate the accumulated interest, create the following measure:

l =(quarterend(today(1))-today(1))*avg_daily_claim

Set the measure’s Number Formatting to Money.

Script syntax and chart functions - Qlik Sense, May 2024 1018

8 Script and chart functions

employee_id employee_name =(quarterend(today(1))-today(1))*avg_daily_claim

182 Mark $480.00

183 Deryck $400.00

184 Dexter $400.00

185 Sydney $864.00

186 Agatha $576.00

Results table

The quarterend() function uses today’s date as its only argument and returns the end date of the
current month. Then, it subtracts today’s date from the year end date, and the expression returns
the number of days that remain this month.

This value is then multiplied by the average daily expense claim of each employee to calculate the
estimated value of claims each employee is expected to make in the remaining quarter.

quartername
This function returns a display value showing the months of the quarter (formatted
according to the MonthNames script variable) and year with an underlying numeric
value corresponding to a timestamp of the first millisecond of the first day of the
quarter.

Syntax:
QuarterName(date[, period_no[, first_month_of_year]])

Return data type: dual

Diagram of quartername() function

The quartername() function determines which quarter the date falls into. It then returns a value
showing the start-end months of this quarter as well as the year. The underlying numeric value of
this result is the first millisecond of the quarter.

Argument Description

date The date or timestamp to evaluate.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1019

8 Script and chart functions

Argument Description

period_no period_no is an integer, where the value 0 indicates the quarter which contains
date. Negative values in period_no indicate preceding quarters and positive
values indicate succeeding quarters.

first_
month_of_
year

If you want to work with (fiscal) years not starting in January, indicate a value
between 2 and 12 in first_month_of_year.

When to use it
The quartername() function is useful when you would like to compare aggregations by quarter. For
example, if you would like to see the total sales of products by quarter.

This function could be used in the load script to create a field in a Master Calendar table.
Alternatively, it could be used directly in a chart as a calculated dimension.

These examples use the date format MM/DD/YYYY. The date format is specified in the SET

DateFormat statement at the top of your data load script. Change the format in the examples to suit
your requirements.

Example Result

quartername('10/29/2013') Returns Oct-Dec 2013.

quartername('10/29/2013', -1) Returns Jul-Sep 2013.

quartername('10/29/2013', 0, 3) Returns Sep-Nov 2013.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Script syntax and chart functions - Qlik Sense, May 2024 1020

8 Script and chart functions

Example 1 – date with no additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, transaction_quarter, which returns the quarter in which the

transactions took place.

Add your other text here, as needed, with lists etc.

Load script

SET DateFormat='MM/DD/YYYY';

SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec';

Transactions:

Load

*,

quartername(date) as transaction_quarter

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

Script syntax and chart functions - Qlik Sense, May 2024 1021

8 Script and chart functions

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l transaction_quarter

date transaction_quarter

1/7/2022 Jan-Mar 2022

1/19/2022 Jan-Mar 2022

2/5/2022 Jan-Mar 2022

2/28/2022 Jan-Mar 2022

3/16/2022 Jan-Mar 2022

4/1/2022 Apr-Jun 2022

5/7/2022 Apr-Jun 2022

5/16/2022 Apr-Jun 2022

6/15/2022 Apr-Jun 2022

6/26/2022 Apr-Jun 2022

7/9/2022 Jul-Sep 2022

7/22/2022 Jul-Sep 2022

7/23/2022 Jul-Sep 2022

7/27/2022 Jul-Sep 2022

8/2/2022 Jul-Sep 2022

8/8/2022 Jul-Sep 2022

8/19/2022 Jul-Sep 2022

9/26/2022 Jul-Sep 2022

10/14/2022 Oct-Dec 2022

10/29/2022 Oct-Dec 2022

Results table

The transaction_quarter field is created in the preceding load statement by using the quartername()

function and passing the date field as the function’s argument.

The quartername() function initially identifies the quarter into which the date value falls. It then
returns a value showing the start-end months of this quarter, as well as the year.

Script syntax and chart functions - Qlik Sense, May 2024 1022

8 Script and chart functions

Diagram of quartername() function, example with no additional arguments

Transaction 8203 took place on August 8, 2022. The quartername() function identifies that the
transaction took place in the third quarter, and therefore returns Jul-Sep 2022. The months are
displayed in the same format as the MonthNames system variable.

Example 2 – date with period_no argument
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, previous_quarter, that that returns the previous quarter to when the

transactions took place.

Load script

SET DateFormat='MM/DD/YYYY';

SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec';

Transactions:

Load

*,

quartername(date,-1) as previous_quarter

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

Script syntax and chart functions - Qlik Sense, May 2024 1023

8 Script and chart functions

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_quarter

date previous_quarter

1/7/2022 Oct-Dec 2021

1/19/2022 Oct-Dec 2021

2/5/2022 Oct-Dec 2021

2/28/2022 Oct-Dec 2021

3/16/2022 Oct-Dec 2021

4/1/2022 Jan-Mar 2022

5/7/2022 Jan-Mar 2022

5/16/2022 Jan-Mar 2022

6/15/2022 Jan-Mar 2022

6/26/2022 Jan-Mar 2022

7/9/2022 Apr-Jun 2022

7/22/2022 Apr-Jun 2022

7/23/2022 Apr-Jun 2022

7/27/2022 Apr-Jun 2022

8/2/2022 Apr-Jun 2022

8/8/2022 Apr-Jun 2022

8/19/2022 Apr-Jun 2022

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1024

8 Script and chart functions

date previous_quarter

9/26/2022 Apr-Jun 2022

10/14/2022 Jul-Sep 2022

10/29/2022 Jul-Sep 2022

In this instance, because a period_no of -1 was used as the offset argument in the quartername()

function, the function first identifies that the transactions took place in the third quarter. It then
shifts one quarter prior and returns a value showing the start-end months of this quarter, as well as
the year.

Diagram of quartername() function, period_no example

Transaction 8203 took place on August 8. The quartername() function identifies that the quarter
before the transaction took place was between April 1 and June 30. Therefore, it returns Apr-Jun
2022.

Example 3 – date with first_week_day argument
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. However, in this
example, we need to set March 1 as the beginning of the financial year.

Load script

SET DateFormat='MM/DD/YYYY';

SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;Oct;Nov;Dec';

Transactions:

Load

*,

quartername(date,0,3) as transaction_quarter

;

Load

Script syntax and chart functions - Qlik Sense, May 2024 1025

8 Script and chart functions

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l transaction_quarter

date transaction_quarter

1/7/2022 Dec-Feb 2021

1/19/2022 Dec-Feb 2021

2/5/2022 Dec-Feb 2021

2/28/2022 Dec-Feb 2021

3/16/2022 Mar-May 2022

4/1/2022 Mar-May 2022

5/7/2022 Mar-May 2022

5/16/2022 Mar-May 2022

6/15/2022 Jun-Aug 2022

6/26/2022 Jun-Aug 2022

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1026

8 Script and chart functions

date transaction_quarter

7/9/2022 Jun-Aug 2022

7/22/2022 Jun-Aug 2022

7/23/2022 Jun-Aug 2022

7/27/2022 Jun-Aug 2022

8/2/2022 Jun-Aug 2022

8/8/2022 Jun-Aug 2022

8/19/2022 Jun-Aug 2022

9/26/2022 Sep-Nov 2022

10/14/2022 Sep-Nov 2022

10/29/2022 Sep-Nov 2022

In this instance, because the first_month_of_year argument of 3 is used in the quartername()

function, the start of the year moves from January 1 to March 1. Therefore, the quarters in the year
are separated into March-May, June-August, September-November and December-February.

Diagram of quartername() function, first_week_day example

Transaction 8203 took place on August 8. The quartername() function identifies that the transaction
took place in the second quarter, between the start of June and the end of August. Therefore, it
returns Jun-Aug 2022.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation that
returns a timestamp for the end of the quarter when the transactions took place is created as a
measure in a chart object of the application.

Script syntax and chart functions - Qlik Sense, May 2024 1027

8 Script and chart functions

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Create the following measure:

=quartername(date)

date =quartername(date)

1/7/2022 Jan-Mar 2022

1/19/2022 Jan-Mar 2022

2/5/2022 Jan-Mar 2022

2/28/2022 Jan-Mar 2022

3/16/2022 Jan-Mar 2022

4/1/2022 Apr-Jun 2022

5/7/2022 Apr-Jun 2022

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1028

8 Script and chart functions

date =quartername(date)

5/16/2022 Apr-Jun 2022

6/15/2022 Apr-Jun 2022

6/26/2022 Apr-Jun 2022

7/9/2022 Jul-Sep 2022

7/22/2022 Jul-Sep 2022

7/23/2022 Jul-Sep 2022

7/27/2022 Jul-Sep 2022

8/2/2022 Jul-Sep 2022

8/8/2022 Jul-Sep 2022

8/19/2022 Jul-Sep 2022

9/26/2022 Jul-Sep 2022

10/14/2022 Oct-Dec 2022

10/29/2022 Oct-Dec 2022

The transaction_quarter measure is created in the chart object by using the quartername() function
and passing the date field as the function’s argument.

The quartername() function initially identifies the quarter into which the date value falls. It then
returns a value showing the start-end months of this quarter, as well as the year.

Diagram of quartername() function, chart object example

Transaction 8203 took place on August 8, 2022. The quartername() function identifies that the
transaction took place in the third quarter, and therefore returns Jul-Sep 2022. The months are
displayed in the same format as the MonthNames system variable.

Script syntax and chart functions - Qlik Sense, May 2024 1029

8 Script and chart functions

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.

The end user would like a chart object that presents the total sales by quarter for the transactions.
This could be achieved even when this dimension is not available in the data model, using the
quartername() function as a calculated dimension in the chart.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'1/7/2022',17.17

8189,'1/19/2022',37.23

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'5/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'6/26/2022',45.89

8198,'7/9/2022',36.23

8199,'7/22/2022',25.66

8200,'7/23/2022',82.77

8201,'7/27/2022',69.98

8202,'8/2/2022',76.11

8203,'8/8/2022',25.12

8204,'8/19/2022',46.23

8205,'9/26/2022',84.21

8206,'10/14/2022',96.24

8207,'10/29/2022',67.67

];

Script syntax and chart functions - Qlik Sense, May 2024 1030

8 Script and chart functions

Results

Do the following:

1. Load the data and open a sheet. Create a new table.
2. Create a calculated dimension using the following expression:

=quartername(date)

3. Next, calculate total sales using the following aggregation measure:
=sum(amount)

4. Set the measure's Number formatting to Money.

=quartername(date) =sum(amount)

Jul-Sep 2022 $446.31

Apr-Jun 2022 $351.48

Jan-Mar 2022 $253.89

Oct-Dec 2022 $163.91

Results table

quarterstart
This function returns a value corresponding to a timestamp of the first millisecond of
the quarter containing date. The default output format will be the DateFormat set in
the script.

Syntax:
QuarterStart(date[, period_no[, first_month_of_year]])

Return data type: dual

Diagram of quarterstart() function

The quarterstart() function determines which quarter the date falls into. It then returns a
timestamp, in date format, for the first millisecond of the first month of that quarter.

Script syntax and chart functions - Qlik Sense, May 2024 1031

8 Script and chart functions

Argument Description

date The date or timestamp to evaluate.

period_no period_no is an integer, where the value 0 indicates the quarter which contains
date. Negative values in period_no indicate preceding quarters and positive
values indicate succeeding quarters.

first_
month_of_
year

If you want to work with (fiscal) years not starting in January, indicate a value
between 2 and 12 in first_month_of_year.

Arguments

When to use it
The quarterstart() function is commonly used as part of an expression when the user would like
the calculation to use the fraction of the quarter that has elapsed thus far. For example, it could be
used if a user would like to calculate the interest that has been accumulated in a quarter to date.

Example Result

quarterstart('10/29/2005') Returns 10/01/2005.

quarterstart('10/29/2005', -1) Returns 07/01/2005.

quarterstart('10/29/2005', 0, 3) Returns 09/01/2005.

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2024 1032

8 Script and chart functions

l A dataset containing a set of transactions for 2022, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, start_of_quarter, which returns a timestamp for the start of the

quarter when the transactions took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

quarterstart(date) as start_of_quarter,

timestamp(quarterstart(date)) as start_of_quarter_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l start_of_quarter

l start_of_quarter_timestamp

Script syntax and chart functions - Qlik Sense, May 2024 1033

8 Script and chart functions

date start_of_quarter start_of_quarter_timestamp

1/7/2022 01/01/2022 1/1/2022 12:00:00 AM

1/19/2022 01/01/2022 1/1/2022 12:00:00 AM

2/5/2022 01/01/2022 1/1/2022 12:00:00 AM

2/28/2022 01/01/2022 1/1/2022 12:00:00 AM

3/16/2022 01/01/2022 1/1/2022 12:00:00 AM

4/1/2022 04/01/2022 4/1/2021 12:00:00 AM

5/7/2022 04/01/2022 4/1/2021 12:00:00 AM

5/16/2022 04/01/2022 4/1/2021 12:00:00 AM

6/15/2022 04/01/2022 4/1/2021 12:00:00 AM

6/26/2022 04/01/2022 4/1/2021 12:00:00 AM

7/9/2022 07/01/2022 7/1/2021 12:00:00 AM

7/22/2022 07/01/2022 7/1/2021 12:00:00 AM

7/23/2022 07/01/2022 7/1/2021 12:00:00 AM

7/27/2022 07/01/2022 7/1/2021 12:00:00 AM

8/2/2022 07/01/2022 7/1/2021 12:00:00 AM

8/8/2022 07/01/2022 7/1/2021 12:00:00 AM

8/19/2022 07/01/2022 7/1/2021 12:00:00 AM

9/26/2022 07/01/2022 7/1/2021 12:00:00 AM

10/14/2022 10/01/2022 10/1/2022 12:00:00 AM

10/29/2022 10/01/2022 10/1/2022 12:00:00 AM

Results table

The start_of_quarter field is created in the preceding load statement by using the quarterstart()

function and passing the date field as the function’s argument. The quarterstart() function initially
identifies which quarter the date value falls into. It then returns a timestamp for the first millisecond
of that quarter.

Script syntax and chart functions - Qlik Sense, May 2024 1034

8 Script and chart functions

Diagram of quarterstart() function, example with no additional arguments

Transaction 8203 took place on August 8. The quarterstart() function identifies that the
transaction took place in the third quarter, and returns the first millisecond of that quarter, which is
July 1 at 12:00:00 AM.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, previous_quarter_start, that returns the timestamp for the start of the

quarter before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

quarterstart(date,-1) as previous_quarter_start,

timestamp(quarterstart(date,-1)) as previous_quarter_start_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

Script syntax and chart functions - Qlik Sense, May 2024 1035

8 Script and chart functions

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_quarter_start

l previous_quarter_start_timestamp

date previous_quarter_start previous_quarter_start_timestamp

1/7/2022 10/01/2021 10/1/2021 12:00:00 AM

1/19/2022 10/01/2021 10/1/2021 12:00:00 AM

2/5/2022 10/01/2021 10/1/2021 12:00:00 AM

2/28/2022 10/01/2021 10/1/2021 12:00:00 AM

3/16/2022 10/01/2021 10/1/2021 12:00:00 AM

4/1/2022 01/01/2022 1/1/2022 12:00:00 AM

5/7/2022 01/01/2022 1/1/2022 12:00:00 AM

5/16/2022 01/01/2022 1/1/2022 12:00:00 AM

6/15/2022 01/01/2022 1/1/2022 12:00:00 AM

6/26/2022 01/01/2022 1/1/2022 12:00:00 AM

7/9/2022 04/01/2022 4/1/2021 12:00:00 AM

7/22/2022 04/01/2022 4/1/2021 12:00:00 AM

7/23/2022 04/01/2022 4/1/2021 12:00:00 AM

7/27/2022 04/01/2022 4/1/2021 12:00:00 AM

8/2/2022 04/01/2022 4/1/2021 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1036

8 Script and chart functions

date previous_quarter_start previous_quarter_start_timestamp

8/8/2022 04/01/2022 4/1/2021 12:00:00 AM

8/19/2022 04/01/2022 4/1/2021 12:00:00 AM

9/26/2022 04/01/2022 4/1/2021 12:00:00 AM

10/14/2022 07/01/2022 7/1/2022 12:00:00 AM

10/29/2022 07/01/2022 7/1/2022 12:00:00 AM

In this instance, because a period_no of -1 was used as the offset argument in the quarterstart()

function, the function first identifies the quarter that the transactions take place in. It then shifts one
quarter prior and identifies the first millisecond of that quarter.

Diagram of quarterstart() function, period_no example

Transaction 8203 took place on August 8. The quarterstart() function identifies that the quarter
before the transaction took place was between April 1 and June 30. It then returns the first
millisecond of that quarter, April 1 at 12:00:00 AM.

Example 3 – first_month_of_year
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. However, in this
example, we need to set March 1 as the beginning of the financial year.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

quarterstart(date,0,3) as start_of_quarter,

Script syntax and chart functions - Qlik Sense, May 2024 1037

8 Script and chart functions

timestamp(quarterstart(date,0,3)) as start_of_quarter_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l start_of_quarter

l start_of_quarter_timestamp

date start_of_quarter start_of_quarter_timestamp

1/7/2022 12/01/2021 12/1/2021 12:00:00 AM

1/19/2022 12/01/2021 12/1/2021 12:00:00 AM

2/5/2022 12/01/2021 12/1/2021 12:00:00 AM

2/28/2022 12/01/2021 12/1/2021 12:00:00 AM

3/16/2022 03/01/2022 3/1/2022 12:00:00 AM

4/1/2022 03/01/2022 3/1/2022 12:00:00 AM

5/7/2022 03/01/2022 3/1/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1038

8 Script and chart functions

date start_of_quarter start_of_quarter_timestamp

5/16/2022 03/01/2022 3/1/2022 12:00:00 AM

6/15/2022 06/01/2022 6/1/2022 12:00:00 AM

6/26/2022 06/01/2022 6/1/2022 12:00:00 AM

7/9/2022 06/01/2022 6/1/2022 12:00:00 AM

7/22/2022 06/01/2022 6/1/2022 12:00:00 AM

7/23/2022 06/01/2022 6/1/2022 12:00:00 AM

7/27/2022 06/01/2022 6/1/2022 12:00:00 AM

8/2/2022 06/01/2022 6/1/2022 12:00:00 AM

8/8/2022 06/01/2022 6/1/2022 12:00:00 AM

8/19/2022 06/01/2022 6/1/2022 12:00:00 AM

9/26/2022 09/01/2022 9/1/2022 12:00:00 AM

10/14/2022 09/01/2022 9/1/2022 12:00:00 AM

10/29/2022 09/01/2022 9/1/2022 12:00:00 AM

In this instance, because the first_month_of_year argument of 3 is used in the quarterstart()

function, the start of the year moves from January 1 to March 1.

Diagram of quarterstart() function, first_month_of_year example

Transaction 8203 took place on August 8. Because the beginning of the year is March 1, the
quarters in the year occur between March-May, June-August, September-November and
December-February. The quarterstart() function identifies that the transaction took place in the
quarter between the start of June and of August and returns the first millisecond of that quarter,
which is June 1 at 12:00:00 AM.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, May 2024 1039

8 Script and chart functions

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation that
returns a timestamp for the end of the quarter when the transactions took place is created as a
measure in a chart object of the application.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Add the following measures:

l =quarterstart(date)

l =timestamp(quarterstart(date))

date =quarterstart(date) =timestamp(quarterstart(date))

10/14/2022 10/01/2022 10/1/2022 12:00:00 AM

10/29/2022 10/01/2022 10/1/2022 12:00:00 AM

7/9/2022 07/01/2022 7/1/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1040

8 Script and chart functions

date =quarterstart(date) =timestamp(quarterstart(date))

7/22/2022 07/01/2022 7/1/2022 12:00:00 AM

7/23/2022 07/01/2022 7/1/2022 12:00:00 AM

7/27/2022 07/01/2022 7/1/2022 12:00:00 AM

8/2/2022 07/01/2022 7/1/2022 12:00:00 AM

8/8/2022 07/01/2022 7/1/2022 12:00:00 AM

8/19/2022 07/01/2022 7/1/2022 12:00:00 AM

9/26/2022 07/01/2022 7/1/2022 12:00:00 AM

4/1/2022 04/01/2022 4/1/2022 12:00:00 AM

5/7/2022 04/01/2022 4/1/2022 12:00:00 AM

5/16/2022 04/01/2022 4/1/2022 12:00:00 AM

6/15/2022 04/01/2022 4/1/2022 12:00:00 AM

6/26/2022 04/01/2022 4/1/2022 12:00:00 AM

1/7/2022 01/01/2022 1/1/2022 12:00:00 AM

1/19/2022 01/01/2022 1/1/2022 12:00:00 AM

2/5/2022 01/01/2022 1/1/2022 12:00:00 AM

2/28/2022 01/01/2022 1/1/2022 12:00:00 AM

3/16/2022 01/01/2022 1/1/2022 12:00:00 AM

The start_of_quarter measure is created in the chart object by using the quarterstart() function
and passing the date field as the function’s argument.

The quarterstart() function identifies the quarter into which the date value falls, returning a
timestamp for the first millisecond of that quarter.

Diagram of quarterstart() function, chart object example

Transaction 8203 took place on August 8. The quarterstart() function identifies that the
transaction took place in the third quarter, and returns the first millisecond of that quarter. This
returned value is July 1 at 12:00:00 AM.

Script syntax and chart functions - Qlik Sense, May 2024 1041

8 Script and chart functions

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of loan balances, which is loaded into a table called Loans.
l Data consisting of loan IDs, the balance at the beginning of the quarter, and the simple

interest rate charged on each loan per annum.

The end user would like a chart object that displays, by loan ID, the current interest that has been
accrued on each loan in the quarter to date.

Load script

Loans:

Load

*

Inline

[

loan_id,start_balance,rate

8188,$10000.00,0.024

8189,$15000.00,0.057

8190,$17500.00,0.024

8191,$21000.00,0.034

8192,$90000.00,0.084

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add these fields as dimensions:
l loan_id

l start_balance

2. Next, create this measure to calculate the accumulated interest:
=start_balance*(rate*(today(1)-quarterstart(today(1)))/365)

3. Set the measure's Number formatting to Money.

loan_id start_balance =start_balance*(rate*(today(1)-quarterstart(today(1)))/365)

8188 $10000.00 $15.07

8189 $15000.00 $128.84

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1042

8 Script and chart functions

loan_id start_balance =start_balance*(rate*(today(1)-quarterstart(today(1)))/365)

8190 $17500.00 $63.29

8191 $21000.00 $107.59

8192 $90000.00 $1139.18

The quarterstart() function, using today’s date as its only argument, returns the start date of the
current year. By subtracting that result from the current date, the expression returns the number of
days that have elapsed so far this quarter.

This value is then multiplied by the interest rate and divided by 365 to return the effective interest
rate incurred for this period. The result is then multiplied by the starting balance of the loan to
return the interest that has been accrued so far this quarter.

second
This function returns an integer representing the second when the fraction of the
expression is interpreted as a time according to the standard number interpretation.

Syntax:
second (expression)

Return data type: integer

When to use it
The second() function is useful when you would like to compare aggregations by second. For
example, the function can be used if you would like to see activity count distribution by second.

These dimensions can be created either in the load script by using the function to create a field in a
Master Calendar table, or used directly in a chart as a calculated dimension.

Example Result

second('09:14:36') returns 36

second('0.5555') returns 55 (Because 0.5555 = 13:19:55)

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Script syntax and chart functions - Qlik Sense, May 2024 1043

8 Script and chart functions

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – Variable
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing transactions by timestamp, which is loaded into a table called
Transactions.

l The default TimeStamp system variable (M/D/YYYY h:mm:ss[.fff] TT) is used.
l The creation of a field, second, to calculate when purchases took place.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*,

second(date) as second

;

Load

*

Inline

[

id,date,amount

9497,'01/05/2022 7:04:57 PM',47.25

9498,'01/03/2022 2:21:53 PM',51.75

9499,'01/03/2022 5:40:49 AM',73.53

9500,'01/04/2022 6:49:38 PM',15.35

9501,'01/01/2022 10:10:22 PM',31.43

9502,'01/05/2022 7:34:46 PM',13.24

9503,'01/06/2022 10:58:34 PM',74.34

9504,'01/06/2022 11:29:38 AM',50.00

9505,'01/02/2022 8:35:54 AM',36.34

9506,'01/06/2022 8:49:09 AM',74.23

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 1044

8 Script and chart functions

l date

l second

date second

01/01/2022 10:10:22 PM 22

01/02/2022 8:35:54 AM 54

01/03/2022 5:40:49 AM 49

01/03/2022 2:21:53 PM 53

01/04/2022 6:49:38 PM 38

01/05/2022 7:04:57 PM 57

01/05/2022 7:34:46 PM 46

01/06/2022 8:49:09 AM 9

01/06/2022 11:29:38 AM 38

01/06/2022 10:58:34 PM 34

Results table

The values in the second field are created by using the second() function and passing the date as the
expression in the preceding load.statement.

Example 2 – Chart object
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. However, in this
example, the unchanged dataset is loaded into the application. The second values are calculated via
a measure in a chart object.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

Transactions:

Load

*

Inline

[

id,date,amount

9497,'01/05/2022 7:04:57 PM',47.25

9498,'01/03/2022 2:21:53 PM',51.75

9499,'01/03/2022 5:40:49 AM',73.53

Script syntax and chart functions - Qlik Sense, May 2024 1045

8 Script and chart functions

9500,'01/04/2022 6:49:38 PM',15.35

9501,'01/01/2022 10:10:22 PM',31.43

9502,'01/05/2022 7:34:46 PM',13.24

9503,'01/06/2022 10:58:34 PM',74.34

9504,'01/06/2022 11:29:38 AM',50.00

9505,'01/02/2022 8:35:54 AM',36.34

9506,'01/06/2022 8:49:09 AM',74.23

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:date.

Create the following measure:

=second(date)

date =second(date)

01/01/2022 10:10:22 PM 22

01/02/2022 8:35:54 AM 54

01/03/2022 5:40:49 AM 49

01/03/2022 2:21:53 PM 53

01/04/2022 6:49:38 PM 38

01/05/2022 7:04:57 PM 57

01/05/2022 7:34:46 PM 46

01/06/2022 8:49:09 AM 9

01/06/2022 11:29:38 AM 38

01/06/2022 10:58:34 PM 34

Results table

The values for second are created by using the second() function and passing the date as the
expression in a measure for the chart object.

Example 3 – Scenario
Load script and chart expressions

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2024 1046

8 Script and chart functions

l A dataset of timestamps, which is generated to represent the traffic to a particular festival's
ticket sales website. These timestamps and a corresponding id are loaded into a table called
Web_Traffic.

l The TimeStamp system variable M/D/YYYY h:mm:ss[.fff] TT is used.

In this scenario, there were 10000 tickets, which went on sale at 9:00 AM on May 20, 2021. One
minute later, the tickets were sold out.

The user would like a chart object that shows, by second, the count of visits to the website.

Load script

SET TimestampFormat='M/D/YYYY h:mm:ss[.fff] TT';

tmpTimeStampCreator:

load

makedate(2022,05,20) as date

AutoGenerate 1;

join load

maketime(9+floor(rand()*2),0,floor(rand()*59)) as time

autogenerate 10000;

Web_Traffic:

load

recno() as id,

timestamp(date + time) as timestamp

resident tmpTimeStampCreator;

drop table tmpTimeStampCreator;

Results

Do the following:

1. Load the data and open a sheet. Create a new table.
2. Next, create a calculated dimensions using the following expression:

=second(timestamp)

3. Create an aggregation measure to calculate the total count of entries:
=count(id)

The results table will look similar to the table below, but with different values for the aggregation
measure:

second(timestamp) =count(id)

0 150

1 184

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1047

8 Script and chart functions

second(timestamp) =count(id)

2 163

3 178

4 179

5 158

6 177

7 169

8 149

9 186

10 169

11 179

12 186

13 182

14 180

15 153

16 191

17 203

18 158

19 159

20 163

+ 39 more rows

setdateyear
This function takes as input a timestamp and a year and updates the timestamp with
the year specified in input.

Syntax:
setdateyear (timestamp, year)

Script syntax and chart functions - Qlik Sense, May 2024 1048

8 Script and chart functions

Return data type: dual

Arguments:

Argument Description

timestamp A standard Qlik Sense timestamp (often just a date).

year A four-digit year.

Arguments

Examples and results:
These examples use the date format DD/MM/YYYY. The date format is specified in the SET
DateFormat statement at the top of your data load script. Change the format in the examples to suit
your requirements.

Example Result

setdateyear

('29/10/2005',

2013)

Returns '29/10/2013

setdateyear

('29/10/2005

04:26:14', 2013)

Returns '29/10/2013 04:26:14'
To see the time part of the timestamp in a visualization, you must set the
number formatting to Date and choose a value for Formatting that displays
time values.

Scripting examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

SetYear:

Load *,

SetDateYear(testdates, 2013) as NewYear

Inline [

testdates

1/11/2012

10/12/2012

1/5/2013

2/1/2013

19/5/2013

15/9/2013

11/12/2013

2/3/2014

14/5/2014

13/6/2014

7/7/2014

4/8/2014

];

Script syntax and chart functions - Qlik Sense, May 2024 1049

8 Script and chart functions

The resulting table contains the original dates and a column in which the year has be set to 2013.

testdates NewYear

1/11/2012 1/11/2013

10/12/2012 10/12/2013

2/1/2012 2/1/2013

1/5/2013 1/5/2013

19/5/2013 19/5/2013

15/9/2013 15/9/2013

11/12/2013 11/12/2013

2/3/2014 2/3/2013

14/5/2014 14/5/2013

13/6/2014 13/6/2013

7/7/2014 7/7/2013

4/8/2014 4/8/2013

Results table

setdateyearmonth
This function takes as input a timestamp, a month and a year and updates the
timestamp with the year and the month specified in input. .

Syntax:
SetDateYearMonth (timestamp, year, month)

Return data type: dual

Arguments:

Argument Description

timestamp A standard Qlik Sense timestamp (often just a date).

year A four-digit year.

month A one or two-digit month.

Arguments

Examples and results:
These examples use the date format DD/MM/YYYY. The date format is specified in the SET
DateFormat statement at the top of your data load script. Change the format in the examples to suit
your requirements.

Script syntax and chart functions - Qlik Sense, May 2024 1050

8 Script and chart functions

Example Result

setdateyearmonth

('29/10/2005', 2013,

3)

Returns '29/03/2013

setdateyearmonth

('29/10/2005

04:26:14', 2013, 3)

Returns '29/03/2013 04:26:14'
To see the time part of the timestamp in a visualization, you must set the
number formatting to Date and choose a value for Formatting that
displays time values.

Scripting examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

SetYearMonth:

Load *,

SetDateYearMonth(testdates, 2013,3) as NewYearMonth

Inline [

testdates

1/11/2012

10/12/2012

2/1/2013

19/5/2013

15/9/2013

11/12/2013

14/5/2014

13/6/2014

7/7/2014

4/8/2014

];

The resulting table contains the original dates and a column in which the year has be set to 2013.

testdates NewYearMonth

1/11/2012 1/3/2013

10/12/2012 10/3/2013

2/1/2012 2/3/2013

19/5/2013 19/3/2013

15/9/2013 15/3/2013

11/12/2013 11/3/2013

14/5/2014 14/3/2013

13/6/2014 13/3/2013

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1051

8 Script and chart functions

testdates NewYearMonth

7/7/2014 7/3/2013

4/8/2014 4/3/2013

timezone
This function returns the time zone, as defined on the computer where the Qlik engine
is running.

Syntax:
TimeZone()

Return data type: dual

Example:

timezone()

If you want to see a different timezone in a measure in your app, you can use the localtime()

function in a measure.

today
This function returns the current date. The function returns values in the DateFormat

system variable format.

Syntax:
today([timer_mode])

Return data type: dual

The today() function can be used either in the load script or in chart objects.

The default timer_mode value is 1.

Argument Description

timer_mode Can have the following values:

0 (day of last finished data load)
1 (day of function call)
2 (day when the app was opened)

If you use the function in a load script, timer_mode=0 will result in the
day of the last finished data load, while timer_mode=1 will give the
day of the current data load.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1052

8 Script and chart functions

timer_
mode
value

Result if used in load script Result if used in chart object

0 Returns a date, in the DateFormat

system variable format, of the last
successful data reload prior to the
latest data reload.

Returns a date, in the DateFormat system
variable format, for the latest data reload.

1 Returns a date, in the DateFormat

system variable format, for the latest
data reload.

Returns a date, in the DateFormat system
variable format, of the function call.

2 Returns a date, in the DateFormat

system variable format, for when the
user’s session in the application
began. This will not be updated
unless the user reloads the script.

Returns the date, in the DateFormat system
variable format, for when the user’s session
in the application began. This will be
refreshed once a new session begins or the
data in the application is reloaded.

Function examples

When to use it
The today() function is commonly used as a component within an expression. For example, it can be
used to calculate the interest that has accumulated in a month up to the current date.

The following table provides an explanation of the result returned by the today() function, given
different values for the timer_mode argument:

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Script syntax and chart functions - Qlik Sense, May 2024 1053

8 Script and chart functions

Example 1 – Generation of objects using load script
Load script and results

Overview

The following example creates three variables using the today() function. Each variable uses one of
the timer_mode options to demonstrate their effect.

For the variables to demonstrate their purpose, reload the script and then, after 24 hours, reload
the script a second time. This will result in the today(0) and today(1) variables showing different
values, thereby correctly demonstrating their purpose.

Load script

LET vPreviousDataLoad = today(0);

LET vCurrentDataLoad = today(1);

LET vApplicationOpened = today(2);

Results

Once the data has been loaded for a second time, create three textboxes using the directions
below.

First, create a textbox for the data which has previously been loaded.

Do the following:

1. Using the Text & Image chart object, create a textbox.
2. Add the following measure to the object:

=vPreviousDataLoad

3. Under Appearance, select Show titles and add the title 'Previous Reload Time' to the object.

Next, create a textbox for the data which is currently being loaded.

Do the following:

1. Using the Text & Image chart object, create a textbox.
2. Add the following measure to the object:

=vCurrentDataLoad

3. Under Appearance, select Show titles and add the title 'Current Reload Time' to the object.

Create a final textbox to show when the user's session in the application was started.

Do the following:

1. Using the Text & Image chart object, create a textbox.
2. Add the following measure to the object:

Script syntax and chart functions - Qlik Sense, May 2024 1054

8 Script and chart functions

=vApplicationOpened

3. Under Appearance, select Show titles and add the title 'User Session Started' to the object.

Diagram of variables created using today() function in load script

The above image shows example values for each of the created variables. For example, the values
could be as follows:

l Previous Reload Time: 06/22/2022
l Current Reload Time: 06/23/2022
l User Session Began: 06/23/2022

Example 2 – Generation of objects without load script
Load script and chart expression

Overview

The following example creates three chart objects using the today() function. Each chart object
uses one of the timer_mode options to demonstrate their effect.

There is no load script for this example.

Results

Once the data has been loaded for a second time, create three textboxes.

First, create a textbox for the latest data reload.

Do the following:

1. Using the Text & Image chart object, create a textbox.
2. Add the following measure.

=today(0)

3. Under Appearance, select Show titles and add the title 'Latest Data Reload' to the object.

Next, create a textbox to show the current time.

Script syntax and chart functions - Qlik Sense, May 2024 1055

8 Script and chart functions

Do the following:

1. Using the Text & Image chart object, create a textbox.
2. Add the following measure:

=today(1)

3. Under Appearance, select Show titles and add the title 'Current Time' to the object.

Create a final textbox to show when the user's session in the application was started.

Do the following:

1. Using the Text & Image chart object, create a textbox.
2. Add the following measure:

=today(2)

3. Under Appearance, select Show titles and add the title 'User Session Began' to the object.

Diagram of objects created using today() function without load script

The above image shows example values for each of the created objects. For example, the values
could be as follows:

l Latest Data Reload: 06/23/2022
l Current Time: 06/23/2022
l User Session Began: 06/23/2022

The 'Latest Data Reload' chart object uses a timer_mode value of 0. This returns the timestamp for
the last time the data was successfully reloaded.

The 'Current Time' chart object uses a timer_mode value of 1. This returns the current time according
to the system clock. If the sheet or object is refreshed, this value will be updated.

The 'User Session Began' chart object uses a timer_mode value of 2. This returns the timestamp for
when the application was opened, and the user’s session began.

Example 3 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, May 2024 1056

8 Script and chart functions

The load script contains:

l A dataset containing a set of loan balances, which is loaded into a table called Loans.
l Table data with fields for loan ID, balance at the start of the month, and the simple interest

rate charged on each loan per annum.

The end user would like a chart object that displays, by loan ID, the current interest that has been
accrued on each loan in the month to date. Although the application is only reloaded once per week,
the user would like the results to be refreshed whenever the object or application is refreshed.

Load script

Loans:

Load

*

Inline

[

loan_id,start_balance,rate

8188,$10000.00,0.024

8189,$15000.00,0.057

8190,$17500.00,0.024

8191,$21000.00,0.034

8192,$90000.00,0.084

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table.
2. Add the following fields as dimensions.

l loan_id

l start_balance

3. Next, create a measure to calculate accumulated interest:
=start_balance*(rate*(today(1)-monthstart(today(1)))/365)

4. Set the measure's Number formatting to Money.

loan_id start_balance =start_balance*(rate*(today(1)-monthstart(today(1)))/365)

8188 $10000.00 $16.44

8189 $15000.00 $58.56

8190 $17500.00 $28.77

8191 $21000.00 $48.90

8192 $90000.00 $517.81

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1057

8 Script and chart functions

The monthstart() function, using the today() function to return today’s date as its only argument,
returns the start date of the current month. By subtracting that result from the current date, again
using the today() function, the expression returns the number of days that have elapsed so far this
month.

This value is then multiplied by the interest rate and divided by 365 to return the effective interest
rate incurred for this period. The result is then multiplied by the starting balance of the loan to
return the interest that has been accrued so far this month.

Because the value of 1 is used as the timer_mode argument in the today() functions inside the
expression, each time the chart object is refreshed (by opening the application, refreshing the
page, moving between sheets etc.), the date returned will be for the current date, and the results
will be refreshed accordingly.

UTC
Returns the current Coordinated Universal Time.

Syntax:
UTC()

Return data type: dual

Example:

utc()

week
This function returns an integer representing the week number corresponding to the
date entered.

Syntax:
week(timestamp [, first_week_day [, broken_weeks [, reference_day]]])

Return data type: integer

Argument Description

timestamp The date or timestamp to evaluate.

first_week_
day

Specifies the day on which the week starts. If omitted, the value of variable
FirstWeekDay is used.

The possible values first_week_day are 0 for Monday, 1 for Tuesday, 2 for
Wednesday, 3 for Thursday, 4 for Friday, 5 for Saturday, and 6 for Sunday.

For more information about the system variable, see FirstWeekDay (page 228).

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1058

8 Script and chart functions

Argument Description

broken_
weeks

If you don't specify broken_weeks, the value of variable BrokenWeeks will be
used to define if weeks are broken or not.

reference_
day

If you don't specify reference_day, the value of variable ReferenceDay will be
used to define which day in January to set as reference day to define week 1. By
default, Qlik Sense functions use 4 as the reference day. This means that week 1
must contain January 4, or put differently, that week 1 must always have at least
4 days in January.

The week() function determines which week the date falls into and returns the week number.

 In Qlik Sense, the regional settings are fetched when the app is created, and the corresponding
settings are stored in the script as environment variables. These are used to determine the week
number.

This means that most European app developers gets the following environment variables,
corresponding to the ISO 8601 definition:

Set FirstWeekDay =0; // Monday as first week day

Set BrokenWeeks =0; // Use unbroken weeks

Set ReferenceDay =4; // Jan 4th is always in week 1

A North American app developer often gets the following environment variables:

Set FirstWeekDay =6; // Sunday as first week day

Set BrokenWeeks =1; // Use broken weeks

Set ReferenceDay =1; // Jan 1st is always in week 1

The first day of the week is determined by the FirstWeekDay system variable. You can also change
the first day of the week by using the first_week_day argument in the week() function.

If your application uses broken weeks, the week number count begins on January 1 and ends on the
day prior to the FirstWeekDay system variable regardless of how many days have occurred.

If your application is using unbroken weeks, week 1 can begin in the previous year or in the first few
days of January. This depends on how you use the FirstWeekDay and the ReferenceDay environment
variables.

When to use it
The week() function is useful when you would like to compare aggregations by weeks. For example,
it could be used if you would like to see the total sales of products by week. The week() function is
chosen over weekname() when the user would like the calculation to not necessarily use the
application’s BrokenWeeks, FirstWeekDay, or ReferenceDay system variables.

For example, if you want to see the total sales of products by week.

If the application is using unbroken weeks, week 1 may contain dates from December of the
previous year or exclude dates in January of the current year. If the application is using broken
weeks, week 1 may contain less than seven days..

Script syntax and chart functions - Qlik Sense, May 2024 1059

8 Script and chart functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

The examples below assume

Set DateFormat= 'MM/DD/YYYY';

Set FirstWeekDay=0;

Set BrokenWeeks=0;

Set ReferenceDay=4;

Example Result

week('12/28/2021') Returns 52.

week(44614) Returns 8, since this is the serial number for 02/22/2022.

week('01/03/2021') Returns 53.

week('01/03/2021',6) Returns 1.

Function examples

Example 1 – Default system variables
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the last week of 2021 and the first two weeks of
2022, which is loaded into a table called Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, week_number, that returns the year and week number when the

transactions took place.
l The creation of a field called week_day, showing the weekday value of each transaction date.

Script syntax and chart functions - Qlik Sense, May 2024 1060

8 Script and chart functions

Load script

SET DateFormat='MM/DD/YYYY';

SET FirstWeekDay=6;

SET BrokenWeeks=1;

SET ReferenceDay=0;

Transactions:

Load

*,

WeekDay(date) as week_day,

Week(date) as week_number

;

Load

*

Inline

[

id,date,amount

8183,12/27/2021,58.27

8184,12/28/2021,67.42

8185,12/29/2021,23.80

8186,12/30/2021,82.06

8187,12/31/2021,40.56

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

8194,01/07/2022,40.56

8195,01/08/2022,53.67

8196,01/09/2022,26.63

8197,01/10/2022,72.48

8198,01/11/2022,18.37

8199,01/12/2022,45.26

8200,01/13/2022,58.23

8201,01/14/2022,18.52

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l week_day

l week_number

Script syntax and chart functions - Qlik Sense, May 2024 1061

8 Script and chart functions

id date week_day week_number

8183 12/27/2021 Mon 53

8184 12/28/2021 Tue 53

8185 12/29/2021 Wed 53

8186 12/30/2021 Thu 53

8187 12/31/2021 Fri 53

8188 01/01/2022 Sat 1

8189 01/02/2022 Sun 2

8190 01/03/2022 Mon 2

8191 01/04/2022 Tue 2

8192 01/05/2022 Wed 2

8193 01/06/2022 Thu 2

8194 01/07/2022 Fri 2

8195 01/08/2022 Sat 2

8196 01/09/2022 Sun 3

8197 01/10/2022 Mon 3

8198 01/11/2022 Tue 3

8199 01/12/2022 Wed 3

8200 01/13/2022 Thu 3

8201 01/14/2022 Fri 3

Results table

The week_number field is created in the preceding load statement by using the week() function and
passing the date field as the function’s argument.

No other parameters are passed into the function, and therefore the following default variables that
affect the week() function are in effect:

l BrokenWeeks: The week count begins on January 1
l FirstWeekDay: The first day of the week is Sunday

Script syntax and chart functions - Qlik Sense, May 2024 1062

8 Script and chart functions

Diagram of week() function, using default system variables

Because the application is using the default BrokenWeeks system variable, week 1 begins on January
1, a Saturday.

Because of the default FirstWeekDay system variable, weeks begin on a Sunday. The first Sunday
after January 1 occurs on January 2, which is when week 2 begins.

Example 2 – first_week_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The creation of a field, week_number, that returns the year and week number when the
transactions took place.

l The creation of a field called week_day, showing the weekday value of each transaction date.

In this example, we would like to set the start of the work week to Tuesday.

Load script

SET DateFormat='MM/DD/YYYY';

SET FirstWeekDay=6;

SET BrokenWeeks=1;

SET ReferenceDay=0;

Transactions:

Load

*,

WeekDay(date) as week_day,

Week(date,1) as week_number

;

Load

*

Inline

[

Script syntax and chart functions - Qlik Sense, May 2024 1063

8 Script and chart functions

id,date,amount

8183,12/27/2022,58.27

8184,12/28/2022,67.42

8185,12/29/2022,23.80

8186,12/30/2022,82.06

8187,12/31/2021,40.56

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

8194,01/07/2022,40.56

8195,01/08/2022,53.67

8196,01/09/2022,26.63

8197,01/10/2022,72.48

8198,01/11/2022,18.37

8199,01/12/2022,45.26

8200,01/13/2022,58.23

8201,01/14/2022,18.52

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l week_day

l week_number

id date week_day week_number

8183 12/27/2021 Mon 52

8184 12/28/2021 Tue 53

8185 12/29/2021 Wed 53

8186 12/30/2021 Thu 53

8187 12/31/2021 Fri 53

8188 01/01/2022 Sat 1

8189 01/02/2022 Sun 1

8190 01/03/2022 Mon 1

8191 01/04/2022 Tue 2

8192 01/05/2022 Wed 2

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1064

8 Script and chart functions

id date week_day week_number

8193 01/06/2022 Thu 2

8194 01/07/2022 Fri 2

8195 01/08/2022 Sat 2

8196 01/09/2022 Sun 2

8197 01/10/2022 Mon 2

8198 01/11/2022 Tue 3

8199 01/12/2022 Wed 3

8200 01/13/2022 Thu 3

8201 01/14/2022 Fri 3

The application is still using broken weeks. However, the first_week_day argument has been set to 1
in the week() function. This sets the first day of the week to a Tuesday.

Diagram of week() function, first_week_day example

The application is using the default BrokenWeeks system variable, so week 1 begins on January 1, a
Saturday.

The first_week_day argument of the week() function sets the first week day to a Tuesday. Therefore,
week 53 begins on December 28, 2021.

However, because the function is still using broken weeks, week 1 will only be two days long, due to
the first Tuesday after January 1 occurring on January 3.

Example 3 – unbroken_weeks
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

Script syntax and chart functions - Qlik Sense, May 2024 1065

8 Script and chart functions

In this example, we use unbroken weeks.

Load script

SET DateFormat='MM/DD/YYYY';

SET FirstWeekDay=6;

SET BrokenWeeks=1;

SET ReferenceDay=0;

Transactions:

Load

*,

WeekDay(date) as week_day,

Week(date,6,0) as week_number

;

Load

*

Inline

[

id,date,amount

8183,12/27/2022,58.27

8184,12/28/2022,67.42

8185,12/29/2022,23.80

8186,12/30/2022,82.06

8187,12/31/2021,40.56

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

8194,01/07/2022,40.56

8195,01/08/2022,53.67

8196,01/09/2022,26.63

8197,01/10/2022,72.48

8198,01/11/2022,18.37

8199,01/12/2022,45.26

8200,01/13/2022,58.23

8201,01/14/2022,18.52

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l week_day

l week_number

Script syntax and chart functions - Qlik Sense, May 2024 1066

8 Script and chart functions

Diagram of week() function, chart object example

id date week_day week_number

8183 12/27/2021 Mon 52

8184 12/28/2021 Tue 52

8185 12/29/2021 Wed 52

8186 12/30/2021 Thu 52

8187 12/31/2021 Fri 52

8188 01/01/2022 Sat 52

8189 01/02/2022 Sun 1

8190 01/03/2022 Mon 1

8191 01/04/2022 Tue 1

8192 01/05/2022 Wed 1

8193 01/06/2022 Thu 1

8194 01/07/2022 Fri 1

8195 01/08/2022 Sat 1

8196 01/09/2022 Sun 2

8197 01/10/2022 Mon 2

8198 01/11/2022 Tue 2

8199 01/12/2022 Wed 2

8200 01/13/2022 Thu 2

8201 01/14/2022 Fri 2

Results table

The first_week_date parameter is set to 1, making Tuesday the first day of the week. The broken_
weeks parameter it set to 0, forcing the function to use unbroken weeks. Finally, the third
parameter sets the reference_day to 2.

Script syntax and chart functions - Qlik Sense, May 2024 1067

8 Script and chart functions

The first_week_date parameter is set to 6, making Sunday the first day of the week. The broken_

weeks parameter is set to 0, forcing the function to use unbroken weeks.

Diagram of week() function, example using unbroken weeks

By using unbroken weeks, week 1 does not necessarily begin on January 1; instead, it is required to
have a minimum of four days. Therefore, in the dataset, week 52 concludes on Saturday, January 1,
2022. Week 1 then begins on the FirstWeekDay system variable, which is Sunday, January 2. This
week will conclude on the following Saturday, January 8.

Example 4 – reference_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the third example.
l The creation of a field, week_number, that returns the year and week number when the

transactions took place.
l The creation of a field called week_day, showing the weekday value of each transaction date.

Additionally, the following conditions must be met:

l The work week begins on a Tuesday.
l The company uses unbroken weeks.
l The reference_day value is 2. In other words, the minimum number of days in January in week

1 will be 2.

Load script

SET DateFormat='MM/DD/YYYY';

SET FirstWeekDay=6;

SET BrokenWeeks=1;

SET ReferenceDay=0;

Transactions:

Script syntax and chart functions - Qlik Sense, May 2024 1068

8 Script and chart functions

Load

*,

WeekDay(date) as week_day,

Week(date,1,0,2) as week_number

;

Load

*

Inline

[

id,date,amount

8183,12/27/2022,58.27

8184,12/28/2022,67.42

8185,12/29/2022,23.80

8186,12/30/2022,82.06

8187,12/31/2021,40.56

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

8194,01/07/2022,40.56

8195,01/08/2022,53.67

8196,01/09/2022,26.63

8197,01/10/2022,72.48

8198,01/11/2022,18.37

8199,01/12/2022,45.26

8200,01/13/2022,58.23

8201,01/14/2022,18.52

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l week_day

l week_number

id date week_day week_number

8183 12/27/2021 Mon 52

8184 12/28/2021 Tue 1

8185 12/29/2021 Wed 1

8186 12/30/2021 Thu 1

8187 12/31/2021 Fri 1

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1069

8 Script and chart functions

id date week_day week_number

8188 01/01/2022 Sat 1

8189 01/02/2022 Sun 1

8190 01/03/2022 Mon 1

8191 01/04/2022 Tue 2

8192 01/05/2022 Wed 2

8193 01/06/2022 Thu 2

8194 01/07/2022 Fri 2

8195 01/08/2022 Sat 2

8196 01/09/2022 Sun 2

8197 01/10/2022 Mon 2

8198 01/11/2022 Tue 3

8199 01/12/2022 Wed 3

8200 01/13/2022 Thu 3

8201 01/14/2022 Fri 3

The first_week_date parameter is set to 1, making Tuesday the first day of the week. The broken_

weeks parameter it set to 0, forcing the function to use unbroken weeks. Finally, the third parameter
sets the reference_day parameter to 2.

Diagram of week() function, reference_day example

With the function using unbroken weeks and a reference_day value of 2 used as a parameter, week 1
only needs to include two days in January. Due to the first weekday being Tuesday, week 1 begins
on December 28, 2021, and concludes on Monday, January 3, 2022.

Script syntax and chart functions - Qlik Sense, May 2024 1070

8 Script and chart functions

Example 5 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation that
returns the week number is created as a measure in a chart object.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8183,12/27/2022,58.27

8184,12/28/2022,67.42

8185,12/29/2022,23.80

8186,12/30/2022,82.06

8187,12/31/2021,40.56

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

8194,01/07/2022,40.56

8195,01/08/2022,53.67

8196,01/09/2022,26.63

8197,01/10/2022,72.48

8198,01/11/2022,18.37

8199,01/12/2022,45.26

8200,01/13/2022,58.23

8201,01/14/2022,18.52

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table.
2. Add the following fields as dimensions:

l id

l date

Script syntax and chart functions - Qlik Sense, May 2024 1071

8 Script and chart functions

3. Next, create the following measure:
=week (date)

4. Create a measure, week_day, to show the weekday value of each transaction date:
=weekday(date)

id date =week(date) =weekday(date)

8183 12/27/2021 53 Mon

8184 12/28/2021 53 Tue

8185 12/29/2021 53 Wed

8186 12/30/2021 53 Thu

8187 12/31/2021 53 Fri

8188 01/01/2022 1 Sat

8189 01/02/2022 2 Sun

8190 01/03/2022 2 Mon

8191 01/04/2022 2 Tue

8192 01/05/2022 2 Wed

8193 01/06/2022 2 Thu

8194 01/07/2022 2 Fri

8195 01/08/2022 2 Sat

8196 01/09/2022 3 Sun

8197 01/10/2022 3 Mon

8198 01/11/2022 3 Tue

8199 01/12/2022 3 Wed

8200 01/13/2022 3 Thu

8201 01/14/2022 3 Fri

Results table

The week_number field is created in the preceding load statement by using the week() function and
passing the date field as the function’s argument.

No other parameters are passed into the function, and therefore the following default variables that
affect the week() function are in effect:

l BrokenWeeks: The week count begins on January 1
l FirstWeekDay: The first day of the week is Sunday

Script syntax and chart functions - Qlik Sense, May 2024 1072

8 Script and chart functions

Diagram of week() function, chart object example

Because the application is using the default BrokenWeeks system variable, week 1 begins on January
1, a Saturday.

Because of the default FirstWeekDay system variable, weeks begin on a Sunday. The first Sunday
after January 1 occurs on January 2, which is when week 2 begins.

Example 6 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the last week of 2019 and first two weeks of
2020, which is loaded into a table called Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.

The application primarily uses broken weeks across its dashboard. However, the end user would
like a chart object that presents the total sales by week using unbroken weeks. The reference day
should be January 2, with weeks beginning on a Tuesday. This could be achieved even when this
dimension is not available in the data model, using the week() function as a calculated dimension in
the chart.

Load script

SET BrokenWeeks=1;

SET ReferenceDay=0;

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8183,12/27/2019,58.27

Script syntax and chart functions - Qlik Sense, May 2024 1073

8 Script and chart functions

8184,12/28/2019,67.42

8185,12/29/2019,23.80

8186,12/30/2019,82.06

8187,12/31/2019,40.56

8188,01/01/2020,37.23

8189,01/02/2020,17.17

8190,01/03/2020,88.27

8191,01/04/2020,57.42

8192,01/05/2020,53.80

8193,01/06/2020,82.06

8194,01/07/2020,40.56

8195,01/08/2020,53.67

8196,01/09/2020,26.63

8197,01/10/2020,72.48

8198,01/11/2020,18.37

8199,01/12/2020,45.26

8200,01/13/2020,58.23

8201,01/14/2020,18.52

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table.
2. Create the following calculated dimension:

=week(date)

3. Next, create the following aggregation measure:
=sum(amount)

4. Set the measure's Number formatting to Money.
5. Select the Sorting menu, and for the calculated dimension, remove custom sorting.
6. De-select the Sort numerically and Sort alphabetically options.

week(date) sum(amount)

52 $125.69

53 $146.42

1 $200.09

2 $347.57

3 $122.01

Results table

weekday
This function returns a dual value with:

l A day name as defined in the environment variable DayNames.
l An integer between 0-6 corresponding to the nominal day of the week (0-6).

Script syntax and chart functions - Qlik Sense, May 2024 1074

8 Script and chart functions

Syntax:
weekday(date [,first_week_day=0])

Return data type: dual

The weekday() function determines which day of the week a date occurs on. It then returns a string
value representing that day.

Diagram of weekday() function that returns the name of the day a date falls on

The result returns the number value corresponding to that day of the week (0-6), based on the
week’s start day. For example, if the first day of the week is set to Sunday, a Wednesday will return
a number value of 3. This start day is determined either by the FirstWeekDay system variable or the
first_week_day function parameter.

You can use this number value as a part of an arithmetic expression. For example, multiply it by 1 to
return the value itself.

Diagram of weekday() function with the number value of the day being shown instead of the name of the
day

When to use it

The weekday() function is useful when you want to compare aggregations by day of the week. For
example, if you want to compare the average sales of products by weekday.

These dimensions can be created in the load script by using the function to create a field in a
Master Calendar table; or created directly in a chart as a calculated measure.

Script syntax and chart functions - Qlik Sense, May 2024 1075

8 Script and chart functions

Topics Interaction

FirstWeekDay (page 228) Defines the start day of each week.

Related topics

Argument Description

date The date or timestamp to evaluate.

first_week_
day

Specifies the day on which the week starts. If omitted, the value of variable
FirstWeekDay is used.

FirstWeekDay (page 228)

Arguments

You can use the following values to set the day on which the week starts in the first_week_day

argument:

Day Value

Monday 0

Tuesday 1

Wednesday 2

Thursday 3

Friday 4

Saturday 5

Sunday 6

first_week_day values

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Unless stated otherwise, FirstWeekDay is set to 0 in these examples.

Script syntax and chart functions - Qlik Sense, May 2024 1076

8 Script and chart functions

Example Result

weekday('10/12/1971') Returns 'Tue' and 1.

weekday('10/12/1971' , 6) Returns 'Tue' and 2.

In this example, Sunday (6) is the first day of the week.

SET FirstWeekDay=6;

...

weekday('10/12/1971')

Returns 'Tue' and 2.

Function examples

Example 1 - Weekday string
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022 which is loaded into a table called
‘Transactions’.

l The FirstWeekDay system variable which is set to 6 (Sunday).
l The DayNames variable which is set to use the default day names.
l A preceding load which contains the weekday() function, which is set as the ‘week_day’ field

and returns the weekday the transactions took place.

Load script

SET DateFormat='MM/DD/YYYY';

SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';

SET FirstWeekDay=6;

Transactions:

Load

*,

WeekDay(date) as week_day

;

Load

*

Inline

[

id,date,amount

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

Script syntax and chart functions - Qlik Sense, May 2024 1077

8 Script and chart functions

8193,01/06/2022,82.06

8194,01/07/2022,40.39

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l week_day

id date week_day

8188 01/01/2022 Sat

8189 01/02/2022 Sun

8190 01/03/2022 Mon

8191 01/04/2022 Tue

8192 01/05/2022 Wed

8193 01/06/2022 Thu

8194 01/07/2022 Fri

Results table

The ‘week_day’ field is created in the preceding load statement by using the weekday() function and
passing the date field as the function’s argument.

The weekday() function returns the weekday string value; that is, it returns the name of the weekday
which is set by the DayNames system variable.

Diagram of weekday() function that returns Wednesday as the weekday for transaction 8192

Transaction 8192 took place on January 5. The FirstWeekDay system variable sets the first day of
the week as Sunday. The weekday() function transaction took place on a Wednesday and returns
this value, in the abbreviated form of the DayNames system variable, in the week_day field.

Script syntax and chart functions - Qlik Sense, May 2024 1078

8 Script and chart functions

The values in the ‘week_day’ field are right aligned in the column because there is a dual number and
text result for the field (Wednesday, 3). To convert the field value into its number equivalent, the
field can be wrapped inside the num() function. For example, in Transaction 8192, the Wednesday
value would be converted into the number 3.

Example 2 - first_week_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022 which is loaded into a table called
‘Transactions’.

l The FirstWeekDay system variable which is set to 6 (Sunday).
l The DayNames variable which is set to use the default day names.
l A preceding load which contains the weekday() function, which is set as the ‘week_day’ field

and returns the weekday the transactions took place.

Load script

SET DateFormat='MM/DD/YYYY';

SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';

SET FirstWeekDay=6;

Transactions:

Load

*,

WeekDay(date,1) as week_day

;

Load

*

Inline

[

id,date,amount

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

8194,01/07/2022,40.39

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 1079

8 Script and chart functions

l id

l date

l week_day

id date week_day

8188 01/01/2022 Sat

8189 01/02/2022 Sun

8190 01/03/2022 Mon

8191 01/04/2022 Tue

8192 01/05/2022 Wed

8193 01/06/2022 Thu

8194 01/07/2022 Fri

Results table

Diagram of weekday() function that shows Wednesday has the dual number value of 1

Because the first_week_day argument is set to 1 in the weekday() function, the first day of the week
is Tuesday. Therefore, all transactions that take place on a Tuesday will have a dual number value
of 0.

Transaction 8192 took place on January 5. The weekday() function identifies that this is a
Wednesday, and so the expression would return the dual number value of 1.

Example 3 - Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022 which is loaded into a table called
‘Transactions’.

Script syntax and chart functions - Qlik Sense, May 2024 1080

8 Script and chart functions

l The FirstWeekDay system variable which is set to 6 (Sunday).
l The DayNames variable which is set to use the default day names.

However, in this example, the dataset is unchanged and loaded into the application. The calculation
that identifies the weekday value is created as a measure in a chart in the app.

Load script

SET DateFormat='MM/DD/YYYY';

SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';

SET FirstWeekDay=6;

Transactions:

Load

*

Inline

[

id,date,amount

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

8194,01/07/2022,40.39

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

To calculate the weekday value, create the following measure:

l =weekday(date)

id date =weekday(date)

8188 01/01/2022 Sat

8189 01/02/2022 Sun

8190 01/03/2022 Mon

8191 01/04/2022 Tue

8192 01/05/2022 Wed

8193 01/06/2022 Thu

8194 01/07/2022 Fri

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1081

8 Script and chart functions

The ‘=weekday(date)’ field is created in the chart by using the weekday() function and passing the
date field as the function’s argument.

The weekday() function returns the weekday string value; that is, it returns the name of the weekday
which is set by the DayNames system variable.

Diagram of weekday() function that returns Wednesday as the weekday for transaction 8192

Transaction 8192 took place on January 5. The FirstWeekDay system variable sets the first day of
the week as Sunday. The weekday() function transaction took place on a Wednesday and returns
this value, in the abbreviated form of the DayNames system variable, in the =weekday(date) field.

Example 4 - Scenario
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022 which is loaded into a table called
‘Transactions’.

l The FirstWeekDay system variable which is set to 6 (Sunday).
l The DayNames variable which is set to use the default day names.

The end user would like a chart that presents the average sales by weekday for the transactions.

Load script

SET DateFormat='MM/DD/YYYY';

SET DayNames='Mon;Tue;Wed;Thu;Fri;Sat;Sun';

SET FirstWeekDay=6;

Transactions:

LOAD

RecNo() AS id,

MakeDate(2022, 1, Ceil(Rand() * 31)) as date,

Rand() * 1000 AS amount

Autogenerate(1000);

Script syntax and chart functions - Qlik Sense, May 2024 1082

8 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l =weekday(date)

l =avg(amount)

Set the measure’s Number Formatting to Money.

weekday(date) Avg(amount)

Sun $536.96

Mon $500.80

Tue $515.63

Wed $509.21

Thu $482.70

Fri $441.33

Sat $505.22

Results table

weekend
This function returns a value corresponding to a timestamp of the last millisecond of
the last day of the calendar week containing date. The default output format will be the
DateFormat set in the script.

Syntax:
WeekEnd(timestamp [, period_no [, first_week_day]])

Return data type: dual

The weekend() function determines which week the date falls into. It then returns a timestamp, in
date format, for the last millisecond of that week. The first day of the week is determined by the
FirstWeekDay environment variable. However, this can be superseded by the first_week_day

argument in the weekend() function.

Argument Description

timestamp The date or timestamp to evaluate.

period_no shift is an integer, where the value 0 indicates the week which contains date.
Negative values in shift indicate preceding weeks and positive values indicate
succeeding weeks.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1083

8 Script and chart functions

Argument Description

first_week_
day

Specifies the day on which the week starts. If omitted, the value of variable
FirstWeekDay is used.

The possible values for first_week_day are 0 for Monday, 1 for Tuesday, 2 for
Wednesday, 3 for Thursday, 4 for Friday, 5 for Saturday, and 6 for Sunday.

For more information about the system variable, see FirstWeekDay (page 228)

When to use it
The weekend() function is commonly used as part of an expression when the user would like the
calculation to use remaining days of the week for the specified date. For example, it could be used if
a user would like to calculate the total interest not yet incurred during the week.

The following examples assume:

SET FirstWeekDay=0;

Example Result

weekend('01/10/2013') Returns 01/12/2013 23:59:59.

weekend('01/10/2013', -1) Returns 01/05/2013 23:59:59..

weekend('01/10/2013', 0, 1) Returns 01/14/2013 23:59:59.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Examples:

If you want ISO settings for weeks and week numbers, make sure to have the following in the script:

Set DateFormat ='YYYY-MM-DD';

Set FirstWeekDay =0; // Monday as first week day

Set BrokenWeeks =0; //(use unbroken weeks)

Set ReferenceDay =4; // Jan 4th is always in week 1

If you want US settings, make sure to have the following in the script:

Script syntax and chart functions - Qlik Sense, May 2024 1084

8 Script and chart functions

Set DateFormat ='M/D/YYYY';

Set FirstWeekDay =6; // Sunday as first week day

Set BrokenWeeks =1; //(use broken weeks)

Set ReferenceDay =1; // Jan 1st is always in week 1

The examples above results in the following from the weekend() function:

Date ISO week end US week end

Sat 2020 Dec 26 2020-12-27 12/26/2020

Sun 2020 Dec 27 2020-12-27 1/2/2021

Mon 2020 Dec 28 2021-01-03 1/2/2021

Tue 2020 Dec 29 2021-01-03 1/2/2021

Wed 2020 Dec 30 2021-01-03 1/2/2021

Thu 2020 Dec 31 2021-01-03 1/2/2021

Fri 2021 Jan 1 2021-01-03 1/2/2021

Sat 2021 Jan 2 2021-01-03 1/2/2021

Sun 2021 Jan 3 2021-01-03 1/9/2021

Mon 2021 Jan 4 2021-01-10 1/9/2021

Tue 2021 Jan 5 2021-01-10 1/9/2021

Example of Weekend function

The week ends are on Sundays in the ISO column, and on Saturdays in the US column.

Example 1 – Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, end_of_week, that returns a timestamp for the end of the week when

the transactions took place.

Load script

SET FirstWeekDay=6;

Script syntax and chart functions - Qlik Sense, May 2024 1085

8 Script and chart functions

Transactions:

Load

*,

weekend(date) as end_of_week,

timestamp(weekend(date)) as end_of_week_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l end_of_week

l end_of_week_timestamp

date end_of_week end_of_week_timestamp

1/7/2022 01/08/2022 1/8/2022 11:59:59 PM

1/19/2022 01/22/2022 1/22/2022 11:59:59 PM

2/5/2022 02/05/2022 2/5/2022 11:59:59 PM

2/28/2022 03/05/2022 3/5/2022 11:59:59 PM

3/16/2022 03/19/2022 3/19/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1086

8 Script and chart functions

date end_of_week end_of_week_timestamp

4/1/2022 04/02/2022 4/2/2022 11:59:59 PM

5/7/2022 05/07/2022 5/7/2022 11:59:59 PM

5/16/2022 05/21/2022 5/21/2022 11:59:59 PM

6/15/2022 06/18/2022 6/18/2022 11:59:59 PM

6/26/2022 07/02/2022 7/2/2022 11:59:59 PM

7/9/2022 07/09/2022 7/9/2022 11:59:59 PM

7/22/2022 07/23/2022 7/23/2022 11:59:59 PM

7/23/2022 07/23/2022 7/23/2022 11:59:59 PM

7/27/2022 07/30/2022 7/30/2022 11:59:59 PM

8/2/2022 08/06/2022 8/6/2022 11:59:59 PM

8/8/2022 08/13/2022 8/13/2022 11:59:59 PM

8/19/2022 08/20/2022 8/20/2022 11:59:59 PM

9/26/2022 10/01/2022 10/1/2022 11:59:59 PM

10/14/2022 10/15/2022 10/15/2022 11:59:59 PM

10/29/2022 10/29/2022 10/29/2022 11:59:59 PM

The end_of_week field is created in the preceding load statement by using the weekend() function and
passing the date field as the function’s argument.

The weekend() function identifies which week the date value falls into and returns a timestamp for
the last millisecond of that week.

Diagram of weekend() function, basic example

Transaction 8191 took place on February 5. The FirstWeekDay system variable sets the first day of
the week to a Sunday. The weekend() function identifies that the first Saturday after February 5– and
therefore the end of the week – was on February 5. Therefore, the end_of_week value for that
transaction returns the last millisecond of that day, which is February 5 at 11:59:59 PM.

Script syntax and chart functions - Qlik Sense, May 2024 1087

8 Script and chart functions

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, previous_week_end,that returns the timestamp for the start of the week

before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

weekend(date,-1) as previous_week_end,

timestamp(weekend(date,-1)) as previous_week_end_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Script syntax and chart functions - Qlik Sense, May 2024 1088

8 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_week_end

l previous_week_end_timestamp

date end_of_week end_of_week_timestamp

1/7/2022 01/01/2022 1/1/2022 11:59:59 PM

1/19/2022 01/15/2022 1/15/2022 11:59:59 PM

2/5/2022 01/29/2022 1/29/2022 11:59:59 PM

2/28/2022 02/26/2022 2/26/2022 11:59:59 PM

3/16/2022 03/12/2022 3/12/2022 11:59:59 PM

4/1/2022 03/26/2022 3/26/2022 11:59:59 PM

5/7/2022 04/30/2022 4/30/2022 11:59:59 PM

5/16/2022 05/14/2022 5/14/2022 11:59:59 PM

6/15/2022 06/11/2022 6/11/2022 11:59:59 PM

6/26/2022 06/25/2022 6/25/2022 11:59:59 PM

7/9/2022 07/02/2022 7/2/2022 11:59:59 PM

7/22/2022 07/16/2022 7/16/2022 11:59:59 PM

7/23/2022 07/16/2022 7/16/2022 11:59:59 PM

7/27/2022 07/23/2022 7/23/2022 11:59:59 PM

8/2/2022 07/30/2022 7/30/2022 11:59:59 PM

8/8/2022 08/06/2022 8/6/2022 11:59:59 PM

8/19/2022 08/13/2022 8/13/2022 11:59:59 PM

9/26/2022 09/24/2022 9/24/2022 11:59:59 PM

10/14/2022 10/08/2022 10/8/2022 11:59:59 PM

10/29/2022 10/22/2022 10/22/2022 11:59:59 PM

Results table

In this instance, because a period_no of -1 was used as the offset argument in the weekend()

function, the function first identifies the week in which the transactions take place. It then looks one
week prior and identifies the last millisecond of that week.

Script syntax and chart functions - Qlik Sense, May 2024 1089

8 Script and chart functions

Diagram of weekend() function, period_no example

Transaction 8196 took place on June 15. The weekend() function identifies that the week begins on
June 12. Therefore, the previous week ends on June 11 at 11:59:59 PM; this is the value returned for
the previous_week_end field.

Example 3 – first_week_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. However, in this
example, we need to set Tuesday as the first day of the work week.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

weekend(date,0,1) as end_of_week,

timestamp(weekend(date,0,1)) as end_of_week_timestamp,

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

Script syntax and chart functions - Qlik Sense, May 2024 1090

8 Script and chart functions

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l end_of_week

l end_of_week_timestamp

date end_of_week end_of_week_timestamp

1/7/2022 01/10/2022 1/10/2022 11:59:59 PM

1/19/2022 01/24/2022 1/24/2022 11:59:59 PM

2/5/2022 02/07/2022 2/7/2022 11:59:59 PM

2/28/2022 02/28/2022 2/28/2022 11:59:59 PM

3/16/2022 03/21/2022 3/21/2022 11:59:59 PM

4/1/2022 04/04/2022 4/4/2022 11:59:59 PM

5/7/2022 05/09/2022 5/9/2022 11:59:59 PM

5/16/2022 05/16/2022 5/16/2022 11:59:59 PM

6/15/2022 06/20/2022 6/20/2022 11:59:59 PM

6/26/2022 06/27/2022 6/27/2022 11:59:59 PM

7/9/2022 07/11/2022 7/11/2022 11:59:59 PM

7/22/2022 07/25/2022 7/25/2022 11:59:59 PM

7/23/2022 07/25/2022 7/25/2022 11:59:59 PM

7/27/2022 08/01/2022 8/1/2022 11:59:59 PM

8/2/2022 08/08/2022 8/8/2022 11:59:59 PM

8/8/2022 08/08/2022 8/8/2022 11:59:59 PM

8/19/2022 08/22/2022 8/22/2022 11:59:59 PM

9/26/2022 09/26/2022 9/26/2022 11:59:59 PM

10/14/2022 10/17/2022 10/17/2022 11:59:59 PM

10/29/2022 10/31/2022 10/31/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1091

8 Script and chart functions

In this instance, because the first_week_date argument of 1 is used in the weekend() function, it sets
the first day of the week to Tuesday.

Diagram of weekend() function, first_week_day example

Transaction 8191 took place on February 5. The weekend() function identifies that the first Monday
after the this date – and therefore the end of the week and value returned – was on February 6 at
11:59:59 PM.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. However, in this
example, the unchanged dataset is loaded into the application. The calculation that returns a
timestamp for the end of the week when the transactions took place is created as a measure in a
chart object of the application.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

Script syntax and chart functions - Qlik Sense, May 2024 1092

8 Script and chart functions

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

To calculate the start of the week that a transaction takes place in, add the following measures:

l =weekend(date)

l =timestamp(weekend(date))

date =weekend(date) =timestamp(weekend(date))

1/7/2022 01/08/2022 1/8/2022 11:59:59 PM

1/19/2022 01/22/2022 1/22/2022 11:59:59 PM

2/5/2022 02/05/2022 2/5/2022 11:59:59 PM

2/28/2022 03/05/2022 3/5/2022 11:59:59 PM

3/16/2022 03/19/2022 3/19/2022 11:59:59 PM

4/1/2022 04/02/2022 4/2/2022 11:59:59 PM

5/7/2022 05/07/2022 5/7/2022 11:59:59 PM

5/16/2022 05/21/2022 5/21/2022 11:59:59 PM

6/15/2022 06/18/2022 6/18/2022 11:59:59 PM

6/26/2022 07/02/2022 7/2/2022 11:59:59 PM

7/9/2022 07/09/2022 7/9/2022 11:59:59 PM

7/22/2022 07/23/2022 7/23/2022 11:59:59 PM

7/23/2022 07/23/2022 7/23/2022 11:59:59 PM

7/27/2022 07/30/2022 7/30/2022 11:59:59 PM

8/2/2022 08/06/2022 8/6/2022 11:59:59 PM

8/8/2022 08/13/2022 8/13/2022 11:59:59 PM

8/19/2022 08/20/2022 8/20/2022 11:59:59 PM

9/26/2022 10/01/2022 10/1/2022 11:59:59 PM

10/14/2022 10/15/2022 10/15/2022 11:59:59 PM

10/29/2022 10/29/2022 10/29/2022 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1093

8 Script and chart functions

The end_of_week measure is created in the chart object by using the weekend() function and passing
the date field as the function’s argument. The weekend() function identifies which week the date
value falls into, returning a timestamp for the last millisecond of that week.

Diagram of weekend() function, chart object example

Transaction 8191 took place on February 5. The FirstWeekDay system variable sets the first day of
the week to a Sunday. The weekend() function identifies that the first Saturday after February 5 –
and therefore the end of the week – was on February 5. Therefore, the end_of_week value for that
transaction returns the last millisecond of that day, which is February 5 at 11:59:59 PM.

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called Employee_Expenses.
l Data consisting of employee IDs, employee names, and the average daily expense claims of

each employee.

The end user would like a chart object that displays, by employee ID and employee name, the
estimated expense claims still to be incurred for the remainder of the week.

Load script

Employee_Expenses:

Load

*

Inline

[

employee_id,employee_name,avg_daily_claim

182,Mark, $15

183,Deryck, $12.5

184,Dexter, $12.5

185,Sydney,$27

186,Agatha,$18

];

Script syntax and chart functions - Qlik Sense, May 2024 1094

8 Script and chart functions

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add these fields as dimensions:
l employee_id

l employee_name

2. Next, create a measure to calculate the accumulated interest:
=(weekend(today(1))-today(1))*avg_daily_claim

3. Set the measure's Number formatting to Money.

employee_id employee_name =(weekend(today(1))-today(1))*avg_daily_claim

182 Mark $90.00

183 Deryck $75.00

184 Dexter $75.00

185 Sydney $162.00

186 Agatha $108.00

Results table

The weekend() function, by using today’s date as its only argument, returns the end date of the
current week. Then, by subtracting today’s date from the week end date, the expression returns the
number of days that remain this week.

This value is then multiplied by the average daily expense claim by each employee to calculate the
estimated value of claims that each employee is expected to make in the remaining week.

weekname
This function returns a value showing the year and week number with an underlying
numeric value corresponding to a timestamp of the first millisecond of the first day of
the week containing date.

Syntax:
WeekName(date[, period_no [, first_week_day [, broken_weeks [, reference_

day]]]])

The weekname() function determines which week the date falls into and returns the week number
and year of that week. The first day of the week is determined by the FirstWeekDay system variable.
However, you can also change the first day of the week by using the first_week_day argument in the
weekname() function.

 In Qlik Sense, the regional settings are fetched when the app is created, and the corresponding
settings are stored in the script as environment variables.

Script syntax and chart functions - Qlik Sense, May 2024 1095

8 Script and chart functions

A North American app developer often gets Set BrokenWeeks=1; in the script, corresponding to
broken weeks. A European app developer often gets Set BrokenWeeks=0; in the script,
corresponding to unbroken weeks.

If your application uses broken weeks, the week number count begins on the January 1 and ends on
the day prior to the FirstWeekDay system variable regardless of how many days have occurred.

However, if your application is using unbroken weeks, week 1 can begin in the previous year or in
the first few days in January. This depends on how you use the ReferenceDay and FirstWeekDay

system variables.

Date ISO week name US week name

Sat 2020 Dec 26 2020/52 2020/52

Sun 2020 Dec 27 2020/52 2020/53

Mon 2020 Dec 28 2020/53 2020/53

Tue 2020 Dec 29 2020/53 2020/53

Wed 2020 Dec 30 2020/53 2020/53

Thu 2020 Dec 31 2020/53 2020/53

Fri 2021 Jan 1 2020/53 2021/01

Sat 2021 Jan 2 2020/53 2021/01

Sun 2021 Jan 3 2020/53 2021/02

Mon 2021 Jan 4 2021/01 2021/02

Tue 2021 Jan 5 2021/01 2021/02

Example of Weekname function

When to use it

The weekname() function is useful for when you would like to compare aggregations by weeks.

For example, if you want to see the total sales of products by week. To maintain consistency with
the BrokenWeeks environment variable in the application, use weekname() instead of lunarweekname().
If the application is using unbroken weeks, week 1 may contain dates from December of the
previous year or exclude dates in January of the current year. If the application is using broken
weeks, week 1 may contain less than seven days.

Return data type: dual

Argument Description

timestamp The date or timestamp to evaluate.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1096

8 Script and chart functions

Argument Description

period_no shift is an integer, where the value 0 indicates the week which contains date.
Negative values in shift indicate preceding weeks and positive values indicate
succeeding weeks.

first_week_
day

Specifies the day on which the week starts. If omitted, the value of variable
FirstWeekDay is used.

The possible values first_week_day are 0 for Monday, 1 for Tuesday, 2 for
Wednesday, 3 for Thursday, 4 for Friday, 5 for Saturday, and 6 for Sunday.

For more information about the system variable, see FirstWeekDay (page 228).

broken_
weeks

If you don't specify broken_weeks, the value of variable BrokenWeeks will be
used to define if weeks are broken or not.

reference_
day

If you don't specify reference_day, the value of variable ReferenceDay will be
used to define which day in January to set as reference day to define week 1. By
default, Qlik Sense functions use 4 as the reference day. This means that week 1
must contain January 4, or put differently, that week 1 must always have at least
4 days in January.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

The examples below assume:

Set FirstWeekDay=0;

Set BrokenWeeks=0;

Set ReferenceDay=4;

Example Result

weekname('01/12/2013') Returns 2013/02.

weekname('01/12/2013', -1) Returns 2013/01.

weekname('01/12/2013', 0, 1) Returns 2013/02.

Function examples

Script syntax and chart functions - Qlik Sense, May 2024 1097

8 Script and chart functions

Example 1 – Date with no additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the last week of 2021 and first two weeks of
2022 is loaded into a table called ‘Transactions’.

l The DateFormat system variable which is set to the MM/DD/YYYY format.
l The BrokenWeeks system variable which is set to 1.
l The FirstWeekDay system variable which is set to 6.
l A preceding load which contains the following:

l The weekday() function which is set as the field ‘week_number’, that returns the year and
week number when the transactions took place.

l The weekname() function which is set as the field called ‘week_day’, to show the weekday
value of each transaction date.

Load script

SET BrokenWeeks=1;

SET DateFormat='MM/DD/YYYY';

SET FirstWeekDay=6;

Transactions:

Load

*,

WeekDay(date) as week_day,

Weekname(date) as week_number

;

Load

*

Inline

[

id,date,amount

8183,12/27/2021,58.27

8184,12/28/2021,67.42

8185,12/29/2021,23.80

8186,12/30/2021,82.06

8187,12/31/2021,40.56

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

8194,01/07/2022,40.56

8195,01/08/2022,53.67

Script syntax and chart functions - Qlik Sense, May 2024 1098

8 Script and chart functions

8196,01/09/2022,26.63

8197,01/10/2022,72.48

8198,01/11/2022,18.37

8199,01/12/2022,45.26

8200,01/13/2022,58.23

8201,01/14/2022,18.52

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l week_day

l week_number

id date week_day week_number

8183 12/27/2021 Mon 2021/53

8184 12/28/2021 Tue 2021/53

8185 12/29/2021 Wed 2021/53

8186 12/30/2021 Thu 2021/53

8187 12/31/2021 Fri 2021/53

8188 01/01/2022 Sat 2022/01

8189 01/02/2022 Sun 2022/02

8190 01/03/2022 Mon 2022/02

8191 01/04/2022 Tue 2022/02

8192 01/05/2022 Wed 2022/02

8193 01/06/2022 Thu 2022/02

8194 01/07/2022 Fri 2022/02

8195 01/08/2022 Sat 2022/02

8196 01/09/2022 Sun 2022/03

8197 01/10/2022 Mon 2022/03

8198 01/11/2022 Tue 2022/03

8199 01/12/2022 Wed 2022/03

8200 01/13/2022 Thu 2022/03

8201 01/14/2022 Fri 2022/03

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1099

8 Script and chart functions

The ‘week_number’ field is created in the preceding load statement by using the weekname() function
and passing the date field as the function’s argument.

The weekname() function initially identifies which week the date value falls into and returns the week
number count and the year the transaction takes place.

The FirstWeekDay system variable sets Sunday as the first day of the week. The BrokenWeeks system
variable sets the application to use broken weeks, meaning that week 1 will begin on January 1.

Diagram of weekname() function with the default variables.

Week 1 begins on January 1, which is a Saturday, and therefore transactions occurring on this date
return the value 2022/01 (the year and week number).

Diagram of weekname() function identifying the week number of transaction 8192.

Because the application is using broken weeks and the first weekday is Sunday, transactions
occurring from January 2 to January 8 return the value 2022/02 (week number 2 in 2022.) An
example of this would be transaction 8192 which took place on January 5 and returns the value
2022/02 for the ‘week_number’ field.

Example 2 – period_no
Load script and results

Overview

The same dataset and scenario as the first example are used.

However, in this example, the task is to create a field, ‘previous_week_number’, that returns the year,
and week number, prior to when the transactions took place.

Open the Data load editor and add the following load script to a new tab.

Script syntax and chart functions - Qlik Sense, May 2024 1100

8 Script and chart functions

Load script

SET BrokenWeeks=1;

SET FirstWeekDay=6;

Transactions:

Load

*,

weekname(date,-1) as previous_week_number

;

Load

*

Inline

[

id,date,amount

8183,12/27/2021,58.27

8184,12/28/2021,67.42

8185,12/29/2021,23.80

8186,12/30/2021,82.06

8187,12/31/2021,40.56

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

8194,01/07/2022,40.56

8195,01/08/2022,53.67

8196,01/09/2022,26.63

8197,01/10/2022,72.48

8198,01/11/2022,18.37

8199,01/12/2022,45.26

8200,01/13/2022,58.23

8201,01/14/2022,18.52

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l week_day

l week_number

id date week_day week_number

8183 12/27/2021 Mon 2021/52

8184 12/28/2021 Tue 2021/52

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1101

8 Script and chart functions

id date week_day week_number

8185 12/29/2021 Wed 2021/52

8186 12/30/2021 Thu 2021/52

8187 12/31/2021 Fri 2021/52

8188 01/01/2022 Sat 2021/52

8189 01/02/2022 Sun 2021/53

8190 01/03/2022 Mon 2021/53

8191 01/04/2022 Tue 2021/53

8192 01/05/2022 Wed 2021/53

8193 01/06/2022 Thu 2021/53

8194 01/07/2022 Fri 2021/53

8195 01/08/2022 Sat 2022/01

8196 01/09/2022 Sun 2022/02

8197 01/10/2022 Mon 2022/02

8198 01/11/2022 Tue 2022/02

8199 01/12/2022 Wed 2022/02

8200 01/13/2022 Thu 2022/02

8201 01/14/2022 Fri 2022/02

Because a period_no of -1 is used as the offset argument in the weekname() function, the function
first identifies the week that the transactions take place in. It then looks one week prior and
identifies the first millisecond of that week.

Diagram of weekname() function with a period_no offset of -1.

Transaction 8192 took place on January 5, 2022. The weekname() function looks one week prior,
December 30, 2021, and returns the week number and year for that date – 2021/53.

Script syntax and chart functions - Qlik Sense, May 2024 1102

8 Script and chart functions

Example 3 – first_week_day
Load script and results

Overview

The same dataset and scenario as the first example are used.

However, in this example, the company policy is for the work week to begin on Tuesday.

Open the Data load editor and add the following load script to a new tab.

Load script

SET BrokenWeeks=1;

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

weekday(date) as week_day,

weekname(date,0,1) as week_number

;

Load

*

Inline

[

id,date,amount

8183,12/27/2021,58.27

8184,12/28/2021,67.42

8185,12/29/2021,23.80

8186,12/30/2021,82.06

8187,12/31/2021,40.56

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

8194,01/07/2022,40.56

8195,01/08/2022,53.67

8196,01/09/2022,26.63

8197,01/10/2022,72.48

8198,01/11/2022,18.37

8199,01/12/2022,45.26

8200,01/13/2022,58.23

8201,01/14/2022,18.52

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 1103

8 Script and chart functions

l id

l date

l week_day

l week_number

id date week_day week_number

8183 12/27/2021 Mon 2021/52

8184 12/28/2021 Tue 2021/53

8185 12/29/2021 Wed 2021/53

8186 12/30/2021 Thu 2021/53

8187 12/31/2021 Fri 2021/53

8188 01/01/2022 Sat 2022/01

8189 01/02/2022 Sun 2022/01

8190 01/03/2022 Mon 2022/01

8191 01/04/2022 Tue 2022/02

8192 01/05/2022 Wed 2022/02

8193 01/06/2022 Thu 2022/02

8194 01/07/2022 Fri 2022/02

8195 01/08/2022 Sat 2022/02

8196 01/09/2022 Sun 2022/02

8197 01/10/2022 Mon 2022/02

8198 01/11/2022 Tue 2022/03

8199 01/12/2022 Wed 2022/03

8200 01/13/2022 Thu 2022/03

8201 01/14/2022 Fri 2022/03

Results table

Diagram of weekname() function with Tuesday as the first day of the week.

Script syntax and chart functions - Qlik Sense, May 2024 1104

8 Script and chart functions

Because the first_week_date argument of 1 is used in the weekname() function, it uses Tuesday as
the first day of the week. The function therefore determines that week 53 of 2021 begins on
Tuesday December 28; and, due to the application using broken weeks, week 1 begins on January
1, 2022, and ends on the last millisecond of Monday January 3, 2022.

Diagram showing week number of transaction 8192 with Tuesday as the first day of week.

Transaction 8192 took place on January 5, 2022. Therefore, using a first_week_day parameter of
Tuesday, the weekname() function returns the value 2022/02 for the ‘week_number’ field.

Example 4 – Chart object example
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

However, in this example, the dataset is unchanged and loaded into the application. The calculation
that returns the year number of the week for when the transactions took place is created as a
measure in a chart object of the application.

Load script

SET BrokenWeeks=1;

Transactions:

Load

*

Inline

[

id,date,amount

8183,12/27/2021,58.27

8184,12/28/2021,67.42

8185,12/29/2021,23.80

8186,12/30/2021,82.06

8187,12/31/2021,40.56

8188,01/01/2022,37.23

8189,01/02/2022,17.17

8190,01/03/2022,88.27

8191,01/04/2022,57.42

8192,01/05/2022,53.80

8193,01/06/2022,82.06

8194,01/07/2022,40.56

Script syntax and chart functions - Qlik Sense, May 2024 1105

8 Script and chart functions

8195,01/08/2022,53.67

8196,01/09/2022,26.63

8197,01/10/2022,72.48

8198,01/11/2022,18.37

8199,01/12/2022,45.26

8200,01/13/2022,58.23

8201,01/14/2022,18.52

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l =week_day (date)

To calculate the start of the week that a transaction takes place in, create the following measure:

=weekname(date)

id date =weekday(date) =weekname(date)

8183 12/27/2021 Mon 2021/53

8184 12/28/2021 Tue 2021/53

8185 12/29/2021 Wed 2021/53

8186 12/30/2021 Thu 2021/53

8187 12/31/2021 Fri 2021/53

8188 01/01/2022 Sat 2022/01

8189 01/02/2022 Sun 2022/02

8190 01/03/2022 Mon 2022/02

8191 01/04/2022 Tue 2022/02

8192 01/05/2022 Wed 2022/02

8193 01/06/2022 Thu 2022/02

8194 01/07/2022 Fri 2022/02

8195 01/08/2022 Sat 2022/02

8196 01/09/2022 Sun 2022/03

8197 01/10/2022 Mon 2022/03

8198 01/11/2022 Tue 2022/03

8199 01/12/2022 Wed 2022/03

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1106

8 Script and chart functions

id date =weekday(date) =weekname(date)

8200 01/13/2022 Thu 2022/03

8201 01/14/2022 Fri 2022/03

The ‘week_number’ field is created as a measure in the chart object by using the weekname() function
and passing the date field as the function’s argument.

The weekname() function initially identifies which week the date value falls into and returns the week
number count and the year that the transaction takes place.

The FirstWeekDay system variable sets Sunday as the first day of the week. The BrokenWeeks system
variable sets the application to use broken weeks, meaning that week 1 begins on January 1.

Diagram showing week number with Sunday as the first day of the week.

Diagram showing that transaction 8192 took place in week number two.

Because the application is using broken weeks and the first weekday is Sunday, transactions
occurring from January 2 to January 8 return the value 2022/02, week number 2 in 2022. Note that
transaction 8192 took place on January 5 and returns the value 2022/02 for the ‘week_number’ field.

Example 5 – Scenario
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2024 1107

8 Script and chart functions

l A dataset containing a set of transactions for the last week of 2019 and first two weeks of
2020 is loaded into a table called ‘Transactions’.

l The BrokenWeeks system variable which is set to 0.
l The ReferenceDay system variable which is set to 2.
l The DateFormat system variable which is set to the MM/DD/YYYY format.

Load script

SET BrokenWeeks=0;

SET ReferenceDay=2;

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8183,12/27/2019,58.27

8184,12/28/2019,67.42

8185,12/29/2019,23.80

8186,12/30/2019,82.06

8187,12/31/2019,40.56

8188,01/01/2020,37.23

8189,01/02/2020,17.17

8190,01/03/2020,88.27

8191,01/04/2020,57.42

8192,01/05/2020,53.80

8193,01/06/2020,82.06

8194,01/07/2020,40.56

8195,01/08/2020,53.67

8196,01/09/2020,26.63

8197,01/10/2020,72.48

8198,01/11/2020,18.37

8199,01/12/2020,45.26

8200,01/13/2020,58.23

8201,01/14/2020,18.52

];

Results

Load the data and open a sheet. Create a new table.

Create a calculated dimension using the following expression:

=weekname(date)

To calculate total sales create the following aggregation measure:

=sum(amount)

Set the measure’s Number Formatting to Money.

Script syntax and chart functions - Qlik Sense, May 2024 1108

8 Script and chart functions

weekname(date) =sum(amount)

2019/52 $125.69

2020/01 $346.51

2020/02 $347.57

2020/03 $122.01

Results table

To demonstrate the results of using the weekname() function in this scenario, add the following
field as a dimension:

date

weekname(date) date =sum(amount)

2019/52 12/27/2019 $58.27

2019/52 12/28/2019 $67.42

2020/01 12/29/2019 $23.80

2020/01 12/30/2019 $82.06

2020/01 12/31/2019 $40.56

2020/01 01/01/2020 $37.23

2020/01 01/02/2020 $17.17

2020/01 01/03/2020 $88.27

2020/01 01/04/2020 $57.42

2020/02 01/05/2020 $53.80

2020/02 01/06/2020 $82.06

2020/02 01/07/2020 $40.56

2020/02 01/08/2020 $53.67

2020/02 01/09/2020 $26.63

2020/02 01/10/2020 $72.48

2020/02 01/11/2020 $18.37

2020/03 01/12/2020 $45.26

2020/03 01/13/2020 $58.23

2020/03 01/14/2020 $18.52

Results table with date field

Because the application uses unbroken weeks, and week 1 requires a minimum of two days in
January because of the ReferenceDay system variable, week 1 of 2020 includes transactions from
December 29, 2019.

Script syntax and chart functions - Qlik Sense, May 2024 1109

8 Script and chart functions

weekstart
This function returns a value corresponding to a timestamp of the first millisecond of
the first day of the calendar week containing date. The default output format is the
DateFormat set in the script.

Syntax:
WeekStart(timestamp [, period_no [, first_week_day]])

Return data type: dual

The weekstart() function determines which week the date falls into. It then returns a timestamp, in
date format, for the first millisecond of that week. The first day of the week is determined by the
FirstWeekDay environment variable. However, this can be superseded by the first_week_day

argument in the weekstart() function.

Argument Description

timestamp The date or timestamp to evaluate.

period_no shift is an integer, where the value 0 indicates the week which contains date.
Negative values in shift indicate preceding weeks and positive values indicate
succeeding weeks.

first_week_
day

Specifies the day on which the week starts. If omitted, the value of variable
FirstWeekDay is used.

The possible values first_week_day are 0 for Monday, 1 for Tuesday, 2 for
Wednesday, 3 for Thursday, 4 for Friday, 5 for Saturday, and 6 for Sunday.

For more information about the system variable, see FirstWeekDay (page 228).

Arguments

When to use it
The weekstart() function is commonly used as part of an expression when the user would like the
calculation to use the fraction of the week that has elapsed thus far. For example, it could be used if
a user would like to calculate the total wages earned by employees in the week so far.

The following examples assume:

SET FirstWeekDay=0;

Example Result

weekstart('01/12/2013') Returns 01/07/2013.

weekstart('01/12/2013', -1) Returns 11/31/2012.

weekstart('01/12/2013', 0, 1) Returns 01/08/2013.

Function examples

Script syntax and chart functions - Qlik Sense, May 2024 1110

8 Script and chart functions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Examples:

If you want ISO settings for weeks and week numbers, make sure to have the following in the script:

Set DateFormat ='YYYY-MM-DD';

Set FirstWeekDay =0; // Monday as first week day

Set BrokenWeeks =0; //(use unbroken weeks)

Set ReferenceDay =4; // Jan 4th is always in week 1

If you want US settings, make sure to have the following in the script:

Set DateFormat ='M/D/YYYY';

Set FirstWeekDay =6; // Sunday as first week day

Set BrokenWeeks =1; //(use broken weeks)

Set ReferenceDay =1; // Jan 1st is always in week 1

The examples above results in the following from the weekstart() function:

Date ISO week start US week start

Sat 2020 Dec 26 2020-12-21 12/20/2020

Sun 2020 Dec 27 2020-12-21 12/27/2020

Mon 2020 Dec 28 2020-12-28 12/27/2020

Tue 2020 Dec 29 2020-12-28 12/27/2020

Wed 2020 Dec 30 2020-12-28 12/27/2020

Thu 2020 Dec 31 2020-12-28 12/27/2020

Fri 2021 Jan 1 2020-12-28 12/27/2020

Sat 2021 Jan 2 2020-12-28 12/27/2020

Sun 2021 Jan 3 2020-12-28 1/3/2021

Mon 2021 Jan 4 2021-01-04 1/3/2021

Tue 2021 Jan 5 2021-01-04 1/3/2021

Example of Weekstart function

Script syntax and chart functions - Qlik Sense, May 2024 1111

8 Script and chart functions

The week starts are on Mondays in the ISO column, and on Sundays in the US column.

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for 2022, which is loaded into a table called
Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field, start_of_week, that returns a timestamp for the start of the week when

the transactions took place.

Load script

SET FirstWeekDay=6;

Transactions:

Load

*,

weekstart(date) as start_of_week,

timestamp(weekstart(date)) as start_of_week_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

Script syntax and chart functions - Qlik Sense, May 2024 1112

8 Script and chart functions

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l start_of_week

l start_of_week_timestamp

date start_of_week start_of_week_timestamp

1/7/2022 01/02/2022 1/2/2022 12:00:00 AM

1/19/2022 01/16/2022 1/16/2022 12:00:00 AM

2/5/2022 01/30/2022 1/30/2022 12:00:00 AM

2/28/2022 02/27/2022 2/27/2022 12:00:00 AM

3/16/2022 03/13/2022 3/13/2022 12:00:00 AM

4/1/2022 03/27/2022 3/27/2022 12:00:00 AM

5/7/2022 05/01/2022 5/1/2022 12:00:00 AM

5/16/2022 05/15/2022 5/15/2022 12:00:00 AM

6/15/2022 06/12/2022 6/12/2022 12:00:00 AM

6/26/2022 06/26/2022 6/26/2022 12:00:00 AM

7/9/2022 07/03/2022 7/3/2022 12:00:00 AM

7/22/2022 07/17/2022 7/17/2022 12:00:00 AM

7/23/2022 07/17/2022 7/17/2022 12:00:00 AM

7/27/2022 07/24/2022 7/24/2022 12:00:00 AM

8/2/2022 07/31/2022 7/31/2022 12:00:00 AM

8/8/2022 08/07/2022 8/7/2022 12:00:00 AM

8/19/2022 08/14/2022 8/14/2022 12:00:00 AM

9/26/2022 09/25/2022 9/25/2022 12:00:00 AM

10/14/2022 10/09/2022 10/9/2022 12:00:00 AM

10/29/2022 10/23/2022 10/23/2022 12:00:00 AM

Results table

The start_of_week field is created in the preceding load statement by using the weekstart() function
and passing the date field as the function’s argument.

Script syntax and chart functions - Qlik Sense, May 2024 1113

8 Script and chart functions

The weekstart() function initially identifies which week the date value falls into, returning a
timestamp for the first millisecond of that week.

Diagram of weekstart() function, example with no additional arguments

Transaction 8191 took place on February 5. The FirstWeekDay system variable sets the first day of
the week to a Sunday. The weekstart() function identifies that the first Sunday before February 5 –
and therefore the start of the week – was on January 30, Therefore, the start_of_week value for that
transaction returns the first millisecond of that day, which is January 30 at 12:00:00 AM.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, previous_week_start, that returns the timestamp for the start of the

quarter before the transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

weekstart(date,-1) as previous_week_start,

timestamp(weekstart(date,-1)) as previous_week_start_timestamp

;

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

Script syntax and chart functions - Qlik Sense, May 2024 1114

8 Script and chart functions

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l previous_week_start

l previous_week_start_timestamp

date previous_week_start previous_week_start_timestamp

1/7/2022 12/26/2021 12/26/2021 12:00:00 AM

1/19/2022 01/09/2022 1/9/2022 12:00:00 AM

2/5/2022 01/23/2022 1/23/2022 12:00:00 AM

2/28/2022 02/20/2022 2/20/2022 12:00:00 AM

3/16/2022 03/06/2022 3/6/2022 12:00:00 AM

4/1/2022 03/20/2022 3/20/2022 12:00:00 AM

5/7/2022 04/24/2022 4/24/2022 12:00:00 AM

5/16/2022 05/08/2022 5/8/2022 12:00:00 AM

6/15/2022 06/05/2022 6/5/2022 12:00:00 AM

6/26/2022 06/19/2022 6/19/2022 12:00:00 AM

7/9/2022 06/26/2022 6/26/2022 12:00:00 AM

7/22/2022 07/10/2022 7/10/2022 12:00:00 AM

7/23/2022 07/10/2022 7/10/2022 12:00:00 AM

7/27/2022 07/17/2022 7/17/2022 12:00:00 AM

8/2/2022 07/24/2022 7/24/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1115

8 Script and chart functions

date previous_week_start previous_week_start_timestamp

8/8/2022 07/31/2022 7/31/2022 12:00:00 AM

8/19/2022 08/07/2022 8/7/2022 12:00:00 AM

9/26/2022 09/18/2022 9/18/2022 12:00:00 AM

10/14/2022 10/02/2022 10/2/2022 12:00:00 AM

10/29/2022 10/16/2022 10/16/2022 12:00:00 AM

In this instance, because a period_no of -1 was used as the offset argument in the weekstart()

function, the function first identifies the week that the transactions take place in. It then looks one
week prior and identifies the first millisecond of that week.

Diagram of weekstart() function, period_no example

Transaction 8196 took place on June 15. The weekstart() function identifies that the week begins
on June 12. Therefore, the previous week began on June 5 at 12:00:00 AM; this is the value that is
returned for the previous_week_start field.

Example 3 – first_week_day
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example. However, in this
example, we need to set Tuesday as the first day of the work week.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

weekstart(date,0,1) as start_of_week,

timestamp(weekstart(date,0,1)) as start_of_week_timestamp

;

Load

*

Script syntax and chart functions - Qlik Sense, May 2024 1116

8 Script and chart functions

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l start_of_week

l start_of_week_timestamp

date start_of_week start_of_week_timestamp

1/7/2022 01/04/2022 1/4/2022 12:00:00 AM

1/19/2022 01/18/2022 1/18/2022 12:00:00 AM

2/5/2022 02/01/2022 2/1/2022 12:00:00 AM

2/28/2022 02/22/2022 2/22/2022 12:00:00 AM

3/16/2022 03/15/2022 3/15/2022 12:00:00 AM

4/1/2022 03/29/2022 3/29/2022 12:00:00 AM

5/7/2022 05/03/2022 5/3/2022 12:00:00 AM

5/16/2022 05/10/2022 5/10/2022 12:00:00 AM

6/15/2022 06/14/2022 6/14/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1117

8 Script and chart functions

date start_of_week start_of_week_timestamp

6/26/2022 06/21/2022 6/21/2022 12:00:00 AM

7/9/2022 07/05/2022 7/5/2022 12:00:00 AM

7/22/2022 07/19/2022 7/19/2022 12:00:00 AM

7/23/2022 07/19/2022 7/19/2022 12:00:00 AM

7/27/2022 07/26/2022 7/26/2022 12:00:00 AM

8/2/2022 08/02/2022 8/2/2022 12:00:00 AM

8/8/2022 08/02/2022 8/2/2022 12:00:00 AM

8/19/2022 08/16/2022 8/16/2022 12:00:00 AM

9/26/2022 09/20/2022 9/20/2022 12:00:00 AM

10/14/2022 10/11/2022 10/11/2022 12:00:00 AM

10/29/2022 10/25/2022 10/25/2022 12:00:00 AM

In this instance, because the first_week_date argument of 1 is used in the weekstart() function, it
sets the first day of the week to Tuesday.

Diagram of weekstart() function, first_week_day example

Transaction 8191 took place on February 5. The weekstart() function identifies that the first
Tuesday before the this date – and therefore the start of the week and value returned – was
February 1 at 12:00:00 AM.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation that
returns a timestamp for the start of the week when the transactions took place is created as a
measure in a chart object of the application.

Script syntax and chart functions - Qlik Sense, May 2024 1118

8 Script and chart functions

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,1/7/2022,17.17

8189,1/19/2022,37.23

8190,2/28/2022,88.27

8191,2/5/2022,57.42

8192,3/16/2022,53.80

8193,4/1/2022,82.06

8194,5/7/2022,40.39

8195,5/16/2022,87.21

8196,6/15/2022,95.93

8197,6/26/2022,45.89

8198,7/9/2022,36.23

8199,7/22/2022,25.66

8200,7/23/2022,82.77

8201,7/27/2022,69.98

8202,8/2/2022,76.11

8203,8/8/2022,25.12

8204,8/19/2022,46.23

8205,9/26/2022,84.21

8206,10/14/2022,96.24

8207,10/29/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

To calculate the start of the week in which a transaction takes place, add the following measures:

l =weekstart(date)

l =timestamp(weekstart(date))

date start_of_week start_of_week_timestamp

1/7/2022 01/02/2022 1/2/2022 12:00:00 AM

1/19/2022 01/16/2022 1/16/2022 12:00:00 AM

2/5/2022 01/30/2022 1/30/2022 12:00:00 AM

2/28/2022 02/27/2022 2/27/2022 12:00:00 AM

3/16/2022 03/13/2022 3/13/2022 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1119

8 Script and chart functions

date start_of_week start_of_week_timestamp

4/1/2022 03/27/2022 3/27/2022 12:00:00 AM

5/7/2022 05/01/2022 5/1/2022 12:00:00 AM

5/16/2022 05/15/2022 5/15/2022 12:00:00 AM

6/15/2022 06/12/2022 6/12/2022 12:00:00 AM

6/26/2022 06/26/2022 6/26/2022 12:00:00 AM

7/9/2022 07/03/2022 7/3/2022 12:00:00 AM

7/22/2022 07/17/2022 7/17/2022 12:00:00 AM

7/23/2022 07/17/2022 7/17/2022 12:00:00 AM

7/27/2022 07/24/2022 7/24/2022 12:00:00 AM

8/2/2022 07/31/2022 7/31/2022 12:00:00 AM

8/8/2022 08/07/2022 8/7/2022 12:00:00 AM

8/19/2022 08/14/2022 8/14/2022 12:00:00 AM

9/26/2022 09/25/2022 9/25/2022 12:00:00 AM

10/14/2022 10/09/2022 10/9/2022 12:00:00 AM

10/29/2022 10/23/2022 10/23/2022 12:00:00 AM

The start_of_week measure is created in the chart object by using the weekstart() function and
passing the date field as the function’s argument.

The weekstart() function initially identifies which week the date value falls into, returning a
timestamp for the first millisecond of that week.

Diagram of weekstart() function, chart object example

Transaction 8191 took place on February 5. The FirstWeekDay system variable sets the first day of
the week to a Sunday. The weekstart() function identifies that the first Sunday before February 5 –
and therefore the start of the week – was January 30. Therefore, the start_of_week value for that
transaction returns the first millisecond of that day, which is January 30 at 12:00:00 AM.

Script syntax and chart functions - Qlik Sense, May 2024 1120

8 Script and chart functions

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset which is loaded into a table called Payroll.
l Data consisting of employee IDs, employee names, and the daily wage earned by each

employee.

Employees begin work on Monday and work six days per week. The FirstWeekDay system variable
must not be modified.

The end user would like a chart object that displays, by employee ID and employee name, the
wages earned in the week to date.

Load script

Payroll:

Load

*

Inline

[

employee_id,employee_name,day_rate

182,Mark, $150

183,Deryck, $125

184,Dexter, $125

185,Sydney,$270

186,Agatha,$128

];

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add these fields as dimensions:
l employee_id

l employee_name

2. Next, create a measure to calculate the wages earned in the week to date:
=if(today(1)-weekstart(today(1),0,0)<7,(today(1)-weekstart(today(1),0,0))*day_rate,day_

rate*6)

3. Set the measure's Number formatting to Money.

Script syntax and chart functions - Qlik Sense, May 2024 1121

8 Script and chart functions

employee_id
employee_
name

=if(today(1)-weekstart(today(1),0,0)<7,(today(1)-weekstart
(today(1),0,0))*day_rate,day_rate*6)

182 Mark $600.00

183 Deryck $500.00

184 Dexter $500.00

185 Sydney $1080.00

186 Agatha $512.00

Results table

The weekstart() function, by using today’s date as its first argument and 0 as its third argument,
sets Monday as the first day of the week and returns the start date of the current week. By
subtracting that result from the current date, the expression then returns the number of days that
have elapsed so far this week.

The condition then evaluates whether there have been more than six days this week. If so, the
employee’s day_rate is multiplied by 6 days. Otherwise, the day_rate is multiplied by the number of
days that have occurred so far this week.

weekyear
This function returns the year to which the week number belongs according to the
environment variables. The week number ranges between 1 and approximately 52.

Syntax:
weekyear(timestamp [, first_week_day [, broken_weeks [, reference_day]]])

Return data type: integer

Argument Description

timestamp The date or timestamp to evaluate.

first_week_
day

Specifies the day on which the week starts. If omitted, the value of variable
FirstWeekDay is used.

The possible values first_week_day are 0 for Monday, 1 for Tuesday, 2 for
Wednesday, 3 for Thursday, 4 for Friday, 5 for Saturday, and 6 for Sunday.

For more information about the system variable, see FirstWeekDay (page 228).

broken_
weeks

If you don't specify broken_weeks, the value of variable BrokenWeeks will be
used to define if weeks are broken or not.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1122

8 Script and chart functions

Argument Description

reference_
day

If you don't specify reference_day, the value of variable ReferenceDay will be
used to define which day in January to set as reference day to define week 1. By
default, Qlik Sense functions use 4 as the reference day. This means that week 1
must contain January 4, or put differently, that week 1 must always have at least
4 days in January.

The weekyear() function determines which week of a year a date falls into. It then returns the year
corresponding to that week number.

If BrokenWeeks is set to 0 (false), weekyear() will return the same as year().

Diagram of weekyear() function's range

However, if the BrokenWeeks system variable is set to use unbroken weeks, week 1 must only contain
a certain number of days in January based on the value specified in the ReferenceDay system
variable.

For example, if a ReferenceDay value of 4 is used, week 1 must include at least four days in January. It
is possible for week 1 to include dates in December of the previous year or for the final week
number of a year to include dates in January of the following year. In situations like this, the
weekyear() function will return a different value to the year() function.

Diagram of weekyear() function's range when using unbroken weeks

Script syntax and chart functions - Qlik Sense, May 2024 1123

8 Script and chart functions

When to use it

The weekyear() function is useful when you would like to compare aggregations by years. For
example, if you would like to see the total sales of products by year. The weekyear() function is
chosen over year() when the user would like to retain consistency with the BrokenWeeks system
variable in the app.

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example Result

weekyear('12/30/1996',0,0,4) Returns 1997, because week 1 of 1997 starts on 12/30/1996

weekyear('01/02/1997',0,0,4) Returns 1997

weekyear('12/28/1997',0,0,4) Returns 1997

weekyear('12/30/1997',0,0,4) Returns 1998, because week 1 of 1998 starts on 12/29/1997

weekyear('01/02/1999',0,0,4) Returns 1998, because week 53 of 1998 ends on 01/03/1999

Function examples

Topic Interaction

week
(page
1058)

Returns an integer representing the week number according to ISO 8601

year
(page
1132)

Returns an integer representing the year when the expression is interpreted as a
date according to the standard number interpretation.

Related topics

Script syntax and chart functions - Qlik Sense, May 2024 1124

8 Script and chart functions

Example 1 - Broken weeks
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the last week of 2020 and first week of 2021
which is loaded into a table called ‘Transactions’.

l The BrokenWeeks variable which is set to 1.
l A preceding load which contains the following:

l The weekyear() function, set as the field ‘week_year’ that returns the year in which the
transactions took place.

l The week() function, set as the field ‘week’ that shows the week number of each
transaction date.

Load script

SET BrokenWeeks=1;

Transactions:

Load

*,

week(date) as week,

weekyear(date) as week_year

;

Load

*

Inline

[

id,date,amount

8176,12/28/2020,19.42

8177,12/29/2020,23.80

8178,12/30/2020,82.06

8179,12/31/2020,40.56

8180,01/01/2021,37.23

8181,01/02/2021,17.17

8182,01/03/2021,88.27

8183,01/04/2021,57.42

8184,01/05/2021,67.42

8185,01/06/2021,23.80

8186,01/07/2021,82.06

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 1125

8 Script and chart functions

l id

l date

l week

l week_year

id date week week_year

8176 12/28/2020 53 2020

8177 12/29/2020 53 2020

8178 12/30/2020 53 2020

8179 12/31/2020 53 2020

8180 01/01/2021 1 2021

8181 01/02/2021 1 2021

8182 01/03/2021 2 2021

8183 01/04/2021 2 2021

8184 01/05/2021 2 2021

8185 01/06/2021 2 2021

8186 01/07/2021 2 2021

Results table

The ‘week_year’ field is created in the preceding load statement by using the weekyear() function and
passing the date field as the function’s argument.

The BrokenWeeks system variable is set to 1 meaning that the app uses broken weeks. Week 1 begins
on January 1.

Diagram of weekyear() function's range with the use of broken weeks

Transaction 8181 takes place on January 2, which is part of week 1. Therefore, it returns a value of
2021 for the ‘week_year’ field.

Script syntax and chart functions - Qlik Sense, May 2024 1126

8 Script and chart functions

Example 2 - Unbroken weeks
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions for the last week of 2020 and first week of 2021
which is loaded into a table called ‘Transactions’.

l The BrokenWeeks variable which is set to 0.
l A preceding load which contains the following:

l The weekyear() function, set as the field ‘week_year’ that returns the year in which the
transactions took place.

l The week() function, set as the field ‘week’ that shows the week number of each
transaction date.

However, in this example, the company policy is to use unbroken weeks.

Load script

SET BrokenWeeks=0;

Transactions:

Load

*,

week(date) as week,

weekyear(date) as week_year

;

Load

*

Inline

[

id,date,amount

8176,12/28/2020,19.42

8177,12/29/2020,23.80

8178,12/30/2020,82.06

8179,12/31/2020,40.56

8180,01/01/2021,37.23

8181,01/02/2021,17.17

8182,01/03/2021,88.27

8183,01/04/2021,57.42

8184,01/05/2021,67.42

8185,01/06/2021,23.80

8186,01/07/2021,82.06

];

Script syntax and chart functions - Qlik Sense, May 2024 1127

8 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l week

l week_year

id date week week_year

8176 12/28/2020 53 2020

8177 12/29/2020 53 2020

8178 12/30/2020 53 2020

8179 12/31/2020 53 2020

8180 01/01/2021 53 2020

8181 01/02/2021 53 2020

8182 01/03/2021 1 2021

8183 01/04/2021 1 2021

8184 01/05/2021 1 2021

8185 01/06/2021 1 2021

8186 01/07/2021 1 2021

Results table

The BrokenWeeks system variable is set to 0 meaning that the application uses unbroken weeks.
Therefore, week 1 is not required to begin on January 1.

Week 53 of 2020 continues until the end of January 2, 2021, with week 1 of 2020 beginning on
Sunday, January 3, 2021.

Diagram of weekyear() function's range with the use of unbroken weeks

Transaction 8181 takes place on January 2, which is part of week 1. Therefore, it returns a value of
2021 for the ‘week_year’ field.

Script syntax and chart functions - Qlik Sense, May 2024 1128

8 Script and chart functions

Example 3 - Chart object example
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

However, in this example the dataset is unchanged and loaded into the application. The calculation
that returns the week number of the year when the transactions took place is created as a measure
in a chart in the app.

Load script

SET BrokenWeeks=1;

Transactions:

Load

*

Inline

[

id,date,amount

8176,12/28/2020,19.42

8177,12/29/2020,23.80

8178,12/30/2020,82.06

8179,12/31/2020,40.56

8180,01/01/2021,37.23

8181,01/02/2021,17.17

8182,01/03/2021,88.27

8183,01/04/2021,57.42

8184,01/05/2021,67.42

8185,01/06/2021,23.80

8186,01/07/2021,82.06

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

To calculate the week that a transaction takes place in, create the following measure:

l =week(date)

To calculate the year that a transaction takes place in based on the week number, create the
following measure:

l =weekyear(date)

Script syntax and chart functions - Qlik Sense, May 2024 1129

8 Script and chart functions

id date week week_year

8176 12/28/2020 53 2020

8177 12/29/2020 53 2020

8178 12/30/2020 53 2020

8179 12/31/2020 53 2020

8180 01/01/2021 1 2021

8181 01/02/2021 1 2021

8182 01/03/2021 2 2021

8183 01/04/2021 2 2021

8184 01/05/2021 2 2021

8185 01/06/2021 2 2021

8186 01/07/2021 2 2021

Results table

The ‘week_year’ field is created in the preceding load statement by using the weekyear() function and
passing the date field as the function’s argument.

The BrokenWeeks system variable is set to 1 meaning that the app uses broken weeks. week 1 begins
on January 1.

Diagram of weekyear() function's range with the use of broken weeks

Transaction 8181 takes place on January 2, which is part of week 1. Therefore, it returns a value of
2021 for the ‘week_year’ field.

Example 4 - Scenario
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2024 1130

8 Script and chart functions

l A dataset containing a set of transactions for the last week of 2020 and first week of 2021
which is loaded into a table called ‘Transactions’.

l The BrokenWeeks variable which is set to 0. This means the app will use unbroken weeks.
l The ReferenceDay variable which is set to 2. This means the year will begin on January 2 and

will contain a minimum of two days in January.
l The FirstWeekDay variable which is set to 1. This means the first day of the week will be

Tuesday.

The company policy is to use broken weeks. The end user would like a chart that presents the total
sales by year. The app uses unbroken weeks with week 1 containing a minimum of two days in
January.

Load script

SET BrokenWeeks=0;

SET ReferenceDay=2;

SET FirstWeekDay=1;

Transactions:

Load

*

Inline

[

id,date,amount

8176,12/28/2020,19.42

8177,12/29/2020,23.80

8178,12/30/2020,82.06

8179,12/31/2020,40.56

8180,01/01/2021,37.23

8181,01/02/2021,17.17

8182,01/03/2021,88.27

8183,01/04/2021,57.42

8184,01/05/2021,67.42

8185,01/06/2021,23.80

8186,01/07/2021,82.06

];

Results

Load the data and open a sheet. Create a new table.

To calculate the year that a transaction takes place in based on the week number, create the
following measure:

l =weekyear(date)

To calculate total sales, create the following measure:

l sum(amount)

Set the measure’s Number Formatting to Money.

Script syntax and chart functions - Qlik Sense, May 2024 1131

8 Script and chart functions

weekyear(date) =sum(amount)

2020 19.42

2021 373.37

Results table

year
This function returns an integer representing the year when the expression is
interpreted as a date according to the standard number interpretation.

Syntax:
year(expression)

Return data type: integer

The year() function is available as both a script and chart function. The function returns the year for
a particular date. It is commonly used to create a year field as a dimension in a Master Calendar.

When to use it
The year() function is useful when you would like to compare aggregations by year. For example,
the function could be used if you would like to see the total sales of products by year.

These dimensions can be created either in the load script by using the function to create a field in a
Master Calendar table. Alternatively, it could be used directly in a chart as a calculated dimension.

Example Result

year('2012-10-12') returns 2012

year('35648') returns 1997, because 35648 = 1997-08-06

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Script syntax and chart functions - Qlik Sense, May 2024 1132

8 Script and chart functions

Example 1 – DateFormat dataset (script)
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates, which is loaded into a table named Master Calendar.
l The default DateFormat system variable (MM/DD/YYYY) is used.
l A preceding load which is used to create an additional field, year, using the year() function.

Load script

SET DateFormat='MM/DD/YYYY';

Master_Calendar:

Load

date,

year(date) as year

;

Load

date

Inline

[

date

12/28/2020

12/29/2020

12/30/2020

12/31/2020

01/01/2021

01/02/2021

01/03/2021

01/04/2021

01/05/2021

01/06/2021

01/07/2021

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l year

Script syntax and chart functions - Qlik Sense, May 2024 1133

8 Script and chart functions

date year

12/28/2020 2020

12/29/2020 2020

12/30/2020 2020

12/31/2020 2020

01/01/2021 2021

01/02/2021 2021

01/03/2021 2021

01/04/2021 2021

01/05/2021 2021

01/06/2021 2021

01/07/2021 2021

Results table

Example 2 – ANSI Dates
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset of dates, which is loaded into a table named Master Calendar.
l The default DateFormat system variable (MM/DD/YYYY) is used. However, the dates included

in the dataset are in ANSI standard date format.
l A preceding load, which is used to create an additional field, named year, using the year()

function.

Load script

SET DateFormat='MM/DD/YYYY';

Master_Calendar:

Load

date,

year(date) as year

;

Load

date

Inline

[

date

Script syntax and chart functions - Qlik Sense, May 2024 1134

8 Script and chart functions

2020-12-28

2020-12-29

2020-12-30

2020-12-31

2021-01-01

2021-01-02

2021-01-03

2021-01-04

2021-01-05

2021-01-06

2021-01-07

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l year

date year

2020-12-28 2020

2020-12-29 2020

2020-12-30 2020

2020-12-31 2020

2021-01-01 2021

2021-01-02 2021

2021-01-03 2021

2021-01-04 2021

2021-01-05 2021

2021-01-06 2021

2021-01-07 2021

Results table

Example 3 – Unformatted dates
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2024 1135

8 Script and chart functions

l A dataset of dates in numerical format, which is loaded into a table named Master Calendar.
l The default DateFormat system variable (MM/DD/YYYY) is used.
l A preceding load, which is used to create an additional field, year, using the year() function.

The original unformatted date is loaded, named unformatted_date, and to provide clarity, a further
additional field, named long_date, is used to convert the numerical date into a formatted date field
using the date() function.

Load script

SET DateFormat='MM/DD/YYYY';

Master_Calendar:

Load

unformatted_date,

date(unformatted_date) as long_date,

year(unformatted_date) as year

;

Load

unformatted_date

Inline

[

unformatted_date

44868

44898

44928

44958

44988

45018

45048

45078

45008

45038

45068

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l unformatted_date

l long_date

l year

unformatted_date long_date year

44868 11/03/2022 2022

44898 12/03/2022 2022

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1136

8 Script and chart functions

unformatted_date long_date year

44928 01/02/2023 2023

44958 02/01/2023 2023

44988 03/03/2023 2023

45008 03/23/2023 2023

45018 04/02/2023 2023

45038 04/22/2023 2023

45048 05/02/2023 2023

45068 05/22/2023 2023

45078 06/01/2023 2023

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

In this example, a dataset of orders placed is loaded into a table named Sales. The table contains
three fields:

l id

l sales_date

l amount

Warranties on product sales last two years from the date of sale. The task is to create a measure in
a chart to determine the year in which each warranty will expire.

Load script

Sales:

Load

id,

sales_date,

amount

Inline

[

id,sales_date,amount

1,12/28/2020,231.24,

2,12/29/2020,567.28,

3,12/30/2020,364.28,

4,12/31/2020,575.76,

5,01/01/2021,638.68,

6,01/02/2021,785.38,

Script syntax and chart functions - Qlik Sense, May 2024 1137

8 Script and chart functions

7,01/03/2021,967.46,

8,01/04/2021,287.67

9,01/05/2021,764.45,

10,01/06/2021,875.43,

11,01/07/2021,957.35

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: sales_date.

Create the following measure:

=year(sales_date+365*2)

sales_date =year(sales_date+365*2)

12/28/2020 2022

12/29/2020 2022

12/30/2020 2022

12/31/2020 2022

01/01/2021 2023

01/02/2021 2023

01/03/2021 2023

01/04/2021 2023

01/05/2021 2023

01/06/2021 2023

01/07/2021 2023

Results table

The results of this measure can be seen in the table above. To add two years to a date, multiply 365
by 2 and add the result to the sales date. Therefore, sales that took place in 2020 have an expiry
year of 2022.

yearend
This function returns a value corresponding to a timestamp of the last millisecond of
the last day of the year containing date. The default output format will be the
DateFormat set in the script.

Syntax:
YearEnd(date[, period_no[, first_month_of_year = 1]])

Script syntax and chart functions - Qlik Sense, May 2024 1138

8 Script and chart functions

In other words, the yearend() function determines which year the date falls into. It then returns a
timestamp, in date format, for the last millisecond of that year. The first month of the year is, by
default, January. However, you can change which month is set as first by using the first_month_of_

year argument in the yearend() function.

The yearend() function does not consider the FirstMonthOfYear system variable. The
year begins on January 1 unless the first_month_of_year argument is used to change it.

Diagram of yearend() function.

When to use it

The yearend() function is used as part of an expression when you want the calculation to use the
fraction of the year that has not yet occurred. For example, if you want to calculate the total interest
not yet incurred during the year.

Return data type: dual

Argument Description

date The date or timestamp to evaluate.

period_no period_no is an integer, where the value 0 indicates the year which contains
date. Negative values in period_no indicate preceding years and positive values
indicate succeeding years.

first_
month_of_
year

If you want to work with (fiscal) years not starting in January, indicate a value
between 2 and 12 in first_month_of_year.

Arguments

You can use the following values to set the first month of year in the first_month_of_year argument:

Month Value

February 2

March 3

April 4

first_month_of_year values

Script syntax and chart functions - Qlik Sense, May 2024 1139

8 Script and chart functions

Month Value

May 5

June 6

July 7

August 8

September 9

October 10

November 11

December 12

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example Result

yearend('10/19/2001') Returns 12/31/2001 23:59:59.

yearend('10/19/2001', -1) Returns 12/31/2000 23:59:59.

yearend('10/19/2001', 0, 4) Returns 03/31/2002 23:59:59.

Function examples

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2024 1140

8 Script and chart functions

l A dataset containing a set of transactions between 2020 and 2022 is loaded into a table
called ‘Transactions’.

l The date field has been provided in the DateFormat system variable (MM/DD/YYYY) format.
l A preceding load statement which contains the following:

l yearend() function which is set as the year_end field.
l Timestamp() function which is set as the year_end_timestamp field.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yearend(date) as year_end,

timestamp(yearend(date)) as year_end_timestamp

;

Load

*

Inline

[

id,date,amount

8188,01/13/2020,37.23

8189,02/26/2020,17.17

8190,03/27/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,06/06/2022,46.23

8205,07/18/2022,84.21

8206,11/14/2022,96.24

8207,12/12/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

Script syntax and chart functions - Qlik Sense, May 2024 1141

8 Script and chart functions

l year_end

l year_end_timestamp

id date year_end year_end_timestamp

8188 01/13/2020 12/31/2020 12/31/2020 11:59:59 PM

8189 02/26/2020 12/31/2020 12/31/2020 11:59:59 PM

8190 03/27/2020 12/31/2020 12/31/2020 11:59:59 PM

8191 04/16/2020 12/31/2020 12/31/2020 11:59:59 PM

8192 05/21/2020 12/31/2020 12/31/2020 11:59:59 PM

8193 08/14/2020 12/31/2020 12/31/2020 11:59:59 PM

8194 10/07/2020 12/31/2020 12/31/2020 11:59:59 PM

8195 12/05/2020 12/31/2020 12/31/2020 11:59:59 PM

8196 01/22/2021 12/31/2021 12/31/2021 11:59:59 PM

8197 02/03/2021 12/31/2021 12/31/2021 11:59:59 PM

8198 03/17/2021 12/31/2021 12/31/2021 11:59:59 PM

8199 04/23/2021 12/31/2021 12/31/2021 11:59:59 PM

8200 05/04/2021 12/31/2021 12/31/2021 11:59:59 PM

8201 06/30/2021 12/31/2021 12/31/2021 11:59:59 PM

8202 07/26/2021 12/31/2021 12/31/2021 11:59:59 PM

8203 12/27/2021 12/31/2021 12/31/2021 11:59:59 PM

8204 06/06/2022 12/31/2022 12/31/2022 11:59:59 PM

8205 07/18/2022 12/31/2022 12/31/2022 11:59:59 PM

8206 11/14/2022 12/31/2022 12/31/2022 11:59:59 PM

8207 12/12/2022 12/31/2022 12/31/2022 11:59:59 PM

Results table

The ‘year_end’ field is created in the preceding load statement by using the yearend() function and
passing the date field as the function’s argument.

The yearend() function initially identifies which year the date value falls into and returns a
timestamp for the last millisecond of that year.

Script syntax and chart functions - Qlik Sense, May 2024 1142

8 Script and chart functions

Diagram of yearend() function with transaction 8199 selected.

Transaction 8199 took place on April 23, 2021. The yearend() function returns the last millisecond of
that year, which is December 31 at 11:59:59 PM.

Example 2 – period_no
Load script and results

Overview

The same dataset and scenario as the first example are used.

However, in this example, the task is to create a field, ‘previous_year_end’ , that returns the end date
timestamp of the year prior to the year in which a transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yearend(date,-1) as previous_year_end,

timestamp(yearend(date,-1)) as previous_year_end_timestamp

;

Load

*

Inline

[

id,date,amount

8188,01/13/2020,37.23

8189,02/26/2020,17.17

8190,03/27/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

Script syntax and chart functions - Qlik Sense, May 2024 1143

8 Script and chart functions

8204,06/06/2022,46.23

8205,07/18/2022,84.21

8206,11/14/2022,96.24

8207,12/12/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l previous_year_end

l previous_ year_end_timestamp

id date previous_year_end previous_year_end_timestamp

8188 01/13/2020 12/31/2019 12/31/2019 11:59:59 PM

8189 02/26/2020 12/31/2019 12/31/2019 11:59:59 PM

8190 03/27/2020 12/31/2019 12/31/2019 11:59:59 PM

8191 04/16/2020 12/31/2019 12/31/2019 11:59:59 PM

8192 05/21/2020 12/31/2019 12/31/2019 11:59:59 PM

8193 08/14/2020 12/31/2019 12/31/2019 11:59:59 PM

8194 10/07/2020 12/31/2019 12/31/2019 11:59:59 PM

8195 12/05/2020 12/31/2019 12/31/2019 11:59:59 PM

8196 01/22/2021 12/31/2020 12/31/2020 11:59:59 PM

8197 02/03/2021 12/31/2020 12/31/2020 11:59:59 PM

8198 03/17/2021 12/31/2020 12/31/2020 11:59:59 PM

8199 04/23/2021 12/31/2020 12/31/2020 11:59:59 PM

8200 05/04/2021 12/31/2020 12/31/2020 11:59:59 PM

8201 06/30/2021 12/31/2020 12/31/2020 11:59:59 PM

8202 07/26/2021 12/31/2020 12/31/2020 11:59:59 PM

8203 12/27/2021 12/31/2020 12/31/2020 11:59:59 PM

8204 06/06/2022 12/31/2021 12/31/2021 11:59:59 PM

8205 07/18/2022 12/31/2021 12/31/2021 11:59:59 PM

8206 11/14/2022 12/31/2021 12/31/2021 11:59:59 PM

8207 12/12/2022 12/31/2021 12/31/2021 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1144

8 Script and chart functions

Because a period_no of -1 was used as the offset argument in the yearend() function, the function
first identifies the year that the transactions take place in. It then looks one year prior and identifies
the last millisecond of that year.

Diagram of yearend() function with a period_no of -1.

Transaction 8199 takes place on April 23, 2021. The yearend() function returns the last millisecond
of the prior year, December 31, 2020 at 11:59:59 PM, for the ‘previous_year_end’ field.

Example 3 – first_month_of_year
Load script and results

Overview

The same dataset and scenario as the first example are used.

However, in this example, the company policy is for the year to begin from April 1.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yearend(date,0,4) as year_end,

timestamp(yearend(date,0,4)) as year_end_timestamp

;

Load

*

Inline

[

id,date,amount

8188,01/13/2020,37.23

8189,02/26/2020,17.17

8190,03/27/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

Script syntax and chart functions - Qlik Sense, May 2024 1145

8 Script and chart functions

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,06/06/2022,46.23

8205,07/18/2022,84.21

8206,11/14/2022,96.24

8207,12/12/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l year_end

l year_end_timestamp

id date year_end year_end_timestamp

8188 01/13/2020 03/31/2020 3/31/2020 11:59:59 PM

8189 02/26/2020 03/31/2020 3/31/2020 11:59:59 PM

8190 03/27/2020 03/31/2020 3/31/2020 11:59:59 PM

8191 04/16/2020 03/31/2021 3/31/2021 11:59:59 PM

8192 05/21/2020 03/31/2021 3/31/2021 11:59:59 PM

8193 08/14/2020 03/31/2021 3/31/2021 11:59:59 PM

8194 10/07/2020 03/31/2021 3/31/2021 11:59:59 PM

8195 12/05/2020 03/31/2021 3/31/2021 11:59:59 PM

8196 01/22/2021 03/31/2021 3/31/2021 11:59:59 PM

8197 02/03/2021 03/31/2021 3/31/2021 11:59:59 PM

8198 03/17/2021 03/31/2021 3/31/2021 11:59:59 PM

8199 04/23/2021 03/31/2022 3/31/2022 11:59:59 PM

8200 05/04/2021 03/31/2022 3/31/2022 11:59:59 PM

8201 06/30/2021 03/31/2022 3/31/2022 11:59:59 PM

8202 07/26/2021 03/31/2022 3/31/2022 11:59:59 PM

8203 12/27/2021 03/31/2022 3/31/2022 11:59:59 PM

8204 06/06/2022 03/31/2023 3/31/2023 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1146

8 Script and chart functions

id date year_end year_end_timestamp

8205 07/18/2022 03/31/2023 3/31/2023 11:59:59 PM

8206 11/14/2022 03/31/2023 3/31/2023 11:59:59 PM

8207 12/12/2022 03/31/2023 3/31/2023 11:59:59 PM

Because the first_month_of_year argument of 4 is used in the yearend() function, it sets the first day
of the year to April 1, and the last day of the year to March 31.

Diagram of yearend() function with April as the first month of the year.

Transaction 8199 takes place on April 23, 2021. Because the yearend() function sets the start of the
year to April 1, it returns March 31, 2022 as the ‘year_end’ value for the transaction.

Example 4 – Chart object example
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

However, in this example, the dataset is unchanged and loaded into the application. The calculation
that returns the end date timestamp of the year in which a transaction took place is created as a
measure in a chart object of the application.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,01/13/2020,37.23

8189,02/26/2020,17.17

8190,03/27/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

Script syntax and chart functions - Qlik Sense, May 2024 1147

8 Script and chart functions

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,06/06/2022,46.23

8205,07/18/2022,84.21

8206,11/14/2022,96.24

8207,12/12/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

To calculate in which year a transaction took place, create the following measures:

l =yearend(date)

l =timestamp(yearend(date))

id date =yearend(date) =timestamp(yearend(date))

8188 01/13/2020 12/31/2020 12/31/2020 11:59:59 PM

8189 02/26/2020 12/31/2020 12/31/2020 11:59:59 PM

8190 03/27/2020 12/31/2020 12/31/2020 11:59:59 PM

8191 04/16/2020 12/31/2020 12/31/2020 11:59:59 PM

8192 05/21/2020 12/31/2020 12/31/2020 11:59:59 PM

8193 08/14/2020 12/31/2020 12/31/2020 11:59:59 PM

8194 10/07/2020 12/31/2020 12/31/2020 11:59:59 PM

8195 12/05/2020 12/31/2020 12/31/2020 11:59:59 PM

8196 01/22/2021 12/31/2021 12/31/2021 11:59:59 PM

8197 02/03/2021 12/31/2021 12/31/2021 11:59:59 PM

8198 03/17/2021 12/31/2021 12/31/2021 11:59:59 PM

8199 04/23/2021 12/31/2021 12/31/2021 11:59:59 PM

8200 05/04/2021 12/31/2021 12/31/2021 11:59:59 PM

8201 06/30/2021 12/31/2021 12/31/2021 11:59:59 PM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1148

8 Script and chart functions

id date =yearend(date) =timestamp(yearend(date))

8202 07/26/2021 12/31/2021 12/31/2021 11:59:59 PM

8203 12/27/2021 12/31/2021 12/31/2021 11:59:59 PM

8204 06/06/2022 12/31/2022 12/31/2022 11:59:59 PM

8205 07/18/2022 12/31/2022 12/31/2022 11:59:59 PM

8206 11/14/2022 12/31/2022 12/31/2022 11:59:59 PM

8207 12/12/2022 12/31/2022 12/31/2022 11:59:59 PM

The ‘end_of_year’ measure is created in the chart object by using the yearend() function and passing
the date field as the function’s argument.

The yearend() function initially identifies which year the date value falls into returning a timestamp
for the last millisecond of that year.

Diagram of yearend() function that shows Transaction 8199 took place in April.

Transaction 8199 takes place on April 23, 2021. The yearend() function returns the last millisecond
of that year, which is December 31 at 11:59:59 PM.

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset is loaded into a table called ‘Employee_Expenses’. The table contains the following
fields:

l employee IDs
l employee name
l average daily expense claims of each employee

The end user would like a chart object that displays, by employee id and employee name, the
estimated expense claims still to be incurred for the remainder of the year. The financial year begins
in January.

Script syntax and chart functions - Qlik Sense, May 2024 1149

8 Script and chart functions

Load script

Employee_Expenses:

Load

*

Inline

[

employee_id,employee_name,avg_daily_claim

182,Mark, $15

183,Deryck, $12.5

184,Dexter, $12.5

185,Sydney,$27

186,Agatha,$18

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l employee_id

l employee_name

To calculate the projected expense claims, create the following measure:

=(yearend(today(1))-today(1))*avg_daily_claim

Set the measure’s Number Formatting to Money.

employee_id employee_name =(yearend(today(1))-today(1))*avg_daily_claim

182 Mark $3240.00

183 Deryck $2700.00

184 Dexter $2700.00

185 Sydney $5832.00

186 Agatha $3888.00

Results table

By using today’s date as its only argument, the yearend() function returns the end date of the
current year. Then, by subtracting today’s date from the year end date, the expression returns the
number of days remaining in this year.

This value is then multiplied by the average daily expense claim by each employee to calculate the
estimated value of claims each employee is expected to make in the remaining year.

yearname
This function returns a four-digit year as display value with an underlying numeric value
corresponding to a timestamp of the first millisecond of the first day of the year
containing date.

Script syntax and chart functions - Qlik Sense, May 2024 1150

8 Script and chart functions

Diagram of range of time of the yearname() function.

The yearname() function is different to the year() function as it lets you offset the date you want
evaluated and lets you set the first month of the year.

If the first month of the year is not January, the function will return the two four-digit years across
the twelve month period that contain the date. For example, if the start of the year is April and the
date being evaluated is 06/30/2020, the result returned would be 2020-2021.

Diagram of yearname() function with April set as the first month of the year.

Syntax:
YearName(date[, period_no[, first_month_of_year]])

Return data type: dual

Argument Description

date The date or timestamp to evaluate.

period_no period_no is an integer, where the value 0 indicates the year which contains
date. Negative values in period_no indicate preceding years and positive values
indicate succeeding years.

first_
month_of_
year

If you want to work with (fiscal) years not starting in January, indicate a value
between 2 and 12 in first_month_of_year. The display value will then be a string
showing two years.

You can use the following values to set the first month of year in the first_month_of_year argument:

Script syntax and chart functions - Qlik Sense, May 2024 1151

8 Script and chart functions

Month Value

February 2

March 3

April 4

May 5

June 6

July 7

August 8

September 9

October 10

November 11

December 12

first_month_of_year values

When to use it

The yearname() function is useful for comparing aggregations by year. For example, if you want to
see the total sales of products by year.

These dimensions can be created in the load script by using the function to create a field in a
Master Calendar table. They can also be created in a chart as calculated dimensions

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example Result

yearname('10/19/2001') Returns '2001.'

yearname('10/19/2001',-1) Returns '2000.'

yearname('10/19/2001',0,4) Returns '2001-2002.'

Function examples

Script syntax and chart functions - Qlik Sense, May 2024 1152

8 Script and chart functions

Topic Description

year
(page
1132)

This function returns an integer representing the year when the expression is
interpreted as a date according to the standard number interpretation.

Related topics

Example 1 – No additional arguments
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022 is loaded into a table
called ‘Transactions’.

l The DateFormat system variable which is set to ‘MM/DD/YYYY’.
l A preceding load that uses the yearname() and which is set as the year_name field.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yearname(date) as year_name

;

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

Script syntax and chart functions - Qlik Sense, May 2024 1153

8 Script and chart functions

8203,'12/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l year_name

date year_name

01/13/2020 2020

02/26/2020 2020

03/27/2020 2020

04/16/2020 2020

05/21/2020 2020

08/14/2020 2020

10/07/2020 2020

12/05/2020 2020

01/22/2021 2021

02/03/2021 2021

03/17/2021 2021

04/23/2021 2021

05/04/2021 2021

06/30/2021 2021

07/26/2021 2021

12/27/2021 2021

06/06/2022 2022

07/18/2022 2022

11/14/2022 2022

12/12/2022 2022

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1154

8 Script and chart functions

The ‘year_name’ field is created in the preceding load statement by using the yearname() function and
passing the date field as the function’s argument.

The yearname() function identifies which year the date value falls into and returns this as a four-digit
year value.

Diagram of yearname() function that shows 2021 as the year value.

Example 2 – period_no
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022 is loaded into a table
called ‘Transactions’.

l The DateFormat system variable which is set to ‘MM/DD/YYYY’.
l A preceding load that uses the yearname() and which is set as the year_name field.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yearname(date,-1) as prior_year_name

;

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

Script syntax and chart functions - Qlik Sense, May 2024 1155

8 Script and chart functions

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l prior_year_name

date prior_year_name

01/13/2020 2019

02/26/2020 2019

03/27/2020 2019

04/16/2020 2019

05/21/2020 2019

08/14/2020 2019

10/07/2020 2019

12/05/2020 2019

01/22/2021 2020

02/03/2021 2020

03/17/2021 2020

04/23/2021 2020

05/04/2021 2020

06/30/2021 2020

07/26/2021 2020

12/27/2021 2020

06/06/2022 2021

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1156

8 Script and chart functions

date prior_year_name

07/18/2022 2021

11/14/2022 2021

12/12/2022 2021

Because a period_no of -1 is used as the offset argument in the yearname() function, the function
first identifies the year that the transactions take place in. The function then shifts one year prior
and returns the resulting year.

Diagram of yearname() function with the period_no set -1.

Example 3 – first_month_of_year
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset from the first example.
l The DateFormat system variable which is set to ‘MM/DD/YYYY’.
l A preceding load that uses the yearname() and which is set as the year_name field.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yearname(date,0,4) as year_name

;

Load

*

Inline

[

id,date,amount

Script syntax and chart functions - Qlik Sense, May 2024 1157

8 Script and chart functions

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l year_name

date year_name

01/13/2020 2019-2020

02/26/2020 2019-2020

03/27/2020 2019-2020

04/16/2020 2020-2021

05/21/2020 2020-2021

08/14/2020 2020-2021

10/07/2020 2020-2021

12/05/2020 2020-2021

01/22/2021 2020-2021

02/03/2021 2020-2021

03/17/2021 2020-2021

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1158

8 Script and chart functions

date year_name

04/23/2021 2021-2022

05/04/2021 2021-2022

06/30/2021 2021-2022

07/26/2021 2021-2022

12/27/2021 2021-2022

06/06/2022 2022-2023

07/18/2022 2022-2023

11/14/2022 2022-2023

12/12/2022 2022-2023

Because the first_month_of_year argument of 4 is used in the yearname() function, the start of the
year moves from January 1 to April 1. Therefore, each twelve month period crosses two calendar
years and the yearname() function returns the two four-digit years for dates evaluated.

Transaction 8198 takes place on March 17, 2021. The yearname() function sets the beginning of the
year on April 1 and the ending on March 30. Therefore, transaction 8198 occurred in the year period
from April 1, 2020 and March 30, 2021. As a result, the yearname() function returns the value 2020-
2021.

Diagram of yearname() function with March set as the first month of the year.

Example 4 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset from the first example.
l The DateFormat system variable which is set to ‘MM/DD/YYYY’.

Script syntax and chart functions - Qlik Sense, May 2024 1159

8 Script and chart functions

However, the field that returns the year that the transaction took place in is created as a measure in
a chart object.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:

date

To calculate the ‘year_name’ field, create this measure:

=yearname(date)

date =yearname(date)

01/13/2020 2020

02/26/2020 2020

03/27/2020 2020

04/16/2020 2020

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1160

8 Script and chart functions

date =yearname(date)

05/21/2020 2020

08/14/2020 2020

10/07/2020 2020

12/05/2020 2020

01/22/2021 2021

02/03/2021 2021

03/17/2021 2021

04/23/2021 2021

05/04/2021 2021

06/30/2021 2021

07/26/2021 2021

12/27/2021 2021

06/06/2022 2022

07/18/2022 2022

11/14/2022 2022

12/12/2022 2022

The ‘year_name’ measure is created in the chart object using the yearname() function and passing the
date field as the function’s argument.

The yearname() function identifies which year the date value falls into and returns this as a four-digit
year value.

Diagram of yearname() function with 2021 as the year value.

Example 5 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, May 2024 1161

8 Script and chart functions

The load script contains:

l The same dataset from the first example.
l The DateFormat system variable which is set to ‘MM/DD/YYYY’.

The end user would like a chart that presents the total sales by quarter for the transactions. Use the
yearname() function as a calculated dimension to create this chart when the yearname() dimension is
not available in the data model.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,'01/13/2020',37.23

8189,'02/26/2020',17.17

8190,'03/27/2020',88.27

8191,'04/16/2020',57.42

8192,'05/21/2020',53.80

8193,'08/14/2020',82.06

8194,'10/07/2020',40.39

8195,'12/05/2020',87.21

8196,'01/22/2021',95.93

8197,'02/03/2021',45.89

8198,'03/17/2021',36.23

8199,'04/23/2021',25.66

8200,'05/04/2021',82.77

8201,'06/30/2021',69.98

8202,'07/26/2021',76.11

8203,'12/27/2021',25.12

8204,'06/06/2022',46.23

8205,'07/18/2022',84.21

8206,'11/14/2022',96.24

8207,'12/12/2022',67.67

];

Results

Load the data and open a sheet. Create a new table.

To compare aggregations by year, create this calculated dimension:

=yearname(date)

Create this measure:

=sum(amount)

Set the measure’s Number Formatting to Money.

Script syntax and chart functions - Qlik Sense, May 2024 1162

8 Script and chart functions

yearname(date) =sum(amount)

2020 $463.55

2021 $457.69

2022 $294.35

Results table

yearstart
This function returns a timestamp corresponding to the start of the first day of the year
containing date. The default output format will be the DateFormat set in the script.

Syntax:
YearStart(date[, period_no[, first_month_of_year]])

In other words, the yearstart() function determines which year the date falls into. It then returns a
timestamp, in date format, for the first millisecond of that year. The first month of the year is, by
default, January; however, you can change which month is set as first by using the first_month_of_

year argument in the yearstart() function.

Diagram of yearstart() function that shows the range of time that the function can cover.

When to use it

The yearstart() function is used as part of an expression when you want the calculation to use the
fraction of the year that has elapsed thus far. For example, if you want to calculate the interest that
has accumulated in a year to date.

Return data type: dual

Argument Description

date The date or timestamp to evaluate.

period_no period_no is an integer, where the value 0 indicates the year which contains
date. Negative values in period_no indicate preceding years and positive values
indicate succeeding years.

first_
month_of_
year

If you want to work with (fiscal) years not starting in January, indicate a value
between 2 and 12 in first_month_of_year.

Arguments

The following months can be used in the first_month_of_year argument:

Script syntax and chart functions - Qlik Sense, May 2024 1163

8 Script and chart functions

Month Value

February 2

March 3

April 4

May 5

June 6

July 7

August 8

September 9

October 10

November 11

December 12

first_month_of_year values

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example Result

yearstart('10/19/2001') Returns 01/01/2001 00:00:00.

yearstart('10/19/2001',-1) Returns 01/01/2000 00:00:00.

yearstart('10/19/2001',0,4) Returns 04/01/2001 00:00:00.

Function examples

Script syntax and chart functions - Qlik Sense, May 2024 1164

8 Script and chart functions

Example 1 – Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022 is loaded into a table
called ‘Transactions’.

l The date field has been provided in the DateFormat system variable (MM/DD/YYYY) format.
l A preceding load statement which contains the following:

l yearstart() function which is set as the year_start field.
l Timestamp() function which is set as the year_start_timestamp field

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yearstart(date) as year_start,

timestamp(yearstart(date)) as year_start_timestamp

;

Load

*

Inline

[

id,date,amount

8188,01/13/2020,37.23

8189,02/26/2020,17.17

8190,03/27/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,06/06/2022,46.23

8205,07/18/2022,84.21

8206,11/14/2022,96.24

Script syntax and chart functions - Qlik Sense, May 2024 1165

8 Script and chart functions

8207,12/12/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l year_start

l year_start_timestamp

id date year_start year_start_timestamp

8188 01/13/2020 01/01/2020 1/1/2020 12:00:00 AM

8189 02/26/2020 01/01/2020 1/1/2020 12:00:00 AM

8190 03/27/2020 01/01/2020 1/1/2020 12:00:00 AM

8191 04/16/2020 01/01/2020 1/1/2020 12:00:00 AM

8192 05/21/2020 01/01/2020 1/1/2020 12:00:00 AM

8193 08/14/2020 01/01/2020 1/1/2020 12:00:00 AM

8194 10/07/2020 01/01/2020 1/1/2020 12:00:00 AM

8195 12/05/2020 01/01/2020 1/1/2020 12:00:00 AM

8196 01/22/2021 01/01/2021 1/1/2021 12:00:00 AM

8197 02/03/2021 01/01/2021 1/1/2021 12:00:00 AM

8198 03/17/2021 01/01/2021 1/1/2021 12:00:00 AM

8199 04/23/2021 01/01/2021 1/1/2021 12:00:00 AM

8200 05/04/2021 01/01/2021 1/1/2021 12:00:00 AM

8201 06/30/2021 01/01/2021 1/1/2021 12:00:00 AM

8202 07/26/2021 01/01/2021 1/1/2021 12:00:00 AM

8203 12/27/2021 01/01/2021 1/1/2021 12:00:00 AM

8204 06/06/2022 01/01/2022 1/1/2022 12:00:00 AM

8205 07/18/2022 01/01/2022 1/1/2022 12:00:00 AM

8206 11/14/2022 01/01/2022 1/1/2022 12:00:00 AM

8207 12/12/2022 01/01/2022 1/1/2022 12:00:00 AM

Results table

The ‘year_start’ field is created in the preceding load statement by using the yearstart() function
and passing the date field as the function’s argument.

Script syntax and chart functions - Qlik Sense, May 2024 1166

8 Script and chart functions

The yearstart() function initially identifies which year the date value falls into and returns a
timestamp for the first millisecond of that year.

Diagram of the yearstart() function and transaction 8199.

Transaction 8199 took place on April 23, 2021. The yearstart() function returns the first millisecond
of that year, which is January 1 at 12:00:00 AM.

Example 2 – period_no
Load script and results

Overview

The same dataset and scenario as the first example are used.

However, in this example, the task is to create a field, ‘previous_year_start’, that returns the start
date timestamp of the year prior to the year in which a transaction took place.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yearstart(date,-1) as previous_year_start,

timestamp(yearstart(date,-1)) as previous_year_start_timestamp

;

Load

*

Inline

[

id,date,amount

8188,01/13/2020,37.23

8189,02/26/2020,17.17

8190,03/27/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

Script syntax and chart functions - Qlik Sense, May 2024 1167

8 Script and chart functions

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,06/06/2022,46.23

8205,07/18/2022,84.21

8206,11/14/2022,96.24

8207,12/12/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l previous_year_start

l previous_ year_start_timestamp

id date previous_year_start previous_year_start_timestamp

8188 01/13/2020 01/01/2019 1/1/2019 12:00:00 AM

8189 02/26/2020 01/01/2019 1/1/2019 12:00:00 AM

8190 03/27/2020 01/01/2019 1/1/2019 12:00:00 AM

8191 04/16/2020 01/01/2019 1/1/2019 12:00:00 AM

8192 05/21/2020 01/01/2019 1/1/2019 12:00:00 AM

8193 08/14/2020 01/01/2019 1/1/2019 12:00:00 AM

8194 10/07/2020 01/01/2019 1/1/2019 12:00:00 AM

8195 12/05/2020 01/01/2019 1/1/2019 12:00:00 AM

8196 01/22/2021 01/01/2020 1/1/2020 12:00:00 AM

8197 02/03/2021 01/01/2020 1/1/2020 12:00:00 AM

8198 03/17/2021 01/01/2020 1/1/2020 12:00:00 AM

8199 04/23/2021 01/01/2020 1/1/2020 12:00:00 AM

8200 05/04/2021 01/01/2020 1/1/2020 12:00:00 AM

8201 06/30/2021 01/01/2020 1/1/2020 12:00:00 AM

8202 07/26/2021 01/01/2020 1/1/2020 12:00:00 AM

8203 12/27/2021 01/01/2020 1/1/2020 12:00:00 AM

8204 06/06/2022 01/01/2021 1/1/2021 12:00:00 AM

8205 07/18/2022 01/01/2021 1/1/2021 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1168

8 Script and chart functions

id date previous_year_start previous_year_start_timestamp

8206 11/14/2022 01/01/2021 1/1/2021 12:00:00 AM

8207 12/12/2022 01/01/2021 1/1/2021 12:00:00 AM

In this instance, because a period_no of -1 is used as the offset argument in the yearstart()

function, the function first identifies the year that the transactions take place in. It then looks one
year prior and identifies the first millisecond of that year.

Diagram of the yearstart() function with a period_no of -1.

Transaction 8199 took place on April 23, 2021. The yearstart() function returns the first millisecond
of the prior year, January 1, 2020 at 12:00:00 AM, for the ‘previous_year_start’ field.

Example 3 – first_month_of_year
Load script and results

Overview

The same dataset and scenario as the first example are used.

However, in this example, the company policy is for the year to begin from April 1.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yearstart(date,0,4) as year_start,

timestamp(yearstart(date,0,4)) as year_start_timestamp

;

Load

*

Inline

[

id,date,amount

8188,01/13/2020,37.23

8189,02/26/2020,17.17

8190,03/27/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

Script syntax and chart functions - Qlik Sense, May 2024 1169

8 Script and chart functions

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,06/06/2022,46.23

8205,07/18/2022,84.21

8206,11/14/2022,96.24

8207,12/12/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

l year_start

l year_start_timestamp

id date year_start year_start_timestamp

8188 01/13/2020 04/01/2019 4/1/2019 12:00:00 AM

8189 02/26/2020 04/01/2019 4/1/2019 12:00:00 AM

8190 03/27/2020 04/01/2019 4/1/2019 12:00:00 AM

8191 04/16/2020 04/01/2020 4/1/2020 12:00:00 AM

8192 05/21/2020 04/01/2020 4/1/2020 12:00:00 AM

8193 08/14/2020 04/01/2020 4/1/2020 12:00:00 AM

8194 10/07/2020 04/01/2020 4/1/2020 12:00:00 AM

8195 12/05/2020 04/01/2020 4/1/2020 12:00:00 AM

8196 01/22/2021 04/01/2020 4/1/2020 12:00:00 AM

8197 02/03/2021 04/01/2020 4/1/2020 12:00:00 AM

8198 03/17/2021 04/01/2020 4/1/2020 12:00:00 AM

8199 04/23/2021 04/01/2021 4/1/2021 12:00:00 AM

8200 05/04/2021 04/01/2021 4/1/2021 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1170

8 Script and chart functions

id date year_start year_start_timestamp

8201 06/30/2021 04/01/2021 4/1/2021 12:00:00 AM

8202 07/26/2021 04/01/2021 4/1/2021 12:00:00 AM

8203 12/27/2021 04/01/2021 4/1/2021 12:00:00 AM

8204 06/06/2022 04/01/2022 4/1/2022 12:00:00 AM

8205 07/18/2022 04/01/2022 4/1/2022 12:00:00 AM

8206 11/14/2022 04/01/2022 4/1/2022 12:00:00 AM

8207 12/12/2022 04/01/2022 4/1/2022 12:00:00 AM

In this instance, because the first_month_of_year argument of 4 is used in the yearstart() function,
it sets the first day of the year to April 1, and the last day of the year to March 31.

Diagram of the yearstart() function with the first month set as April.

Transaction 8199 took place on April 23, 2021. Because the yearstart() function sets the start of
the year to April 1 and returns it as the ‘year_start’ value for the transaction.

Example 4 – Chart object example
Load script and chart expression

Overview

The same dataset and scenario as the first example are used.

However, in this example, the dataset is unchanged and loaded into the application. The calculation
that returns the start date timestamp of the year in which a transaction took place is created as a
measure in a chart object of the application.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,01/13/2020,37.23

8189,02/26/2020,17.17

8190,03/27/2020,88.27

Script syntax and chart functions - Qlik Sense, May 2024 1171

8 Script and chart functions

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,06/06/2022,46.23

8205,07/18/2022,84.21

8206,11/14/2022,96.24

8207,12/12/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l id

l date

To calculate in which year a transaction took place, create the following measures:

l =yearstart(date)

l =timestamp(yearstart(date))

id date =yearstart(date) =timestamp(yearstart(date))

8188 06/06/2022 01/01/2022 1/1/2022 12:00:00 AM

8189 07/18/2022 01/01/2022 1/1/2022 12:00:00 AM

8190 11/14/2022 01/01/2022 1/1/2022 12:00:00 AM

8191 12/12/2022 01/01/2022 1/1/2022 12:00:00 AM

8192 01/22/2021 01/01/2021 1/1/2021 12:00:00 AM

8193 02/03/2021 01/01/2021 1/1/2021 12:00:00 AM

8194 03/17/2021 01/01/2021 1/1/2021 12:00:00 AM

8195 04/23/2021 01/01/2021 1/1/2021 12:00:00 AM

8196 05/04/2021 01/01/2021 1/1/2021 12:00:00 AM

8197 06/30/2021 01/01/2021 1/1/2021 12:00:00 AM

8198 07/26/2021 01/01/2021 1/1/2021 12:00:00 AM

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1172

8 Script and chart functions

id date =yearstart(date) =timestamp(yearstart(date))

8199 12/27/2021 01/01/2021 1/1/2021 12:00:00 AM

8200 01/13/2020 01/01/2020 1/1/2020 12:00:00 AM

8201 02/26/2020 01/01/2020 1/1/2020 12:00:00 AM

8202 03/27/2020 01/01/2020 1/1/2020 12:00:00 AM

8203 04/16/2020 01/01/2020 1/1/2020 12:00:00 AM

8204 05/21/2020 01/01/2020 1/1/2020 12:00:00 AM

8205 08/14/2020 01/01/2020 1/1/2020 12:00:00 AM

8206 10/07/2020 01/01/2020 1/1/2020 12:00:00 AM

8207 12/05/2020 01/01/2020 1/1/2020 12:00:00 AM

The ‘start_of_year’ measure is created in the chart object by using the yearstart() function and
passing the date field as the function’s argument.

The yearstart() function initially identifies which year the date value falls into and returns a
timestamp for the first millisecond of that year.

Diagram of theyearstart() function and transaction 8199.

Transaction 8199 took place on April 23, 2021. The yearstart() function returns the first millisecond
of that year, which is January 1 at 12:00:00 AM.

Example 5 – Scenario
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset is loaded into a table called ‘Loans’. The table contains the following fields:
l Loan IDs.
l The balance at the beginning of the year.
l The simple interest rate charged on each loan per annum.

Script syntax and chart functions - Qlik Sense, May 2024 1173

8 Script and chart functions

The end user would like a chart object that displays, by loan id, the current interest that has been
accrued on each loan in the year to date.

Load script

Loans:

Load

*

Inline

[

loan_id,start_balance,rate

8188,$10000.00,0.024

8189,$15000.00,0.057

8190,$17500.00,0.024

8191,$21000.00,0.034

8192,$90000.00,0.084

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l loan_id

l start_balance

To calculate the accumulated interest, create the following measure:

=start_balance*(rate*(today(1)-yearstart(today(1)))/365)

Set the measure’s Number Formatting to Money.

loan_id start_balance =start_balance*(rate*(today(1)-yearstart(today(1)))/365)

8188 $10000.00 $39.73

8189 $15000.00 $339.66

8190 $17500.00 $166.85

8191 $21000.00 $283.64

8192 $90000.00 $3003.29

Results table

The yearstart() function, using today’s date as its only argument, returns the start date of the
current year. By subtracting that result from the current date, the expression returns the number of
days that have elapsed so far this year.

This value is then multiplied by the interest rate and divided by 365 to return the effective interest
rate for the period. The effective interest rate for the period is then multiplied by the starting
balance of the loan to return the interest that has been accrued so far this year.

Script syntax and chart functions - Qlik Sense, May 2024 1174

8 Script and chart functions

yeartodate
This function finds if the input timestamp falls within the year of the date the script was
last loaded, and returns True if it does, False if it does not.

Syntax:
YearToDate(timestamp[, yearoffset [, firstmonth [, todaydate]]])

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is
represented by 0.

Example diagram of yeartodate() function

If none of the optional parameters are used, the year to date means any date within one calendar
year from January 1 up to and including the date of the last script execution.

In other words, the yeartodate() function, when triggered with no additional parameters, is used to
evaluate a timestamp and return a Boolean result based on whether the date occurred within the
calendar year up to and including the date that the reload took place.

However, it is also possible to supersede the start date of the year using the firstmonth argument,
as well as to make comparisons with preceding or following years using the yearoffset argument.

Finally, in instances of historical datasets, the yeartodate() function provides a parameter to set
todaydate, which will instead compare the timestamp to the calendar year up to and including the
date provided in the todaydate argument.

Argument Description

timestamp The timestamp to evaluate, for example '10/12/2012'.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1175

8 Script and chart functions

Argument Description

yearoffset By specifying a yearoffset, yeartodate returns True for the same period in
another year. A negative yearoffset indicates a previous year, a positive offset a
future year. The most recent year-to-date is achieved by specifying yearoffset =
-1. If omitted, 0 is assumed.

firstmonth By specifying a firstmonth between 1 and 12 (1 if omitted), the beginning of the
year may be moved forward to the first day of any month. For example, if you
want to work with a fiscal year beginning on May 1, specify firstmonth = 5. A
value of 1 would indicate a fiscal year starting on January 1, and a value of 12
would indicate a fiscal year starting on December 1.

todaydate By specifying a todaydate (timestamp of the last script execution if omitted) it is
possible to move the day used as the upper boundary of the period.

When to use it
The yeartodate() function returns a Boolean result. Typically, this type of function will be used as a
condition in an if expression. This would return an aggregation or calculation dependent on whether
the evaluated date occurred in the year up to and including the last reload date of the application.

For example, the YearToDate() function can be used to identify all equipment manufactured so far
in the current year.

The following examples assume last reload time = 11/18/2011.

Example Result

yeartodate('11/18/2010') returns False

yeartodate('02/01/2011') returns True

yeartodate('11/18/2011') returns True

yeartodate('11/19/2011') returns False

yeartodate('11/19/2011', 0, 1, '12/31/2011') returns True

yeartodate('11/18/2010', -1) returns True

yeartodate('11/18/2011', -1) returns False

yeartodate('04/30/2011', 0, 5) returns False

yeartodate('05/01/2011', 0, 5) returns True

Function examples

Regional settings
Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the SET DateFormat statement in your data load script. The default

Script syntax and chart functions - Qlik Sense, May 2024 1176

8 Script and chart functions

date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 – Basic example
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l A dataset containing a set of transactions between 2020 and 2022, which is loaded into a
table called Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.
l The creation of a field year_to_date, that determines which transactions took place in the

calendar year up to the date of the last reload.

At the time of writing, the date is April 26, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yeartodate(date) as year_to_date

;

Load

*

Inline

[

id,date,amount

8188,01/10/2020,37.23

8189,02/28/2020,17.17

8190,04/09/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

Script syntax and chart functions - Qlik Sense, May 2024 1177

8 Script and chart functions

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,02/02/2022,46.23

8205,02/26/2022,84.21

8206,03/07/2022,96.24

8207,03/11/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l year_to_date

date year_to_date

01/10/2020 0

02/28/2020 0

04/09/2020 0

04/16/2020 0

05/21/2020 0

08/14/2020 0

10/07/2020 0

12/05/2020 0

01/22/2021 0

02/03/2021 0

03/17/2021 0

04/23/2021 0

05/04/2021 0

06/30/2021 0

07/26/2021 0

12/27/2021 0

02/02/2022 -1

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1178

8 Script and chart functions

date year_to_date

02/26/2022 -1

03/07/2022 -1

03/11/2022 -1

Diagram of yeartodate() function, basic example

The year_to_date field is created in the preceding load statement by using the yeartodate() function
and passing the date field as the function’s argument.

Because no further parameters are passed into the function, the yeartodate() function initially
identifies the reload date and therefore the boundaries for the current calendar year (starting
January 1) that will return a Boolean result of TRUE.

Therefore, any transaction that occurs between January 1 and April 26, the reload date, will return a
Boolean result of TRUE. Any transaction that occurs before the start of 2022 will return a Boolean
result of FALSE.

Example 2 – yearoffset
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, two_years_prior, that determines which transactions took place a full

two years before the calendar year to date.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

Script syntax and chart functions - Qlik Sense, May 2024 1179

8 Script and chart functions

*,

yeartodate(date,-2) as two_years_prior

;

Load

*

Inline

[

id,date,amount

8188,01/10/2020,37.23

8189,02/28/2020,17.17

8190,04/09/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,02/02/2022,46.23

8205,02/26/2022,84.21

8206,03/07/2022,96.24

8207,03/11/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l two_years_prior

date two_years_prior

01/10/2020 -1

02/28/2020 -1

04/09/2020 -1

04/16/2020 -1

05/21/2020 0

08/14/2020 0

10/07/2020 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1180

8 Script and chart functions

date two_years_prior

12/05/2020 0

01/22/2021 0

02/03/2021 0

03/17/2021 0

04/23/2021 0

05/04/2021 0

06/30/2021 0

07/26/2021 0

12/27/2021 0

02/02/2022 0

02/26/2022 0

03/07/2022 0

03/11/2022 0

By using -2 as the yearoffset argument in the yeartodate() function, the function shifts the
boundaries of the comparator calendar year segment by a full two years. Initially, the year segment
equates to between January 1 and April 26, 2022. The yearoffset argument then offsets this
segment to two years prior. The date boundaries will then fall between the January 1 and April 26,
2020.

Diagram of yeartodate() function, yearoffset example

Therefore, any transaction that occurs between January 1 and April 26, 2020 will return a Boolean
result of TRUE. Any transactions that appear before or after this segment will return FALSE.

Script syntax and chart functions - Qlik Sense, May 2024 1181

8 Script and chart functions

Example 3 – firstmonth
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, year_to_date, that determines which transactions took place in the

calendar year up to the date of the last reload.

In this example, we set the start of the fiscal year to July 1.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yeartodate(date,0,7) as year_to_date

;

Load

*

Inline

[

id,date,amount

8188,01/10/2020,37.23

8189,02/28/2020,17.17

8190,04/09/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,02/02/2022,46.23

8205,02/26/2022,84.21

8206,03/07/2022,96.24

8207,03/11/2022,67.67

];

Script syntax and chart functions - Qlik Sense, May 2024 1182

8 Script and chart functions

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l year_to_date

date year_to_date

01/10/2020 0

02/28/2020 0

04/09/2020 0

04/16/2020 0

05/21/2020 0

08/14/2020 0

10/07/2020 0

12/05/2020 0

01/22/2021 0

02/03/2021 0

03/17/2021 0

04/23/2021 0

05/04/2021 0

06/30/2021 0

07/26/2021 -1

12/27/2021 -1

02/02/2022 -1

02/26/2022 -1

03/07/2022 -1

03/11/2022 -1

Results table

In this instance, because the firstmonth argument of 7 is used in the yeartodate() function, it sets
the first day of the year to July 1, and the last day of the year to June 30.

Script syntax and chart functions - Qlik Sense, May 2024 1183

8 Script and chart functions

Diagram of yeartodate() function, firstmonth example

Therefore, any transaction that occurs between July 1, 2021 and April 26, 2022, the reload date, will
return a Boolean result of TRUE. Any transaction that occurs before July 1, 2021 will return a Boolean
result of FALSE.

Example 4 – todaydate
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l The same dataset and scenario as the first example.
l The creation of a field, year_to_date, that determines which transactions took place in the

calendar year up to the date of the last reload.

However, in this example, we need to identify all transactions that took place in the calendar year
up to and including March 1, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*,

yeartodate(date, 0, 1, '03/01/2022') as year_to_date

;

Load

*

Inline

[

id,date,amount

8188,01/10/2020,37.23

8189,02/28/2020,17.17

8190,04/09/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

Script syntax and chart functions - Qlik Sense, May 2024 1184

8 Script and chart functions

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,02/02/2022,46.23

8205,02/26/2022,84.21

8206,03/07/2022,96.24

8207,03/11/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l date

l year_to_date

date year_to_date

01/10/2020 0

02/28/2020 0

04/09/2020 0

04/16/2020 0

05/21/2020 0

08/14/2020 0

10/07/2020 0

12/05/2020 0

01/22/2021 0

02/03/2021 0

03/17/2021 0

04/23/2021 0

05/04/2021 0

06/30/2021 0

07/26/2021 0

12/27/2021 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1185

8 Script and chart functions

date year_to_date

02/02/2022 -1

02/26/2022 -1

03/07/2022 0

03/11/2022 0

In this instance, because the todaydate argument of 03/01/2022 is used in the yeartodate()

function, it sets the end boundary of the comparator calendar year segment to March 1, 2022. It is
critical to provide the firstmonth parameter (between 1 and 12); otherwise the function will return
null results.

Diagram of yeartodate() function, example using todaydate argument

Therefore, any transaction that occurs between January 1, 2022 and March 1, 2022, the todaydate

parameter, will return a Boolean result of TRUE. Any transaction that occurs before January 1, 2022
or after March 1, 2022 will return a Boolean result of FALSE.

Example 5 – Chart object example
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains the same dataset and scenario as the first example.

However, in this example, the unchanged dataset is loaded into the application. The calculation that
determines which transactions took place in the calendar year up to the date of the last reload is
created as a measure in a chart object of the application.

Load script

Transactions:

Load

*

Inline

Script syntax and chart functions - Qlik Sense, May 2024 1186

8 Script and chart functions

[

id,date,amount

8188,01/10/2020,37.23

8189,02/28/2020,17.17

8190,04/09/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,02/02/2022,46.23

8205,02/26/2022,84.21

8206,03/07/2022,96.24

8207,03/11/2022,67.67

];

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: date.

Add the following measure:

=yeartodate(date)

date =yeartodate(date)

01/10/2020 0

02/28/2020 0

04/09/2020 0

04/16/2020 0

05/21/2020 0

08/14/2020 0

10/07/2020 0

12/05/2020 0

01/22/2021 0

02/03/2021 0

03/17/2021 0

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1187

8 Script and chart functions

date =yeartodate(date)

04/23/2021 0

05/04/2021 0

06/30/2021 0

07/26/2021 0

12/27/2021 0

02/02/2022 -1

02/26/2022 -1

03/07/2022 -1

03/11/2022 -1

The year_to_date measure is created in the chart object by using the yeartodate() function and
passing the date field as the function’s argument.

Because no further parameters are passed into the function, the yeartodate() function initially
identifies the reload date, and therefore the boundaries for the current calendar year (starting
January 1) that will return a Boolean result of TRUE.

Diagram of yeartodate() function, example using chart object

Any transaction that occurs between January 1 and April 26, the reload date, will return a Boolean
result of TRUE. Any transaction that occurs before the start of 2022 will return a Boolean result of
FALSE.

Example 6 – Scenario
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2024 1188

8 Script and chart functions

l A dataset containing a set of transactions between 2020 and 2022, which is loaded into a
table called Transactions.

l The date field provided in the DateFormat system variable (MM/DD/YYYY) format.

The end user would like a KPI object that presents the total sales for the equivalent period in 2021
as the current year to date as at the last reload time.

At the time of writing, the date is June 16, 2022.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load

*

Inline

[

id,date,amount

8188,01/10/2020,37.23

8189,02/28/2020,17.17

8190,04/09/2020,88.27

8191,04/16/2020,57.42

8192,05/21/2020,53.80

8193,08/14/2020,82.06

8194,10/07/2020,40.39

8195,12/05/2020,87.21

8196,01/22/2021,95.93

8197,02/03/2021,45.89

8198,03/17/2021,36.23

8199,04/23/2021,25.66

8200,05/04/2021,82.77

8201,06/30/2021,69.98

8202,07/26/2021,76.11

8203,12/27/2021,25.12

8204,02/02/2022,46.23

8205,02/26/2022,84.21

8206,03/07/2022,96.24

8207,03/11/2022,67.67

];

Results

Do the following:

1. Create a KPI object.
2. Create the following aggregation measure to calculate total sales:

=sum(if(yeartodate(date,-1),amount,0))

3. Set the measure’s Number formatting to Money.

Script syntax and chart functions - Qlik Sense, May 2024 1189

8 Script and chart functions

KPI yeartodate() chart for 2021

The yeartodate() function returns a Boolean value when evaluating the dates of each transaction
ID. Because the reload took place on June 16, 2022, the yeartodate function segments the year
period to between 01/01/2022 and 06/16/2022. However, since a period_no value of -1 was used in
the function, these boundaries are then shifted to the previous year. Therefore, for any transaction
that occurs between 01/01/2021 and 06/16/2021, the yeartodate() function returns a Boolean value
of TRUE and sums the amount.

8.8 Exponential and logarithmic functions
This section describes functions related to exponential and logarithmic calculations. All functions
can be used in both the data load script and in chart expressions.

In the functions below, the parameters are expressions where x and y should be interpreted as real
valued numbers.

exp
The natural exponential function, e^x, using the natural logarithm e as base. The result is a positive
number.

exp(x)

Examples and results:

exp(3) returns 20.085.

log
The natural logarithm of x. The function is only defined if x> 0. The result is a number.

log(x)

Script syntax and chart functions - Qlik Sense, May 2024 1190

8 Script and chart functions

Examples and results:

log(3) returns 1.0986

log10
The common logarithm (base 10) of x. The function is only defined if x> 0. The result is a number.

log10(x)

Examples and results:

log10(3) returns 0.4771

pow
Returns x to the power of y. The result is a number.

pow(x,y)

Examples and results:

pow(3, 3) returns 27

sqr
x squared (x to the power of 2). The result is a number.

sqr (x)

Examples and results:

sqr(3) returns 9

sqrt
Square root of x. The function is only defined if x >= 0. The result is a positive number.

sqrt(x)

Examples and results:

sqrt(3) returns 1.732

8.9 Field functions
These functions can only be used in chart expressions.

Field functions either return integers or strings identifying different aspects of field selections.

Script syntax and chart functions - Qlik Sense, May 2024 1191

8 Script and chart functions

Count functions
GetAlternativeCount
GetAlternativeCount()is used to find the number of alternative (light gray) values in the identified
field.

GetAlternativeCount - chart function (field_name)

GetExcludedCount
GetExcludedCount() finds the number of excluded distinct values in the identified field. Only
excluded (dark gray) fields are counted. Alternative (light gray) and selected excluded (dark gray
with check mark) values are not counted.

GetExcludedCount - chart function (page 1196)(field_name)

GetNotSelectedCount
This chart function returns the number of not-selected values in the field named fieldname. The
field must be in and-mode for this function to be relevant.

GetNotSelectedCount - chart function(fieldname [, includeexcluded=false])

GetPossibleCount
GetPossibleCount() is used to find the number of possible values in the identified field. If the
identified field includes selections, then the selected (green) fields are counted. Otherwise
associated (white) values are counted.

GetPossibleCount - chart function(field_name)

GetSelectedCount
GetSelectedCount() finds the number of selected (green) values in a field.

GetSelectedCount - chart function (field_name [, include_excluded])

Field and selection functions
GetCurrentSelections
GetCurrentSelections() returns a list of the current selections in the app. If the selections are
instead made using a search string in a search box, GetCurrentSelections() returns the search
string.

GetCurrentSelections - chart function([record_sep [,tag_sep [,value_sep

[,max_values]]]])

GetFieldSelections
GetFieldSelections() returns a string with the current selections in a field.

GetFieldSelections - chart function (field_name [, value_sep [, max_

values]])

Script syntax and chart functions - Qlik Sense, May 2024 1192

8 Script and chart functions

GetObjectDimension
GetObjectDimension() returns the name of the dimension. Index is an optional integer denoting
the dimension that should be returned.

GetObjectDimension - chart function ([index])

GetObjectField
GetObjectField() returns the name of the dimension. Index is an optional integer denoting the
dimension that should be returned.

GetObjectField - chart function ([index])

GetObjectMeasure
GetObjectMeasure() returns the name of the measure. Index is an optional integer denoting the
measure that should be returned.

GetObjectMeasure - chart function ([index])

GetAlternativeCount - chart function
GetAlternativeCount()is used to find the number of alternative (light gray) values in the identified
field.

Syntax:
GetAlternativeCount (field_name)

Return data type: integer

Arguments:

Argument Description

field_name The field containing the range of data to be measured.

Arguments

Examples and results:

The following example uses the First name field loaded to a filter pane.

Examples Results

Given that John is selected in First
name.

GetAlternativeCount ([First name])

4 as there are 4 unique and excluded (gray) values in
First name.

Given that John and Peter are selected.

GetAlternativeCount ([First name])

3 as there are 3 unique and excluded (gray) values in
First name.

Examples and results

Script syntax and chart functions - Qlik Sense, May 2024 1193

8 Script and chart functions

Examples Results

Given that no values are selected in
First name.

GetAlternativeCount ([First name])

0 as there are no selections.

Data used in example:

Names:

LOAD * inline [

First name|Last name|Initials|Has cellphone

John|Anderson|JA|Yes

Sue|Brown|SB|Yes

Mark|Carr|MC|No

Peter|Devonshire|PD|No

Jane|Elliot|JE|Yes

Peter|Franc|PF|Yes] (delimiter is '|');

GetCurrentSelections - chart function
GetCurrentSelections() returns a list of the current selections in the app. If the selections are
instead made using a search string in a search box, GetCurrentSelections() returns the search
string.

If options are used, you will need to specify record_sep. To specify a new line, set record_sep to
chr(13)&chr(10).

If all but two, or all but one, values, are selected, the format 'NOT x,y' or 'NOT y' will be used
respectively. If you select all values and the count of all values is greater than max_values, the text
ALL will be returned.

Syntax:
GetCurrentSelections ([record_sep [, tag_sep [, value_sep [, max_values [,

state_name]]]]])

Return data type: string

Arguments:

Arguments Description

record_sep Separator to be put between field records. The default is <CR><LF> meaning a
new line.

tag_sep Separator to be put between the field name tag and the field values. The default
is ': '.

value_sep The separator to be put between field values. The default is ', '.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1194

8 Script and chart functions

Arguments Description

max_values The maximum number of field values to be individually listed. When a larger
number of values is selected, the format 'x of y values' will be used instead. The
default is 6.

state_name The name of an alternate state that has been chosen for the specific
visualization. If the state_name argument is used, only the selections associated
with the specified state name are taken into account.

Examples and results:

The following example uses two fields loaded to different filter panes, one for First name name and
one for Initials.

Examples Results

Given that John is selected in First name.

GetCurrentSelections ()

'First name: John'

Given that John and Peter are selected in First name.

GetCurrentSelections ()

'First name: John,
Peter'

Given that John and Peter are selected in First name and JA is selected in
Initials.

GetCurrentSelections ()

'First name: John,
Peter

Initials: JA'

Given that John is selected in First name and JA is selected in Initials.

GetCurrentSelections (chr(13)&chr(10) , ' = ')

'First name = John

Initials = JA'

Given that you have selected all names except Sue in First name and no
selectionsin Initials.

GetCurrentSelections (chr(13)&chr(10), '=', ',' ,3)

'First
name=NOT Sue'

Examples and results

Data used in example:

Names:

LOAD * inline [

First name|Last name|Initials|Has cellphone

John|Anderson|JA|Yes

Sue|Brown|SB|Yes

Mark|Carr|MC|No

Peter|Devonshire|PD|No

Jane|Elliot|JE|Yes

Peter|Franc|PF|Yes] (delimiter is '|');

Script syntax and chart functions - Qlik Sense, May 2024 1195

8 Script and chart functions

GetExcludedCount - chart function
GetExcludedCount() finds the number of excluded distinct values in the identified field. Only
excluded (dark gray) fields are counted. Alternative (light gray) and selected excluded (dark gray
with check mark) values are not counted.

Syntax:
GetExcludedCount (field_name)

Return data type: string

Arguments:

Arguments Description

field_name The field containing the range of data to be measured.

Arguments

Examples and results:

After loading the example script below into an app, create three filter panes: one for First name,
one for Last name, and one for Initials. Each of the example expressions in the table can be added
as KPI charts.

Examples Results

Given that no values are
selected in First name.

GetExcludedCount (Initials)

Result is 0 because there are no selections.

Given that John is selected in
First name.

GetExcludedCount (Initials)

Result is 5. There are 5 excluded values in Initials with dark
gray color. The JA value will be white as it is associated with
the selection John in First name.

Given that John and Peter are
selected.

GetExcludedCount (Initials)

Result is 3. John is associated with 1 value and Peter is
associated with 2 values, in Initials.

Given that John and Peter are
selected in First name, and
then Franc is selected in Last
name.

GetExcludedCount ([First

name])

Result is 3. There are 3 excluded values in First name with
dark gray color. GetExcludedCount() only counts excluded
values. Alternative and selected excluded values are not
included in the count.

Examples and results

Script syntax and chart functions - Qlik Sense, May 2024 1196

8 Script and chart functions

Examples Results

Given that John and Peter are
selected in First name, and
then Franc and Anderson are
selected in Last name.

GetExcludedCount (Initials)

Result is 4. There are 4 excluded values in Initials with dark
gray color. The other two values (JA and PF) will be white as
they are associated with the selections John and Peter in First
name.

Given that John and Peter are
selected in First name, and
then Franc and Anderson are
selected in Last name.

GetExcludedCount ([Last

name])

Result is 3. There are 3 excluded values in Last name, and
they have dark gray color: Brown, Carr, and Elliot. The value
Devonshire has light gray color (indicating that it is
alternative), so it is not included in the count.

Data used in example:

Names:

LOAD * inline [

First name|Last name|Initials|Has cellphone

John|Anderson|JA|Yes

Sue|Brown|SB|Yes

Mark|Carr|MC|No

Peter|Devonshire|PD|No

Jane|Elliot|JE|Yes

Peter|Franc|PF|Yes] (delimiter is '|');

GetFieldSelections - chart function
GetFieldSelections() returns a string with the current selections in a field.

If all but two, or all but one of the values are selected, the format 'NOT x,y' or 'NOT y' will be used
respectively. If you select all values and the count of all values is greater than max_values, the text
ALL will be returned.

Syntax:
GetFieldSelections (field_name [, value_sep [, max_values [, state_name]]])

Return data type: string

Format Description

'a, b, c' If the number of selected values is max_values or less, the string returned is a list of
the selected values.

The values are separated with value_sep as delimiter.

Return string formats

Script syntax and chart functions - Qlik Sense, May 2024 1197

8 Script and chart functions

Format Description

'NOT a, b,
c'

If the number of non-selected values is max_values or less, the string returned is a
list of the non-selected values with NOT as a prefix.

The values are separated with value_sep as delimiter.

'x of y' x = the number of selected values

y = the total number of values

This is returned when max_values < x < (y - max_values).

'ALL' Returned if all values are selected.

'-' Returned if no value is selected.

<search
string>

If you have selected using search, the search string is returned.

Arguments:

Arguments Description

field_name The field containing the range of data to be measured.

value_sep The separator to be put between field values. The default is ', '.

max_values The maximum number of field values to be individually listed. When a larger
number of values is selected, the format 'x of y values' will be used instead. The
default is 6.

state_name The name of an alternate state that has been chosen for the specific
visualization. If the state_name argument is used, only the selections associated
with the specified state name are taken into account.

Arguments

Examples and results:

The following example uses the First name field loaded to a filter pane.

Examples Results

Given that John is
selected in First name.

GetFieldSelections

([First name])

'John'

Examples and results

Script syntax and chart functions - Qlik Sense, May 2024 1198

8 Script and chart functions

Examples Results

Given that John and
Peter are selected.

GetFieldSelections

([First name])

'John,Peter'

Given that John and
Peter are selected.

GetFieldSelections

([First name],'; ')

'John; Peter'

Given that John, Sue,
Mark are selected in
First name.

GetFieldSelections

([First name],';',2)

'NOT Jane;Peter', because the value 2 is stated as the value of the
max_values argument. Otherwise, the result would have been John;
Sue; Mark.

Data used in example:

Names:

LOAD * inline [

First name|Last name|Initials|Has cellphone

John|Anderson|JA|Yes

Sue|Brown|SB|Yes

Mark|Carr|MC|No

Peter|Devonshire|PD|No

Jane|Elliot|JE|Yes

Peter|Franc|PF|Yes] (delimiter is '|');

GetNotSelectedCount - chart function
This chart function returns the number of not-selected values in the field named fieldname. The
field must be in and-mode for this function to be relevant.

Syntax:
GetNotSelectedCount(fieldname [, includeexcluded=false])

Arguments:

Argument Description

fieldname The name of the field to be evaluated.

includeexcluded If includeexcluded is stated as True, the count will include selected values
which are excluded by selections in another field.

Arguments

Examples:

GetNotSelectedCount(Country)

Script syntax and chart functions - Qlik Sense, May 2024 1199

8 Script and chart functions

GetNotSelectedCount(Country, true)

GetObjectDimension - chart function
GetObjectDimension() returns the name of the dimension. Index is an optional integer denoting
the dimension that should be returned.

You cannot use this function in a chart in the following locations: title, subtitle, footer,
reference line expression and min/max expression.

You cannot reference the name of a dimension or measure in another object using the
Object ID.

Syntax:
GetObjectDimension ([index])

Example:

GetObjectDimension(1)

Example: Chart expression
Qlik Sense table showing examples of the GetObjectDimension function in a chart expression

transacti
on_date

custom
er_id

transacti
on_
quantity

=GetObjectDime
nsion ()

=GetObjectDime
nsion (0)

=GetObjectDime
nsion (1)

2018/08/3
0

049681 13 transaction_date transaction_date customer_id

2018/08/3
0

203521 6 transaction_date transaction_date customer_id

2018/08/3
0

203521 21 transaction_date transaction_date customer_id

If you want to return the name of a measure use the GetObjectMeasure function instead.

GetObjectField - chart function
GetObjectField() returns the name of the dimension. Index is an optional integer denoting the
dimension that should be returned.

You cannot use this function in a chart in the following locations: title, subtitle, footer,
reference line expression and min/max expression.

Script syntax and chart functions - Qlik Sense, May 2024 1200

8 Script and chart functions

You cannot reference the name of a dimension or measure in another object using the
Object ID.

Syntax:
GetObjectField ([index])

Example:

GetObjectField(1)

Example: Chart expression

transactio
n_date

custome
r_id

transactio
n_quantity

=GetObjectFiel
d ()

=GetObjectFiel
d (0)

=GetObjectFiel
d (1)

2018/08/30 049681 13 transaction_
date

transaction_
date

customer_id

2018/08/30 203521 6 transaction_
date

transaction_
date

customer_id

2018/08/30 203521 21 transaction_
date

transaction_
date

customer_id

Qlik Sense table showing examples of the GetObjectField function in a chart expression.

If you want to return the name of a measure use the GetObjectMeasure function instead.

GetObjectMeasure - chart function
GetObjectMeasure() returns the name of the measure. Index is an optional integer denoting the
measure that should be returned.

You cannot use this function in a chart in the following locations: title, subtitle, footer,
reference line expression and min/max expression.

You cannot reference the name of a dimension or measure in another object using the
Object ID.

Syntax:
GetObjectMeasure ([index])

Example:

GetObjectMeasure(1)

Script syntax and chart functions - Qlik Sense, May 2024 1201

8 Script and chart functions

Example: Chart expression
Qlik Sense table showing examples of the GetObjectMeasure function in a chart expression

custome
r_id

sum
(transacti
on_
quantity)

Avg
(transacti
on_
quantity)

=GetObjectMe
asure ()

=GetObjectMe
asure(0)

=GetObjectMeas
ure(1)

49681 13 13 sum
(transaction_
quantity)

sum
(transaction_
quantity)

Avg(transaction_
quantity)

203521 27 13.5 sum
(transaction_
quantity)

sum
(transaction_
quantity)

Avg(transaction_
quantity)

If you want to return the name of a dimension use the GetObjectField function instead.

GetPossibleCount - chart function
GetPossibleCount() is used to find the number of possible values in the identified field. If the
identified field includes selections, then the selected (green) fields are counted. Otherwise
associated (white) values are counted.

For fields with selections GetPossibleCount() returns the number of selected (green) fields.

Return data type: integer

Syntax:
GetPossibleCount (field_name)

Arguments:

Arguments Description

field_name The field containing the range of data to be measured.

Arguments

Examples and results:

The following example uses two fields loaded to different filter panes, one for First name name and
one for Initials.

Script syntax and chart functions - Qlik Sense, May 2024 1202

8 Script and chart functions

Examples Results

Given that John is selected in First
name.

GetPossibleCount ([Initials])

1 as there is 1 value in Initials associated with the selection,
John, in First name.

Given that John is selected in First
name.

GetPossibleCount ([First name])

1 as there is 1 selection, John, in First name.

Given that Peteris selected in First
name.

GetPossibleCount ([Initials])

2 as Peter is associated with 2 values in Initials.

Given that no values are selected
in First name.

GetPossibleCount ([First name])

5 as there are no selections and there are 5 unique values
in First name.

Given that no values are selected
in First name.

GetPossibleCount ([Initials])

6 as there are no selections and there are 6 unique values
in Initials.

Examples and results

Data used in example:

Names:

LOAD * inline [

First name|Last name|Initials|Has cellphone

John|Anderson|JA|Yes

Sue|Brown|SB|Yes

Mark|Carr|MC|No

Peter|Devonshire|PD|No

Jane|Elliot|JE|Yes

Peter|Franc|PF|Yes] (delimiter is '|');

GetSelectedCount - chart function
GetSelectedCount() finds the number of selected (green) values in a field.

Script syntax and chart functions - Qlik Sense, May 2024 1203

8 Script and chart functions

Syntax:
GetSelectedCount (field_name [, include_excluded [, state_name]])

Return data type: integer

Arguments:

Arguments Description

field_name The field containing the range of data to be measured.

include_
excluded

If set to True(), the count will include selected values, which are currently
excluded by selections in other fields. If False or omitted, these values will not
be included.

state_name The name of an alternate state that has been chosen for the specific
visualization. If the state_name argument is used, only the selections associated
with the specified state name are taken into account.

Arguments

Examples and results:

The following example uses three fields loaded to different filter panes, one for First name name,
one for Initials and one for Has cellphone.

Script syntax and chart functions - Qlik Sense, May 2024 1204

8 Script and chart functions

Examples Results

Given that John is selected in First
name.

GetSelectedCount ([First name])

1 as one value is selected in First name.

Given that John is selected in First
name.

GetSelectedCount ([Initials])

0 as no values are selected in Initials.

With no selections in First name,
select all values in Initials and after
that select the value Yes in Has
cellphone.

GetSelectedCount ([Initials], True

())

6. Although selections with Initials values of MC and PD
have Has cellphone set to No, the result is still 6,
because the include_excluded argument is set to True().

Examples and results

Data used in example:

Names:

LOAD * inline [

First name|Last name|Initials|Has cellphone

John|Anderson|JA|Yes

Sue|Brown|SB|Yes

Mark|Carr|MC|No

Peter|Devonshire|PD|No

Jane|Elliot|JE|Yes

Peter|Franc|PF|Yes] (delimiter is '|');

8.10 File functions
The file functions (only available in script expressions) return information about the
table file which is currently being read. These functions will return NULL for all data
sources except table files (exception: ConnectString()).

File functions overview
Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

Attribute
This script function returns the value of the meta tags of different media files as text. The following
file formats are supported: MP3, WMA, WMV, PNG and JPG. If the file filename does not exist, is not
a supported file format or does not contain a meta tag named attributename, NULL will be
returned.

Attribute (filename, attributename)

Script syntax and chart functions - Qlik Sense, May 2024 1205

8 Script and chart functions

ConnectString
The ConnectString() function returns the name of the active data connection for ODBC or
OLE DB connections. The function returns an empty string if no connect statement has been
executed, or after a disconnect statement.

ConnectString ()

FileBaseName
The FileBaseName function returns a string containing the name of the table file currently being
read, without path or extension.

FileBaseName ()

FileDir
The FileDir function returns a string containing the path to the directory of the table file currently
being read.

FileDir ()

FileExtension
The FileExtension function returns a string containing the extension of the table file currently being
read.

FileExtension ()

FileName
The FileName function returns a string containing the name of the table file currently being read,
without path but including the extension.

FileName ()

FilePath
The FilePath function returns a string containing the full path to the table file currently being read.

FilePath ()

FileSize
The FileSize function returns an integer containing the size in bytes of the file filename or, if no
filename is specified, of the table file currently being read.

FileSize ()

FileTime
The FileTime function returns a timestamp in UTC format of the last modification of a specified file.
If a file is not specified, the function returns a timestamp in UTC of the last modification of the
currently read table file.

FileTime ([filename])

Script syntax and chart functions - Qlik Sense, May 2024 1206

8 Script and chart functions

GetFolderPath
The GetFolderPath function returns the value of the Microsoft Windows SHGetFolderPath function.
This function takes as input the name of a Microsoft Windows folder and returns the full path of the
folder.

GetFolderPath ()

QvdCreateTime
This script function returns the XML-header timestamp from a QVD file, if any is present, otherwise
it returns NULL. In the timestamp, time is provided in UTC.

QvdCreateTime (filename)

QvdFieldName
This script function returns the name of field number fieldno in a QVD file. If the field does not exist
NULL is returned.

QvdFieldName (filename , fieldno)

QvdNoOfFields
This script function returns the number of fields in a QVD file.

QvdNoOfFields (filename)

QvdNoOfRecords
This script function returns the number of records currently in a QVD file.

QvdNoOfRecords (filename)

QvdTableName
This script function returns the name of the table stored in a QVD file.

QvdTableName (filename)

Attribute
This script function returns the value of the meta tags of different media files as text.
The following file formats are supported: MP3, WMA, WMV, PNG and JPG. If the file
filename does not exist, is not a supported file format or does not contain a meta tag
named attributename, NULL will be returned.

Syntax:
Attribute(filename, attributename)

A large number of meta tags can be read. The examples in this topic show which tags can be read
for the respective supported file types.

Script syntax and chart functions - Qlik Sense, May 2024 1207

8 Script and chart functions

You can only read meta tags saved in the file according to the relevant specification, for
example ID2v3 for MP3 files or EXIF for JPG files, not meta information saved in the
Windows File Explorer.

Arguments:

Argument Description

filename The name of a media file including path, if needed, as a folder data connection

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

l absolute

Example: c:\data\

l relative to the Qlik Sense app working directory.

Example: data\

attributename The name of a meta tag.

Arguments

The examples use the GetFolderPath function to find the paths to media files. As GetFolderPath is
only supported in legacy mode, you need to replace the references to GetFolderPath with a lib://
data connection path when you use this function in standard mode or in Qlik Sense SaaS.

File system access restriction (page 1516)

Example 1: MP3 files

This script reads all possible MP3 meta tags in folder MyMusic.

// Script to read MP3 meta tags

for each vExt in 'mp3'

for each vFoundFile in filelist(GetFolderPath('MyMusic') & '*.'& vExt)

FileList:

LOAD FileLongName,

subfield(FileLongName,'\',-1) as FileShortName,

num(FileSize(FileLongName),'# ### ### ###',',',' ') as FileSize,

FileTime(FileLongName) as FileTime,

// ID3v1.0 and ID3v1.1 tags

Attribute(FileLongName, 'Title') as Title,

Attribute(FileLongName, 'Artist') as Artist,

Attribute(FileLongName, 'Album') as Album,

Attribute(FileLongName, 'Year') as Year,

Attribute(FileLongName, 'Comment') as Comment,

Attribute(FileLongName, 'Track') as Track,

Attribute(FileLongName, 'Genre') as Genre,

Script syntax and chart functions - Qlik Sense, May 2024 1208

8 Script and chart functions

// ID3v2.3 tags

Attribute(FileLongName, 'AENC') as AENC, // Audio encryption

Attribute(FileLongName, 'APIC') as APIC, // Attached picture

Attribute(FileLongName, 'COMM') as COMM, // Comments

Attribute(FileLongName, 'COMR') as COMR, // Commercial frame

Attribute(FileLongName, 'ENCR') as ENCR, // Encryption method registration

Attribute(FileLongName, 'EQUA') as EQUA, // Equalization

Attribute(FileLongName, 'ETCO') as ETCO, // Event timing codes

Attribute(FileLongName, 'GEOB') as GEOB, // General encapsulated object

Attribute(FileLongName, 'GRID') as GRID, // Group identification registration

Attribute(FileLongName, 'IPLS') as IPLS, // Involved people list

Attribute(FileLongName, 'LINK') as LINK, // Linked information

Attribute(FileLongName, 'MCDI') as MCDI, // Music CD identifier

Attribute(FileLongName, 'MLLT') as MLLT, // MPEG location lookup table

Attribute(FileLongName, 'OWNE') as OWNE, // Ownership frame

Attribute(FileLongName, 'PRIV') as PRIV, // Private frame

Attribute(FileLongName, 'PCNT') as PCNT, // Play counter

Attribute(FileLongName, 'POPM') as POPM, // Popularimeter

Attribute(FileLongName, 'POSS') as POSS, // Position synchronisation frame

Attribute(FileLongName, 'RBUF') as RBUF, // Recommended buffer size

Attribute(FileLongName, 'RVAD') as RVAD, // Relative volume adjustment

Attribute(FileLongName, 'RVRB') as RVRB, // Reverb

Attribute(FileLongName, 'SYLT') as SYLT, // Synchronized lyric/text

Attribute(FileLongName, 'SYTC') as SYTC, // Synchronized tempo codes

Attribute(FileLongName, 'TALB') as TALB, // Album/Movie/Show title

Attribute(FileLongName, 'TBPM') as TBPM, // BPM (beats per minute)

Attribute(FileLongName, 'TCOM') as TCOM, // Composer

Attribute(FileLongName, 'TCON') as TCON, // Content type

Attribute(FileLongName, 'TCOP') as TCOP, // Copyright message

Attribute(FileLongName, 'TDAT') as TDAT, // Date

Attribute(FileLongName, 'TDLY') as TDLY, // Playlist delay

Attribute(FileLongName, 'TENC') as TENC, // Encoded by

Attribute(FileLongName, 'TEXT') as TEXT, // Lyricist/Text writer

Attribute(FileLongName, 'TFLT') as TFLT, // File type

Attribute(FileLongName, 'TIME') as TIME, // Time

Attribute(FileLongName, 'TIT1') as TIT1, // Content group description

Attribute(FileLongName, 'TIT2') as TIT2, // Title/songname/content description

Attribute(FileLongName, 'TIT3') as TIT3, // Subtitle/Description refinement

Attribute(FileLongName, 'TKEY') as TKEY, // Initial key

Attribute(FileLongName, 'TLAN') as TLAN, // Language(s)

Attribute(FileLongName, 'TLEN') as TLEN, // Length

Attribute(FileLongName, 'TMED') as TMED, // Media type

Attribute(FileLongName, 'TOAL') as TOAL, // Original album/movie/show title

Attribute(FileLongName, 'TOFN') as TOFN, // Original filename

Attribute(FileLongName, 'TOLY') as TOLY, // Original lyricist(s)/text writer(s)

Attribute(FileLongName, 'TOPE') as TOPE, // Original artist(s)/performer(s)

Attribute(FileLongName, 'TORY') as TORY, // Original release year

Attribute(FileLongName, 'TOWN') as TOWN, // File owner/licensee

Attribute(FileLongName, 'TPE1') as TPE1, // Lead performer(s)/Soloist(s)

Attribute(FileLongName, 'TPE2') as TPE2, // Band/orchestra/accompaniment

Attribute(FileLongName, 'TPE3') as TPE3, // Conductor/performer refinement

Attribute(FileLongName, 'TPE4') as TPE4, // Interpreted, remixed, or otherwise modified by

Attribute(FileLongName, 'TPOS') as TPOS, // Part of a set

Attribute(FileLongName, 'TPUB') as TPUB, // Publisher

Attribute(FileLongName, 'TRCK') as TRCK, // Track number/Position in set

Attribute(FileLongName, 'TRDA') as TRDA, // Recording dates

Script syntax and chart functions - Qlik Sense, May 2024 1209

8 Script and chart functions

Attribute(FileLongName, 'TRSN') as TRSN, // Internet radio station name

Attribute(FileLongName, 'TRSO') as TRSO, // Internet radio station owner

Attribute(FileLongName, 'TSIZ') as TSIZ, // Size

Attribute(FileLongName, 'TSRC') as TSRC, // ISRC (international standard recording code)

Attribute(FileLongName, 'TSSE') as TSSE, // Software/Hardware and settings used for

encoding

Attribute(FileLongName, 'TYER') as TYER, // Year

Attribute(FileLongName, 'TXXX') as TXXX, // User defined text information frame

Attribute(FileLongName, 'UFID') as UFID, // Unique file identifier

Attribute(FileLongName, 'USER') as USER, // Terms of use

Attribute(FileLongName, 'USLT') as USLT, // Unsychronized lyric/text transcription

Attribute(FileLongName, 'WCOM') as WCOM, // Commercial information

Attribute(FileLongName, 'WCOP') as WCOP, // Copyright/Legal information

Attribute(FileLongName, 'WOAF') as WOAF, // Official audio file webpage

Attribute(FileLongName, 'WOAR') as WOAR, // Official artist/performer webpage

Attribute(FileLongName, 'WOAS') as WOAS, // Official audio source webpage

Attribute(FileLongName, 'WORS') as WORS, // Official internet radio station homepage

Attribute(FileLongName, 'WPAY') as WPAY, // Payment

Attribute(FileLongName, 'WPUB') as WPUB, // Publishers official webpage

Attribute(FileLongName, 'WXXX') as WXXX; // User defined URL link frame

LOAD @1:n as FileLongName Inline "$(vFoundFile)" (fix, no labels);

Next vFoundFile

Next vExt

Example 2: JPEG

This script reads all possible EXIF meta tags from JPG files in folder MyPictures.

// Script to read Jpeg Exif meta tags

for each vExt in 'jpg', 'jpeg', 'jpe', 'jfif', 'jif', 'jfi'

for each vFoundFile in filelist(GetFolderPath('MyPictures') & '*.'& vExt)

FileList:

LOAD FileLongName,

subfield(FileLongName,'\',-1) as FileShortName,

num(FileSize(FileLongName),'# ### ### ###',',',' ') as FileSize,

FileTime(FileLongName) as FileTime,

// ************ Exif Main (IFD0) Attributes ************

Attribute(FileLongName, 'ImageWidth') as ImageWidth,

Attribute(FileLongName, 'ImageLength') as ImageLength,

Attribute(FileLongName, 'BitsPerSample') as BitsPerSample,

Attribute(FileLongName, 'Compression') as Compression,

// examples: 1=uncompressed, 2=CCITT, 3=CCITT 3, 4=CCITT 4,

//5=LZW, 6=JPEG (old style), 7=JPEG, 8=Deflate, 32773=PackBits RLE,

Attribute(FileLongName, 'PhotometricInterpretation') as PhotometricInterpretation,

// examples: 0=WhiteIsZero, 1=BlackIsZero, 2=RGB, 3=Palette, 5=CMYK, 6=YCbCr,

Attribute(FileLongName, 'ImageDescription') as ImageDescription,

Attribute(FileLongName, 'Make') as Make,

Attribute(FileLongName, 'Model') as Model,

Attribute(FileLongName, 'StripOffsets') as StripOffsets,

Attribute(FileLongName, 'Orientation') as Orientation,

// examples: 1=TopLeft, 2=TopRight, 3=BottomRight, 4=BottomLeft,

// 5=LeftTop, 6=RightTop, 7=RightBottom, 8=LeftBottom,

Attribute(FileLongName, 'SamplesPerPixel') as SamplesPerPixel,

Attribute(FileLongName, 'RowsPerStrip') as RowsPerStrip,

Attribute(FileLongName, 'StripByteCounts') as StripByteCounts,

Attribute(FileLongName, 'XResolution') as XResolution,

Script syntax and chart functions - Qlik Sense, May 2024 1210

8 Script and chart functions

Attribute(FileLongName, 'YResolution') as YResolution,

Attribute(FileLongName, 'PlanarConfiguration') as PlanarConfiguration,

// examples: 1=chunky format, 2=planar format,

Attribute(FileLongName, 'ResolutionUnit') as ResolutionUnit,

// examples: 1=none, 2=inches, 3=centimeters,

Attribute(FileLongName, 'TransferFunction') as TransferFunction,

Attribute(FileLongName, 'Software') as Software,

Attribute(FileLongName, 'DateTime') as DateTime,

Attribute(FileLongName, 'Artist') as Artist,

Attribute(FileLongName, 'HostComputer') as HostComputer,

Attribute(FileLongName, 'WhitePoint') as WhitePoint,

Attribute(FileLongName, 'PrimaryChromaticities') as PrimaryChromaticities,

Attribute(FileLongName, 'YCbCrCoefficients') as YCbCrCoefficients,

Attribute(FileLongName, 'YCbCrSubSampling') as YCbCrSubSampling,

Attribute(FileLongName, 'YCbCrPositioning') as YCbCrPositioning,

// examples: 1=centered, 2=co-sited,

Attribute(FileLongName, 'ReferenceBlackWhite') as ReferenceBlackWhite,

Attribute(FileLongName, 'Rating') as Rating,

Attribute(FileLongName, 'RatingPercent') as RatingPercent,

Attribute(FileLongName, 'ThumbnailFormat') as ThumbnailFormat,

// examples: 0=Raw Rgb, 1=Jpeg,

Attribute(FileLongName, 'Copyright') as Copyright,

Attribute(FileLongName, 'ExposureTime') as ExposureTime,

Attribute(FileLongName, 'FNumber') as FNumber,

Attribute(FileLongName, 'ExposureProgram') as ExposureProgram,

// examples: 0=Not defined, 1=Manual, 2=Normal program, 3=Aperture priority, 4=Shutter

priority,

// 5=Creative program, 6=Action program, 7=Portrait mode, 8=Landscape mode, 9=Bulb,

Attribute(FileLongName, 'ISOSpeedRatings') as ISOSpeedRatings,

Attribute(FileLongName, 'TimeZoneOffset') as TimeZoneOffset,

Attribute(FileLongName, 'SensitivityType') as SensitivityType,

// examples: 0=Unknown, 1=Standard output sensitivity (SOS), 2=Recommended exposure index

(REI),

// 3=ISO speed, 4=Standard output sensitivity (SOS) and Recommended exposure index (REI),

//5=Standard output sensitivity (SOS) and ISO Speed, 6=Recommended exposure index (REI)

and ISO Speed,

// 7=Standard output sensitivity (SOS) and Recommended exposure index (REI) and ISO speed,

Attribute(FileLongName, 'ExifVersion') as ExifVersion,

Attribute(FileLongName, 'DateTimeOriginal') as DateTimeOriginal,

Attribute(FileLongName, 'DateTimeDigitized') as DateTimeDigitized,

Attribute(FileLongName, 'ComponentsConfiguration') as ComponentsConfiguration,

// examples: 1=Y, 2=Cb, 3=Cr, 4=R, 5=G, 6=B,

Attribute(FileLongName, 'CompressedBitsPerPixel') as CompressedBitsPerPixel,

Attribute(FileLongName, 'ShutterSpeedValue') as ShutterSpeedValue,

Attribute(FileLongName, 'ApertureValue') as ApertureValue,

Attribute(FileLongName, 'BrightnessValue') as BrightnessValue, // examples: -1=Unknown,

Attribute(FileLongName, 'ExposureBiasValue') as ExposureBiasValue,

Attribute(FileLongName, 'MaxApertureValue') as MaxApertureValue,

Attribute(FileLongName, 'SubjectDistance') as SubjectDistance,

// examples: 0=Unknown, -1=Infinity,

Attribute(FileLongName, 'MeteringMode') as MeteringMode,

// examples: 0=Unknown, 1=Average, 2=CenterWeightedAverage, 3=Spot,

// 4=MultiSpot, 5=Pattern, 6=Partial, 255=Other,

Attribute(FileLongName, 'LightSource') as LightSource,

// examples: 0=Unknown, 1=Daylight, 2=Fluorescent, 3=Tungsten, 4=Flash, 9=Fine weather,

// 10=Cloudy weather, 11=Shade, 12=Daylight fluorescent,

// 13=Day white fluorescent, 14=Cool white fluorescent,

Script syntax and chart functions - Qlik Sense, May 2024 1211

8 Script and chart functions

// 15=White fluorescent, 17=Standard light A, 18=Standard light B, 19=Standard light C,

// 20=D55, 21=D65, 22=D75, 23=D50, 24=ISO studio tungsten, 255=other light source,

Attribute(FileLongName, 'Flash') as Flash,

Attribute(FileLongName, 'FocalLength') as FocalLength,

Attribute(FileLongName, 'SubjectArea') as SubjectArea,

Attribute(FileLongName, 'MakerNote') as MakerNote,

Attribute(FileLongName, 'UserComment') as UserComment,

Attribute(FileLongName, 'SubSecTime') as SubSecTime,

Attribute(FileLongName, 'SubsecTimeOriginal') as SubsecTimeOriginal,

Attribute(FileLongName, 'SubsecTimeDigitized') as SubsecTimeDigitized,

Attribute(FileLongName, 'XPTitle') as XPTitle,

Attribute(FileLongName, 'XPComment') as XPComment,

Attribute(FileLongName, 'XPAuthor') as XPAuthor,

Attribute(FileLongName, 'XPKeywords') as XPKeywords,

Attribute(FileLongName, 'XPSubject') as XPSubject,

Attribute(FileLongName, 'FlashpixVersion') as FlashpixVersion,

Attribute(FileLongName, 'ColorSpace') as ColorSpace, // examples: 1=sRGB,

65535=Uncalibrated,

Attribute(FileLongName, 'PixelXDimension') as PixelXDimension,

Attribute(FileLongName, 'PixelYDimension') as PixelYDimension,

Attribute(FileLongName, 'RelatedSoundFile') as RelatedSoundFile,

Attribute(FileLongName, 'FocalPlaneXResolution') as FocalPlaneXResolution,

Attribute(FileLongName, 'FocalPlaneYResolution') as FocalPlaneYResolution,

Attribute(FileLongName, 'FocalPlaneResolutionUnit') as FocalPlaneResolutionUnit,

// examples: 1=None, 2=Inch, 3=Centimeter,

Attribute(FileLongName, 'ExposureIndex') as ExposureIndex,

Attribute(FileLongName, 'SensingMethod') as SensingMethod,

// examples: 1=Not defined, 2=One-chip color area sensor, 3=Two-chip color area sensor,

// 4=Three-chip color area sensor, 5=Color sequential area sensor,

// 7=Trilinear sensor, 8=Color sequential linear sensor,

Attribute(FileLongName, 'FileSource') as FileSource,

// examples: 0=Other, 1=Scanner of transparent type,

// 2=Scanner of reflex type, 3=Digital still camera,

Attribute(FileLongName, 'SceneType') as SceneType,

// examples: 1=A directly photographed image,

Attribute(FileLongName, 'CFAPattern') as CFAPattern,

Attribute(FileLongName, 'CustomRendered') as CustomRendered,

// examples: 0=Normal process, 1=Custom process,

Attribute(FileLongName, 'ExposureMode') as ExposureMode,

// examples: 0=Auto exposure, 1=Manual exposure, 2=Auto bracket,

Attribute(FileLongName, 'WhiteBalance') as WhiteBalance,

// examples: 0=Auto white balance, 1=Manual white balance,

Attribute(FileLongName, 'DigitalZoomRatio') as DigitalZoomRatio,

Attribute(FileLongName, 'FocalLengthIn35mmFilm') as FocalLengthIn35mmFilm,

Attribute(FileLongName, 'SceneCaptureType') as SceneCaptureType,

// examples: 0=Standard, 1=Landscape, 2=Portrait, 3=Night scene,

Attribute(FileLongName, 'GainControl') as GainControl,

// examples: 0=None, 1=Low gain up, 2=High gain up, 3=Low gain down, 4=High gain down,

Attribute(FileLongName, 'Contrast') as Contrast,

// examples: 0=Normal, 1=Soft, 2=Hard,

Attribute(FileLongName, 'Saturation') as Saturation,

// examples: 0=Normal, 1=Low saturation, 2=High saturation,

Attribute(FileLongName, 'Sharpness') as Sharpness,

// examples: 0=Normal, 1=Soft, 2=Hard,

Attribute(FileLongName, 'SubjectDistanceRange') as SubjectDistanceRange,

// examples: 0=Unknown, 1=Macro, 2=Close view, 3=Distant view,

Attribute(FileLongName, 'ImageUniqueID') as ImageUniqueID,

Script syntax and chart functions - Qlik Sense, May 2024 1212

8 Script and chart functions

Attribute(FileLongName, 'BodySerialNumber') as BodySerialNumber,

Attribute(FileLongName, 'CMNT_GAMMA') as CMNT_GAMMA,

Attribute(FileLongName, 'PrintImageMatching') as PrintImageMatching,

Attribute(FileLongName, 'OffsetSchema') as OffsetSchema,

// ************ Interoperability Attributes ************

Attribute(FileLongName, 'InteroperabilityIndex') as InteroperabilityIndex,

Attribute(FileLongName, 'InteroperabilityVersion') as InteroperabilityVersion,

Attribute(FileLongName, 'InteroperabilityRelatedImageFileFormat') as

InteroperabilityRelatedImageFileFormat,

Attribute(FileLongName, 'InteroperabilityRelatedImageWidth') as

InteroperabilityRelatedImageWidth,

Attribute(FileLongName, 'InteroperabilityRelatedImageLength') as

InteroperabilityRelatedImageLength,

Attribute(FileLongName, 'InteroperabilityColorSpace') as InteroperabilityColorSpace,

// examples: 1=sRGB, 65535=Uncalibrated,

Attribute(FileLongName, 'InteroperabilityPrintImageMatching') as

InteroperabilityPrintImageMatching,

// ************ GPS Attributes ************

Attribute(FileLongName, 'GPSVersionID') as GPSVersionID,

Attribute(FileLongName, 'GPSLatitudeRef') as GPSLatitudeRef,

Attribute(FileLongName, 'GPSLatitude') as GPSLatitude,

Attribute(FileLongName, 'GPSLongitudeRef') as GPSLongitudeRef,

Attribute(FileLongName, 'GPSLongitude') as GPSLongitude,

Attribute(FileLongName, 'GPSAltitudeRef') as GPSAltitudeRef,

// examples: 0=Above sea level, 1=Below sea level,

Attribute(FileLongName, 'GPSAltitude') as GPSAltitude,

Attribute(FileLongName, 'GPSTimeStamp') as GPSTimeStamp,

Attribute(FileLongName, 'GPSSatellites') as GPSSatellites,

Attribute(FileLongName, 'GPSStatus') as GPSStatus,

Attribute(FileLongName, 'GPSMeasureMode') as GPSMeasureMode,

Attribute(FileLongName, 'GPSDOP') as GPSDOP,

Attribute(FileLongName, 'GPSSpeedRef') as GPSSpeedRef,

Attribute(FileLongName, 'GPSSpeed') as GPSSpeed,

Attribute(FileLongName, 'GPSTrackRef') as GPSTrackRef,

Attribute(FileLongName, 'GPSTrack') as GPSTrack,

Attribute(FileLongName, 'GPSImgDirectionRef') as GPSImgDirectionRef,

Attribute(FileLongName, 'GPSImgDirection') as GPSImgDirection,

Attribute(FileLongName, 'GPSMapDatum') as GPSMapDatum,

Attribute(FileLongName, 'GPSDestLatitudeRef') as GPSDestLatitudeRef,

Attribute(FileLongName, 'GPSDestLatitude') as GPSDestLatitude,

Attribute(FileLongName, 'GPSDestLongitudeRef') as GPSDestLongitudeRef,

Attribute(FileLongName, 'GPSDestLongitude') as GPSDestLongitude,

Attribute(FileLongName, 'GPSDestBearingRef') as GPSDestBearingRef,

Attribute(FileLongName, 'GPSDestBearing') as GPSDestBearing,

Attribute(FileLongName, 'GPSDestDistanceRef') as GPSDestDistanceRef,

Attribute(FileLongName, 'GPSDestDistance') as GPSDestDistance,

Attribute(FileLongName, 'GPSProcessingMethod') as GPSProcessingMethod,

Attribute(FileLongName, 'GPSAreaInformation') as GPSAreaInformation,

Attribute(FileLongName, 'GPSDateStamp') as GPSDateStamp,

Attribute(FileLongName, 'GPSDifferential') as GPSDifferential;

// examples: 0=No correction, 1=Differential correction,

LOAD @1:n as FileLongName Inline "$(vFoundFile)" (fix, no labels);

Next vFoundFile

Next vExt

Script syntax and chart functions - Qlik Sense, May 2024 1213

8 Script and chart functions

Example 3: Windows media files

This script reads all possible WMA/WMV ASF meta tags in folder MyMusic.

/ Script to read WMA/WMV ASF meta tags

for each vExt in 'asf', 'wma', 'wmv'

for each vFoundFile in filelist(GetFolderPath('MyMusic') & '*.'& vExt)

FileList:

LOAD FileLongName,

subfield(FileLongName,'\',-1) as FileShortName,

num(FileSize(FileLongName),'# ### ### ###',',',' ') as FileSize,

FileTime(FileLongName) as FileTime,

Attribute(FileLongName, 'Title') as Title,

Attribute(FileLongName, 'Author') as Author,

Attribute(FileLongName, 'Copyright') as Copyright,

Attribute(FileLongName, 'Description') as Description,

Attribute(FileLongName, 'Rating') as Rating,

Attribute(FileLongName, 'PlayDuration') as PlayDuration,

Attribute(FileLongName, 'MaximumBitrate') as MaximumBitrate,

Attribute(FileLongName, 'WMFSDKVersion') as WMFSDKVersion,

Attribute(FileLongName, 'WMFSDKNeeded') as WMFSDKNeeded,

Attribute(FileLongName, 'IsVBR') as IsVBR,

Attribute(FileLongName, 'ASFLeakyBucketPairs') as ASFLeakyBucketPairs,

Attribute(FileLongName, 'PeakValue') as PeakValue,

Attribute(FileLongName, 'AverageLevel') as AverageLevel;

LOAD @1:n as FileLongName Inline "$(vFoundFile)" (fix, no labels);

Next vFoundFile

Next vExt

Example 4: PNG

This script reads all possible PNG meta tags in folder MyPictures.

// Script to read PNG meta tags

for each vExt in 'png'

for each vFoundFile in filelist(GetFolderPath('MyPictures') & '*.'& vExt)

FileList:

LOAD FileLongName,

subfield(FileLongName,'\',-1) as FileShortName,

num(FileSize(FileLongName),'# ### ### ###',',',' ') as FileSize,

FileTime(FileLongName) as FileTime,

Attribute(FileLongName, 'Comment') as Comment,

Attribute(FileLongName, 'Creation Time') as Creation_Time,

Attribute(FileLongName, 'Source') as Source,

Attribute(FileLongName, 'Title') as Title,

Attribute(FileLongName, 'Software') as Software,

Attribute(FileLongName, 'Author') as Author,

Attribute(FileLongName, 'Description') as Description,

Attribute(FileLongName, 'Copyright') as Copyright;

LOAD @1:n as FileLongName Inline "$(vFoundFile)" (fix, no labels);

Next vFoundFile

Next vExt

Script syntax and chart functions - Qlik Sense, May 2024 1214

8 Script and chart functions

ConnectString
The ConnectString() function returns the name of the active data connection for
ODBC or OLE DB connections. The function returns an empty string if no connect
statement has been executed, or after a disconnect statement.

Syntax:
ConnectString()

Examples and results:

Example Result

LIB CONNECT TO 'Tutorial ODBC';

ConnectString:

Load ConnectString() as

ConnectString AutoGenerate 1;

Returns 'Tutorial ODBC' in field ConnectString.

This example assumes that you have an available data
connection called Tutorial ODBC.

Scripting examples

FileBaseName
The FileBaseName function returns a string containing the name of the table file
currently being read, without path or extension.

Syntax:
FileBaseName()

Examples and results:

Example Result

LOAD *, filebasename() as X from

C:\UserFiles\abc.txt
Will return 'abc' in field X in each record read.

Scripting examples

FileDir
The FileDir function returns a string containing the path to the directory of the table file
currently being read.

Syntax:
FileDir()

This function supports only folder data connections in standard mode.

Script syntax and chart functions - Qlik Sense, May 2024 1215

8 Script and chart functions

Examples and results:

Example Result

Load *, filedir() as X from

C:\UserFiles\abc.txt
Will return 'C:\UserFiles' in field X in each record read.

Scripting examples

FileExtension
The FileExtension function returns a string containing the extension of the table file
currently being read.

Syntax:
FileExtension()

Examples and results:

Example Result

LOAD *, FileExtension() as X from

C:\UserFiles\abc.txt
Will return 'txt' in field X in each record read.

Scripting examples

FileName
The FileName function returns a string containing the name of the table file currently
being read, without path but including the extension.

Syntax:
FileName()

Examples and results:

Example Result

LOAD *, FileName() as X from

C:\UserFiles\abc.txt
Will return 'abc.txt' in field X in each record read.

Scripting examples

FilePath
The FilePath function returns a string containing the full path to the table file currently
being read.

Syntax:
FilePath()

This function supports only folder data connections in standard mode.

Script syntax and chart functions - Qlik Sense, May 2024 1216

8 Script and chart functions

Examples and results:

Example Result

Load *, FilePath() as X from

C:\UserFiles\abc.txt
Will return 'C:\UserFiles\abc.txt' in field X in each record read.

Scripting examples

FileSize
The FileSize function returns an integer containing the size in bytes of the file filename or, if no
filename is specified, of the table file currently being read.

Syntax:
FileSize([filename])

Arguments:

Argument Description

filename The name of a file, if necessary including path, as a folder or web file data
connection If you don't specify a file name, the table file currently being read is
used.

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

l absolute

Example: c:\data\

l relative to the Qlik Sense app working directory.

Example: data\

l URL address (HTTP or FTP), pointing to a location on the Internet or an
intranet.

Example: http://www.qlik.com

Arguments

Examples and results:

Example Result

LOAD *, FileSize() as X

from abc.txt;
Will return the size of the specified file (abc.txt) as an integer in
field X in each record read.

FileSize(

'lib://DataFiles/xyz.xls')
Will return the size of the file xyz.xls.

Scripting examples

Script syntax and chart functions - Qlik Sense, May 2024 1217

8 Script and chart functions

FileTime
The FileTime function returns a timestamp in UTC format of the last modification of a
specified file. If a file is not specified, the function returns a timestamp in UTC of the
last modification of the currently read table file.

Syntax:
FileTime([filename])

Arguments:

Argument Description

filename The name of a file, if necessary including path, as a folder or web file data
connection

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

l absolute

Example: c:\data\

l relative to the Qlik Sense app working directory.

Example: data\

l URL address (HTTP or FTP), pointing to a location on the Internet or an
intranet.

Example: http://www.qlik.com

Arguments

Examples and results:

Example Result

LOAD *, FileTime() as X

from abc.txt;
Will return the timestamp of the last modification of the file
(abc.txt) in field X in each record read.

FileTime('xyz.xls') Will return the timestamp of the last modification of the file xyz.xls.

Script examples

GetFolderPath
The GetFolderPath function returns the value of the Microsoft Windows
SHGetFolderPath function. This function takes as input the name of a Microsoft
Windows folder and returns the full path of the folder.

Script syntax and chart functions - Qlik Sense, May 2024 1218

8 Script and chart functions

This function is not supported in standard mode. .

Syntax:
GetFolderPath(foldername)

Arguments:

Argument Description

foldername Name of the Microsoft Windows folder.

The folder name should not contain any space. Any space in the folder name
seen in Windows Explorer should be removed from the folder name.

Examples:

MyMusic

MyDocuments

Arguments

Examples and results:

The goal of this example is to get the paths of the following Microsoft Windows folders: MyMusic,
MyPictures and Windows. Add the example script to your app and reload it.

LOAD

GetFolderPath('MyMusic') as MyMusic,

GetFolderPath('MyPictures') as MyPictures,

GetFolderPath('Windows') as Windows

AutoGenerate 1;

Once the app is reloaded, the fields MyMusic, MyPictures and Windows are added to the data
model. Each field contains the path to the folder defined in input. For example:

l C:\Users\smu\Music for the folder MyMusic
l C:\Users\smu\Pictures for the folder MyPictures
l C:\Windows for the folder Windows

QvdCreateTime
This script function returns the XML-header timestamp from a QVD file, if any is
present, otherwise it returns NULL. In the timestamp, time is provided in UTC.

Syntax:
QvdCreateTime(filename)

Script syntax and chart functions - Qlik Sense, May 2024 1219

8 Script and chart functions

Arguments:

Argument Description

filename The name of a QVD file, if necessary including path, as a folder or web data
connection.

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

l absolute

Example: c:\data\

l relative to the Qlik Sense app working directory.

Example: data\

l URL address (HTTP or FTP), pointing to a location on the Internet or an
intranet.

Example: http://www.qlik.com

Arguments

Example:

QvdCreateTime('MyFile.qvd')

QvdCreateTime('C:\MyDir\MyFile.qvd')

QvdCreateTime('lib://DataFiles/MyFile.qvd')

QvdFieldName
This script function returns the name of field number fieldno in a QVD file. If the field
does not exist NULL is returned.

Syntax:
QvdFieldName(filename , fieldno)

Script syntax and chart functions - Qlik Sense, May 2024 1220

8 Script and chart functions

Arguments:

Argument Description

filename The name of a QVD file, if necessary including path, as a folder or web data
connection.

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

l absolute

Example: c:\data\

l relative to the Qlik Sense app working directory.

Example: data\

l URL address (HTTP or FTP), pointing to a location on the Internet or an
intranet.

Example: http://www.qlik.com

fieldno The number of the field within the table contained in the QVD file.

Arguments

Examples:

QvdFieldName ('MyFile.qvd', 5)

QvdFieldName ('C:\MyDir\MyFile.qvd', 5)

QvdFieldName ('lib://DataFiles/MyFile.qvd', 5)

All three examples return the name of the fifth field of the table contained in the QVD file.

QvdNoOfFields
This script function returns the number of fields in a QVD file.

Syntax:
QvdNoOfFields(filename)

Script syntax and chart functions - Qlik Sense, May 2024 1221

8 Script and chart functions

Arguments:

Argument Description

filename The name of a QVD file, if necessary including path, as a folder or web data
connection.

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

l absolute

Example: c:\data\

l relative to the Qlik Sense app working directory.

Example: data\

l URL address (HTTP or FTP), pointing to a location on the Internet or an
intranet.

Example: http://www.qlik.com

Arguments

Examples:

QvdNoOfFields ('MyFile.qvd')

QvdNoOfFields ('C:\MyDir\MyFile.qvd')

QvdNoOfFields ('lib://DataFiles/MyFile.qvd')

QvdNoOfRecords

Example: This script function returns the number of records currently in a QVD file.

Syntax:
QvdNoOfRecords(filename)

Script syntax and chart functions - Qlik Sense, May 2024 1222

8 Script and chart functions

Arguments:

Argument Description

filename The name of a QVD file, if necessary including path, as a folder or web data
connection.

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

l absolute

Example: c:\data\

l relative to the Qlik Sense app working directory.

Example: data\

l URL address (HTTP or FTP), pointing to a location on the Internet or an
intranet.

Example: http://www.qlik.com

Arguments

Examples:

QvdNoOfRecords ('MyFile.qvd')

QvdNoOfRecords ('C:\MyDir\MyFile.qvd')

QvdNoOfRecords ('lib://DataFiles/MyFile.qvd')

QvdTableName
This script function returns the name of the table stored in a QVD file.

Syntax:
QvdTableName(filename)

Script syntax and chart functions - Qlik Sense, May 2024 1223

8 Script and chart functions

Arguments:

Argument Description

filename The name of a QVD file, if necessary including path, as a folder or web data
connection.

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

l absolute

Example: c:\data\

l relative to the Qlik Sense app working directory.

Example: data\

l URL address (HTTP or FTP), pointing to a location on the Internet or an
intranet.

Example: http://www.qlik.com

Arguments

Examples:

QvdTableName ('MyFile.qvd')

QvdTableName ('C:\MyDir\MyFile.qvd')

QvdTableName ('lib://data\MyFile.qvd')

8.11 Financial functions
Financial functions can be used in the data load script and in chart expressions to calculate
payments and interest rates.
For all the arguments, cash that is paid out is represented by negative numbers. Cash received is
represented by positive numbers.
Listed here are the arguments that are used in the financial functions (excepting the ones beginning
with range-).

For all financial functions it is vital that you are consistent when specifying units for rate
and nper. If monthly payments are made on a five-year loan at 6% annual interest, use
0.005 (6%/12) for rate and 60 (5*12) for nper. If annual payments are made on the same
loan, use 6% for rate and 5 for nper.

Script syntax and chart functions - Qlik Sense, May 2024 1224

8 Script and chart functions

Financial functions overview
Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

FV
This function returns the future value of an investment based on periodic, constant payments and a
simple annual interest.

FV (rate, nper, pmt [,pv [, type]])

nPer
This function returns the number of periods for an investment based on periodic, constant
payments and a constant interest rate.

nPer (rate, pmt, pv [,fv [, type]])

Pmt
This function returns the payment for a loan based on periodic, constant payments and a constant
interest rate. It cannot change over the life of the annuity. A payment is stated as a negative
number, for example, -20.

Pmt (rate, nper, pv [,fv [, type]])

PV
This function returns the present value of an investment.

PV (rate, nper, pmt [,fv [, type]])

Rate
This function returns the interest rate per period on annuity. The result has a default number format
of Fix two decimals and %.

Rate (nper, pmt , pv [,fv [, type]])

BlackAndSchole
The Black and Scholes model is a mathematical model for financial market derivative instruments.
The formula calculates the theoretical value of an option. In Qlik Sense, the BlackAndSchole
function returns the value according to the Black and Scholes unmodified formula (European style
options).

BlackAndSchole(strike , time_left , underlying_price , vol , risk_free_rate ,

type)

Script syntax and chart functions - Qlik Sense, May 2024 1225

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

strike The future purchase price of the stock.

time_left The number of time periods remaining.

underlying_
price

The current value of the stock.

vol Volatility (of the stock price) expressed as a percentage in decimal form, per
time period.

risk_free_rate The risk-free rate expressed as a percentage in decimal form, per time period.

call_or_put The type of option:

'c', 'call' or any non-zero numeric value for call options

'p', 'put' or 0 for put options.

Arguments

Limitations:

The value of strike, time_left, and underlying_price must be >0.

The value of vol and risk_free_rate must be: <0 or >0.

Examples and results:

Example Result

BlackAndSchole(130, 4, 68.5, 0.4, 0.04, 'call')

This calculates the theoretical price of an option to buy a share that is worth 68.5
today, at a value of 130 in 4 years. The formula uses a volatility of 0.4 (40%) per year
and a risk-free interest rate of 0.04 (4%).

Returns
11.245

Scripting examples

FV
This function returns the future value of an investment based on periodic, constant
payments and a simple annual interest.

Syntax:
FV(rate, nper, pmt [,pv [, type]])

Script syntax and chart functions - Qlik Sense, May 2024 1226

8 Script and chart functions

Return data type: numeric. By default, the result will be formatted as currency..

Arguments:

Argument Description

rate The interest rate per period.

nper The total number of payment periods in an annuity.

pmt The payment made each period. It cannot change over the life of the annuity. A
payment is stated as a negative number, for example, -20.

pv The present value, or lump-sum amount, that a series of future payments is worth
right now. If pv is omitted, it is assumed to be 0 (zero).

type Should be 0 if payments are due at the end of the period and 1 if payments are
due at the beginning of the period. If type is omitted, it is assumed to be 0.

Arguments

Examples and results:

Example Result

You are paying a new household appliance by 36 monthly installments of $20. The
interest rate is 6% per annum. The bill comes at the end of every month. What is the
total invested, when the last bill has been paid?

FV(0.005,36,-20)

Returns
$786.72

Scripting example

nPer
This function returns the number of periods for an investment based on periodic,
constant payments and a constant interest rate.

Syntax:
nPer(rate, pmt, pv [,fv [, type]])

Return data type: numeric

Arguments:

Argument Description

rate The interest rate per period.

nper The total number of payment periods in an annuity.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1227

8 Script and chart functions

Argument Description

pmt The payment made each period. It cannot change over the life of the annuity. A
payment is stated as a negative number, for example, -20.

pv The present value, or lump-sum amount, that a series of future payments is worth
right now. If pv is omitted, it is assumed to be 0 (zero).

fv The future value, or cash balance, you want to attain after the last payment is
made. If fv is omitted, it is assumed to be 0.

type Should be 0 if payments are due at the end of the period and 1 if payments are
due at the beginning of the period. If type is omitted, it is assumed to be 0.

Examples and results:

Example Result

You want to sell a household appliance by monthly installments of $20. The interest
rate is 6% per annum. The bill comes at the end of every month. How many periods
are required if the value of the money received after the last bill has been paid
should equal $800?

nPer(0.005,-20,0,800)

Returns
36.56

Scripting example

Pmt
This function returns the payment for a loan based on periodic, constant payments and
a constant interest rate. It cannot change over the life of the annuity. A payment is
stated as a negative number, for example, -20.

Pmt(rate, nper, pv [,fv [, type]])

Return data type: numeric. By default, the result will be formatted as currency..

To find the total amount paid over the duration of the loan, multiply the returned pmt value by nper.

Arguments:

Argument Description

rate The interest rate per period.

nper The total number of payment periods in an annuity.

pv The present value, or lump-sum amount, that a series of future payments is worth
right now. If pv is omitted, it is assumed to be 0 (zero).

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1228

8 Script and chart functions

Argument Description

fv The future value, or cash balance, you want to attain after the last payment is
made. If fv is omitted, it is assumed to be 0.

type Should be 0 if payments are due at the end of the period and 1 if payments are
due at the beginning of the period. If type is omitted, it is assumed to be 0.

Examples and results:

Example Result

The following formula returns the monthly payment on a $20,000 loan at an
annual rate of 10 percent, that must be paid off in 8 months:

Pmt(0.1/12,8,20000)

Returns -
$2,594.66

For the same loan, if payment is due at the beginning of the period, the payment
is:

Pmt(0.1/12,8,20000,0,1)

Returns -
$2,573.21

Scripting examples

PV
This function returns the present value of an investment.

PV(rate, nper, pmt [,fv [, type]])

Return data type: numeric. By default, the result will be formatted as currency..

The present value is the total amount that a series of future payments is worth right now. For
example, when borrowing money, the loan amount is the present value to the lender.

Arguments:

Argument Description

rate The interest rate per period.

nper The total number of payment periods in an annuity.

pmt The payment made each period. It cannot change over the life of the annuity. A
payment is stated as a negative number, for example, -20.

fv The future value, or cash balance, you want to attain after the last payment is
made. If fv is omitted, it is assumed to be 0.

type Should be 0 if payments are due at the end of the period and 1 if payments are
due at the beginning of the period. If type is omitted, it is assumed to be 0.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1229

8 Script and chart functions

Examples and results:

Example Result

What is the present value of a debt, when you have to pay $100 at the end of
each month during a five-year period, given an interest rate of 7%?

PV(0.07/12,12*5,-100,0,0)

Returns
$5,050.20

Scripting example

Rate
This function returns the interest rate per period on annuity. The result has a default
number format of Fix two decimals and %.

Syntax:
Rate(nper, pmt , pv [,fv [, type]])

Return data type: numeric.

The rate is calculated by iteration and can have zero or more solutions. If the successive results of
rate do not converge, a NULL value will be returned.

Arguments:

Argument Description

nper The total number of payment periods in an annuity.

pmt The payment made each period. It cannot change over the life of the annuity. A
payment is stated as a negative number, for example, -20.

pv The present value, or lump-sum amount, that a series of future payments is worth
right now. If pv is omitted, it is assumed to be 0 (zero).

fv The future value, or cash balance, you want to attain after the last payment is
made. If fv is omitted, it is assumed to be 0.

type Should be 0 if payments are due at the end of the period and 1 if payments are
due at the beginning of the period. If type is omitted, it is assumed to be 0.

Arguments

Examples and results:

Example Result

What is the interest rate of a five-year $10,000 annuity loan with monthly
payments of $300?

Rate(60,-300,10000)

Returns
2.00%

Scripting example

Script syntax and chart functions - Qlik Sense, May 2024 1230

8 Script and chart functions

8.12 Formatting functions
The formatting functions impose the display format on the input numeric fields or expressions,
Depending on data type, you can specify the characters for the decimal separator, thousands
separator, and so on.

The functions all return a dual value with both the string and the number value, but can be thought
of as performing a number-to-string conversion. Dual() is a special case, but the other formatting
functions take the numeric value of the input expression and generate a string representing the
number.

In contrast, the interpretation functions do the opposite: they take string expressions and evaluate
them as numbers, specifying the format of the resulting number.

The functions can be used both in data load scripts and chart expressions.

All number representations are given with a decimal point as the decimal separator.

Formatting functions overview
Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

ApplyCodepage
ApplyCodepage() applies a different code page character set to the field or text stated in the
expression. The codepage argument must be in number format.

ApplyCodepage (text, codepage)

Date
Date() formats an expression as a date using the format set in the system variables in the data load
script, or the operating system, or a format string, if supplied.

Date (number[, format])

Dual
Dual() combines a number and a string into a single record, such that the number representation of
the record can be used for sorting and calculation purposes, while the string value can be used for
display purposes.

Dual (text, number)

Interval
Interval() formats a number as a time interval using the format in the system variables in the data
load script, or the operating system, or a format string, if supplied.

Interval (number[, format])

Script syntax and chart functions - Qlik Sense, May 2024 1231

8 Script and chart functions

Money
Money() formats an expression numerically as a money value, in the format set in the system
variables set in the data load script, or in the operating system, unless a format string is supplied,
and optional decimal and thousands separators.

Money (number[, format[, dec_sep [, thou_sep]]])

Num
Num() formats a number, that is it converts the numeric value of the input to display text using the
format specified in the second parameter. If the second parameter is omitted, it uses the decimal
and thousand separators set in the data load script. Custom decimal and thousand separator
symbols are optional parameters.

Num (number[, format[, dec_sep [, thou_sep]]])

Time
Time() formats an expression as a time value, in the time format set in the system variables in the
data load script, or in the operating system, unless a format string is supplied.

Time (number[, format])

Timestamp
TimeStamp() formats an expression as a date and time value, in the timestamp format set in the
system variables in the data load script, or in the operating system, unless a format string is
supplied.

Timestamp (number[, format])

See also:
p Interpretation functions (page 1265)

ApplyCodepage
ApplyCodepage() applies a different code page character set to the field or text
stated in the expression. The codepage argument must be in number format.

Although ApplyCodepage can be used in chart expressions, it is more commonly used as
a script function in the Data load editor. For example, as you load files that might have
been saved in different character sets out of your control, you can apply the code page
that represents the character set you require.

Syntax:
ApplyCodepage(text, codepage)

Script syntax and chart functions - Qlik Sense, May 2024 1232

8 Script and chart functions

Return data type: string

Arguments:

Argument Description

text Field or text to which you want to apply a different code page, given by the
argument codepage.

codepage Number representing the code page to be applied to the field or expression given
by text.

Arguments

Examples and results:

Example Result

LOAD

ApplyCodepage

(ROWX,1253) as

GreekProduct,

ApplyCodepage (ROWY,

1255) as HebrewProduct,

ApplyCodepage (ROWZ,

65001) as

EnglishProduct;

SQL SELECT ROWX, ROWY,

ROWZ From Products;

When loading from SQL the source might have a mixture of different
character sets: Cyrillic, Hebrew, and so on, from the UTF-8 format.
These would be required to be loaded row by row, applying a
different code page for each row.

The codepage value 1253 represents Windows Greek character set,
the value 1255 represents Hebrew, and the value 65001 represents
standard Latin UTF-8 characters.

Scripting examples

See also: Character set (page 165)

Date
Date() formats an expression as a date using the format set in the system variables in
the data load script, or the operating system, or a format string, if supplied.

Syntax:
Date(number[, format])

Return data type: dual

Arguments:

Argument Description

number The number to be formatted.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1233

8 Script and chart functions

Argument Description

format String describing the format of the resulting string. If no format string is supplied,
the date format set in the system variables in the dtat load script or the operating
system is used.

Examples and results:
The examples below assume the following default settings:

l Date setting 1: YY-MM-DD
l Date setting 2: M/D/YY

Example:

Date(A)

where A=35648

Results Setting 1 Setting 2

String: 97-08-06 8/6/97

Number: 35648 35648

Results table

Example:

Date(A, 'YY.MM.DD')

where A=35648

Results Setting 1 Setting 2

String: 97.08.06 97.08.06

Number: 35648 35648

Results table

Example:

Date(A, 'DD.MM.YYYY')

where A=35648.375

Results Setting 1 Setting 2

String: 06.08.1997 06.08.1997

Number: 35648.375 35648.375

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1234

8 Script and chart functions

Example:

Date(A, 'YY.MM.DD')

where A=8/6/97

Results Setting 1 Setting 2

String: NULL (nothing) 97.08.06

Number: NULL 35648

Results table

Dual
Dual() combines a number and a string into a single record, such that the number
representation of the record can be used for sorting and calculation purposes, while
the string value can be used for display purposes.

Syntax:
Dual(text, number)

Return data type: dual

All dual return values are right-aligned.

Arguments:

Argument Description

text The string value to be used in combination with the number argument.

number The number to be used in combination with the string in the string argument.

Arguments

In Qlik Sense, all field values are potentially dual values. This means that the field values can have
both a numeric value and a textual value. An example is a date that could have a numeric value of
40908 and the textual representation '2011-12-31'.

When several data items read into one field have different string representations but the
same valid number representation, they will all share the first string representation
encountered.

Script syntax and chart functions - Qlik Sense, May 2024 1235

8 Script and chart functions

The dual function is typically used early in the script, before other data is read into the
field concerned, in order to create that first string representation, which will be shown in
filter panes.

Examples and results:

Example Description

Add the following
examples to your
script and run it.

Load dual (

NameDay,NumDay) as

DayOfWeek inline

[NameDay,NumDay

Monday,0

Tuesday,1

Wednesday,2

Thursday,3

Friday,4

Saturday,5

Sunday,6];

The field DayOfWeek can be used in a visualization as a dimension for
example.In a table with the week days are automatically sorted into
their correct number sequence, instead of alphabetical order.

Load Dual('Q' & Ceil

(Month(Now())/3),

Ceil(Month(Now())/3))

as Quarter

AutoGenerate 1;

This example finds the current quarter. It is displayed as Q1 when the
Now() function is run in the first three months of the year, Q2 for the
second three months, and so on. However, when used in sorting, the
field Quarter will behave as its numerical value: 1 to 4.

Dual('Q' & Ceil(Month

(Date)/3), Ceil(Month

(Date)/3)) as Quarter

As in the previous example, the field Quarter is created with the text
values 'Q1' to 'Q4', and assigned the numeric values 1 to 4. In order to
use this in the script the values for Date must be loaded.

Dual(WeekYear(Date) &

'-W' & Week(Date),

WeekStart(Date)) as

YearWeek

This example create sa field YearWeek with text values of the form
'2012-W22' and at the same time, assigns a numeric value
corresponding to the date number of the first day of the week, for
example: 41057. In order to use this in the script the values for Date
must be loaded.

Scripting examples

Interval
Interval() formats a number as a time interval using the format in the system variables
in the data load script, or the operating system, or a format string, if supplied.

Intervals may be formatted as a time, as days or as a combination of days, hours, minutes, seconds
and fractions of seconds.

Syntax:
Interval(number[, format])

Script syntax and chart functions - Qlik Sense, May 2024 1236

8 Script and chart functions

Return data type: dual

Arguments:

Argument Description

number The number to be formatted.

format String describing how the resulting interval string is to be formatted. If omitted,
the short date format, time format, and decimal separator set in the operating
system are used.

Arguments

Examples and results:
The examples below assume the following default settings:

l Date format setting 1: YY-MM-DD
l Date format setting 2: hh:mm:ss
l Number decimal separator: .

Example String Number

Interval(A)

where A=0.375
09:00:00 0.375

Interval(A)

where A=1.375
33:00:00 1.375

Interval(A, 'D hh:mm')

where A=1.375
1 09:00 1.375

Interval(A-B, 'D hh:mm')

where A=97-08-06 09:00:00 and B=96-08-06 00:00:00
365 09:00 365.375

Results table

Money
Money() formats an expression numerically as a money value, in the format set in the
system variables set in the data load script, or in the operating system, unless a format
string is supplied, and optional decimal and thousands separators.

Syntax:
Money(number[, format[, dec_sep[, thou_sep]]])

Script syntax and chart functions - Qlik Sense, May 2024 1237

8 Script and chart functions

Return data type: dual

Arguments:

Argument Description

number The number to be formatted.

format String describing how the resulting money string is to be formatted.

dec_sep String specifying the decimal number separator.

thou_sep String specifying the thousands number separator.

Arguments

If arguments 2-4 are omitted, the currency format set in the operating system is used.

Examples and results:
The examples below assume the following default settings:

l MoneyFormat setting 1: kr ##0,00, MoneyThousandSep' '
l MoneyFormat setting 2: $ #,##0.00, MoneyThousandSep','

Example:

Money(A)

where A=35648

Results Setting 1 Setting 2

String: kr 35 648,00 $ 35,648.00

Number: 35648.00 35648.00

Results table

Example:

Money(A, '#,##0 ¥', '.' , ',')

where A=3564800

Results Setting 1 Setting 2

String: 3,564,800 ¥ 3,564,800 ¥

Number: 3564800 3564800

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1238

8 Script and chart functions

Num
Num() formats a number, that is it converts the numeric value of the input to display
text using the format specified in the second parameter. If the second parameter is
omitted, it uses the decimal and thousand separators set in the data load script.
Custom decimal and thousand separator symbols are optional parameters.

Syntax:
Num(number[, format[, dec_sep [, thou_sep]]])

Return data type: dual

The Num function returns a dual value with both the string and the numeric value. The function
takes the numeric value of the input expression and generates a string representing the number.

Arguments:

Argument Description

number The number to be formatted.

format String specifying how the resulting string is to be formatted. If omitted, the
decimal and thousand separators that are set in the data load script are used.

dec_sep String specifying the decimal number separator. If omitted, the value of the
variable DecimalSep that is set in the data load script is used.

thou_sep String specifying the thousands number separator. If omitted, the value of the
variable ThousandSep that is set in the data load script is used.

Arguments

Example: Chart expression

Example:

The following table shows the results when field A equals 35648.312.

A Result

Num(A) 35648.312 (depends on environment variables in script)

Num(A, '0.0', '.') 35648.3

Num(A, '0,00', ',') 35648,31

Num(A, '#,##0.0', '.', ',') 35,648.3

Num(A, '# ##0', ',', ' ') 35 648

Results

Script syntax and chart functions - Qlik Sense, May 2024 1239

8 Script and chart functions

Example: Load script

Load script

Num can be used in load script to format a number, even if the thousand and decimal separators are
already set in the script. The load script below includes specific thousand and decimal separators
but then uses Num to format data in different ways.

In the Data load editor, create a new section, and then add the example script and run it. Then add,
at least, the fields listed in the results column to a sheet in your app to see the result.

SET ThousandSep=',';

SET DecimalSep='.';

Transactions:

Load

*,

Num(transaction_amount) as [No formatting],

Num(transaction_amount,'0') as [0],

Num(transaction_amount,'#,##0') as [#,##0],

Num(transaction_amount,'# ###,00') as [# ###,00],

Num(transaction_amount,'# ###,00',',',' ') as [# ###,00 , ',' , ' '],

Num(transaction_amount,'#,###.00','.',',') as [#,###.00 , '.' , ','],

Num(transaction_amount,'$#,###.00') as [$#,###.00],

;

Load * Inline [

transaction_id, transaction_date, transaction_amount, transaction_quantity, discount,

customer_id, size, color_code

3750, 20180830, 12423.56, 23, 0,2038593, L, Red

3751, 20180907, 5356.31, 6, 0.1, 203521, m, orange

3752, 20180916, 15.75, 1, 0.22, 5646471, S, blue

3753, 20180922, 1251, 7, 0, 3036491, l, Black

3754, 20180922, 21484.21, 1356, 75, 049681, xs, Red

3756, 20180922, -59.18, 2, 0.333333333333333, 2038593, M, Blue

3757, 20180923, 3177.4, 21, .14, 203521, XL, Black

];

No
formatting

0 #,##0 # ###,00
###,00
, ',' , ' '

#,###.00 ,
'.' , ','

$#,###.00

-59.18 -59 -59 -59###,00 -59,18 -59.18 $-59,18

15.75 16 16 16###,00 15,75 15.75 $15,75

1251 1251 1,251 1251###,00 1 251,00 1,251.00 $1,251.00

3177.4 3177 3,177 3177###,00 3 177,40 3,177.40 $3,177.40

5356.31 5356 5,356 5356###,00 5 356,31 5,356.31 $5,356.31

12423.56 12424 12,424 12424###,00 12
423,56

12,423.56 $12,423.56

21484.21 21484 21,484 21484###,00 21 484,21 21,484.21 $21,484.21

Qlik Sense table showing the results from different uses of the Num function in the load script. The
fourth column of the table contains incorrect formatting use, for example purposes.

Script syntax and chart functions - Qlik Sense, May 2024 1240

8 Script and chart functions

Example: Load script

Load script

Num can be used in a load script to format a number as a percentage.

In the Data load editor, create a new section, and then add the example script and run it. Then add,
at least, the fields listed in the results column to a sheet in your app to see the result.

SET ThousandSep=',';

SET DecimalSep='.';

Transactions:

Load

*,

Num(discount,'#,##0%') as [Discount #,##0%]

;

Load * Inline [

transaction_id, transaction_date, transaction_amount, transaction_quantity, discount,

customer_id, size, color_code

3750, 20180830, 12423.56, 23, 0,2038593, L, Red

3751, 20180907, 5356.31, 6, 0.1, 203521, m, orange

3752, 20180916, 15.75, 1, 0.22, 5646471, S, blue

3753, 20180922, 1251, 7, 0, 3036491, l, Black

3754, 20180922, 21484.21, 1356, 75, 049681, xs, Red

3756, 20180922, -59.18, 2, 0.333333333333333, 2038593, M, Blue

3757, 20180923, 3177.4, 21, .14, 203521, XL, Black

];

Discount Discount #,##0%

0.333333333333333 33%

0.22 22%

0 0%

.14 14%

0.1 10%

0 0%

75 7,500%

Qlik Sense table showing the results of the Num
function being used in the load script to format

percentages.

Time
Time() formats an expression as a time value, in the time format set in the system
variables in the data load script, or in the operating system, unless a format string is
supplied.

Syntax:
Time(number[, format])

Script syntax and chart functions - Qlik Sense, May 2024 1241

8 Script and chart functions

Return data type: dual

Arguments:

Argument Description

number The number to be formatted.

format String describing how the resulting time string is to be formatted. If omitted, the
short date format, time format, and decimal separator set in the operating system
is used.

Arguments

Examples and results:
The examples below assume the following default settings:

l Time format setting 1: hh:mm:ss
l Time format setting 2: hh.mm.ss

Example:

Time(A)

where A=0.375

Results Setting 1 Setting 2

String: 09:00:00 09.00.00

Number: 0.375 0.375

Results table

Example:

Time(A)

where A=35648.375

Results Setting 1 Setting 2

String: 09:00:00 09.00.00

Number: 35648.375 35648.375

Results table

Example:

Time(A, 'hh-mm')

where A=0.99999

Script syntax and chart functions - Qlik Sense, May 2024 1242

8 Script and chart functions

Results Setting 1 Setting 2

String: 23-59 23-59

Number: 0.99999 0.99999

Results table

Timestamp
TimeStamp() formats an expression as a date and time value, in the timestamp format
set in the system variables in the data load script, or in the operating system, unless a
format string is supplied.

Syntax:
Timestamp(number[, format])

Return data type: dual

Arguments:

Argument Description

number The number to be formatted.

format String describing how the resulting timestamp string is to be formatted. If
omitted, the short date format, time format, and decimal separator set in the
operating system is used.

Arguments

Examples and results:
The examples below assume the following default settings:

l TimeStampFormat setting 1: YY-MM-DD hh:mm:ss
l TimeStampFormat setting 2: M/D/YY hh:mm:ss

Example:

Timestamp(A)

where A=35648.375

Results Setting 1 Setting 2

String: 97-08-06 09:00:00 8/6/97 09:00:00

Number: 35648.375 35648.375

Results table

Script syntax and chart functions - Qlik Sense, May 2024 1243

8 Script and chart functions

Example:

Timestamp(A,'YYYY-MM-DD hh.mm')

where A=35648

Results Setting 1 Setting 2

String: 1997-08-06 00.00 1997-08-06 00.00

Number: 35648 35648

Results table

8.13 General numeric functions
In these general numeric functions, the arguments are expressions where x should be interpreted
as a real valued number. All functions can be used in both data load scripts and chart expressions.

General numeric functions overview
Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

bitcount
BitCount() returns how many bits in the binary equivalent of a decimal number are set to 1. That is,
the function returns the number of set bits in integer_number, where integer_number is
interpreted as a signed 32-bit integer.

BitCount(integer_number)

div
Div() returns the integer part of the arithmetic division of the first argument by the second
argument. Both parameters are interpreted as real numbers, that is, they do not have to be integers.

Div(integer_number1, integer_number2)

fabs
Fabs() returns the absolute value of x. The result is a positive number.

Fabs(x)

fact
Fact() returns the factorial of a positive integer x.

Fact(x)

frac
Frac() returns the fraction part of x.

Frac(x)

Script syntax and chart functions - Qlik Sense, May 2024 1244

8 Script and chart functions

sign
Sign() returns 1, 0 or -1 depending on whether x is a positive number, 0, or a negative number.

Sign(x)

Combination and permutation functions
combin
Combin() returns the number of combinations of q elements that can be picked from a set of p
items. As represented by the formula: Combin(p,q) = p! / q!(p-q)! The order in which the items are
selected is insignificant.

Combin(p, q)

permut
Permut() returns the number of permutations of q elements that can be selected from a set of p
items. As represented by the formula: Permut(p,q) = (p)! / (p - q)! The order in which the items
are selected is significant.

Permut(p, q)

Modulo functions
fmod
fmod() is a generalized modulo function that returns the remainder part of the integer division of
the first argument (the dividend) by the second argument (the divisor). The result is a real number.
Both arguments are interpreted as real numbers, that is, they do not have to be integers.

Fmod(a, b)

mod
Mod() is a mathematical modulo function that returns the non-negative remainder of an integer
division. The first argument is the dividend, the second argument is the divisor, Both arguments
must be integer values.

Mod(integer_number1, integer_number2)

Parity functions
even
Even() returns True (-1), if integer_number is an even integer or zero. It returns False (0), if
integer_number is an odd integer, and NULL if integer_number is not an integer.

Even(integer_number)

odd
Odd() returns True (-1), if integer_number is an odd integer or zero. It returns False (0), if integer_
number is an even integer, and NULL if integer_number is not an integer.

Odd(integer_number)

Script syntax and chart functions - Qlik Sense, May 2024 1245

8 Script and chart functions

Rounding functions
ceil
Ceil() rounds up a number to the nearest multiple of the step shifted by the offset number.

Ceil(x[, step[, offset]])

floor
Floor() rounds down a number to the nearest multiple of the step shifted by the offset number.

Floor(x[, step[, offset]])

round
Round() returns the result of rounding a number up or down to the nearest multiple of step shifted
by the offset number.

Round(x [, step [, offset]])

BitCount
BitCount() returns how many bits in the binary equivalent of a decimal number are set to 1. That is,
the function returns the number of set bits in integer_number, where integer_number is
interpreted as a signed 32-bit integer.

Syntax:
BitCount(integer_number)

Return data type: integer

Examples and results:

Examples Results

BitCount (3) 3 is binary 11, therefore this returns 2

BitCount (-1) -1 is 64 ones in binary, therefore this returns 64

Examples and results

Ceil
Ceil() rounds up a number to the nearest multiple of the step shifted by the offset number.

Compare with the floor function, which rounds input numbers down.

Syntax:
Ceil(x[, step[, offset]])

Script syntax and chart functions - Qlik Sense, May 2024 1246

8 Script and chart functions

Return data type: numeric

Arguments:

Argument Description

x Input number.

step Interval increment. The default value is 1.

offset Defines the base of the step interval. The default value is 0.

Arguments

Examples and results:

Examples Results

Ceil(2.4) Returns 3

In this example, the size of the step is 1 and the base of the step
interval is 0.

The intervals are ...0 < x <=1, 1 < x <= 2, 2< x <=3, 3< x <=4...

Ceil(4.2) Returns 5

Ceil(3.88 ,0.1) Returns 3.9

In this example, the size of the interval is 0.1 and the base of the
interval is 0.

The intervals are ... 3.7 < x <= 3.8, 3.8 < x <= 3.9, 3.9 < x <= 4.0...

Ceil(3.88 ,5) Returns 5

Ceil(1.1 ,1) Returns 2

Ceil(1.1 ,1,0.5) Returns 1.5

In this example, the size of the step is 1 and the offset is 0.5. It means
that the base of the step interval is 0.5 and not 0.

The intervals are ...0.5 < x <=1.5, 1.5 < x <= 2.5, 2.5< x <=3.5, 3.5< x
<=4.5...

Ceil(1.1 ,1,-0.01) Returns 1.99

The intervals are ...-0.01< x <= 0.99, 0.99< x <= 1.99, 1.99 < x
<=2.99...

Examples and results

Script syntax and chart functions - Qlik Sense, May 2024 1247

8 Script and chart functions

Combin
Combin() returns the number of combinations of q elements that can be picked from a set of p
items. As represented by the formula: Combin(p,q) = p! / q!(p-q)! The order in which the items are
selected is insignificant.

Syntax:
Combin(p, q)

Return data type: integer

Limitations:

Non-integer items will be truncated.

Examples and results:

Examples Results

How many combinations of 7 numbers can be picked from a total of 35 lottery
numbers?

Combin(35,7)

Returns
6,724,520

Examples and results

Div
Div() returns the integer part of the arithmetic division of the first argument by the second
argument. Both parameters are interpreted as real numbers, that is, they do not have to be integers.

Syntax:
Div(integer_number1, integer_number2)

Return data type: integer

Examples and results:

Examples Results

Div(7,2) Returns 3

Div(7.1,2.3) Returns 3

Div(9,3) Returns 3

Div(-4,3) Returns -1

Div(4,-3) Returns -1

Div(-4,-3) Returns 1

Examples and results

Script syntax and chart functions - Qlik Sense, May 2024 1248

8 Script and chart functions

Even
Even() returns True (-1), if integer_number is an even integer or zero. It returns False (0), if
integer_number is an odd integer, and NULL if integer_number is not an integer.

Syntax:
Even(integer_number)

Return data type: Boolean

Examples and results:

Examples Results

Even(3) Returns 0, False

Even(2 * 10) Returns -1, True

Even(3.14) Returns NULL

Examples and results

Fabs
Fabs() returns the absolute value of x. The result is a positive number.

Syntax:
fabs(x)

Return data type: numeric

Examples and results:

Examples Results

fabs(2.4) Returns 2.4

fabs(-3.8) Returns 3.8

Examples and results

Fact
Fact() returns the factorial of a positive integer x.

Syntax:
Fact(x)

Return data type: integer

Limitations:

If the number x is not an integer, it will be truncated. Non-positive numbers will return NULL.

Script syntax and chart functions - Qlik Sense, May 2024 1249

8 Script and chart functions

Examples and results:

Examples Results

Fact(1) Returns 1

Fact(5) Returns 120 (1 * 2 * 3 * 4 * 5 = 120)

Fact(-5) Returns NULL

Examples and results

Floor
Floor() rounds down a number to the nearest multiple of the step shifted by the offset number.

Compare with the ceil function, which rounds input numbers up.

Syntax:
Floor(x[, step[, offset]])

Return data type: numeric

Arguments:

Argument Description

x Input number.

step Interval increment. The default value is 1.

offset Defines the base of the step interval. The default value is 0.

Arguments

Examples and results:

Examples Results

Floor(2.4) Returns 2

In this example, the size of the step is 1 and the base of the step interval
is 0.

The intervals are ...0 <= x <1, 1 <= x < 2, 2<= x <3, 3<= x <4....

Floor(4.2) Returns 4

Examples and results

Script syntax and chart functions - Qlik Sense, May 2024 1250

8 Script and chart functions

Examples Results

Floor(3.88 ,0.1) Returns 3.8

In this example, the size of the interval is 0.1 and the base of the interval
is 0.

The intervals are ... 3.7 <= x < 3.8, 3.8 <= x < 3.9, 3.9 <= x < 4.0...

Floor(3.88 ,5) Returns 0

Floor(1.1 ,1) Returns 1

Floor(1.1 ,1,0.5) Returns 0.5

In this example, the size of the step is 1 and the offset is 0.5. It means
that the base of the step interval is 0.5 and not 0.

The intervals are ...0.5 <= x <1.5, 1.5 <= x < 2.5, 2.5<= x <3.5,...

Fmod
fmod() is a generalized modulo function that returns the remainder part of the integer division of
the first argument (the dividend) by the second argument (the divisor). The result is a real number.
Both arguments are interpreted as real numbers, that is, they do not have to be integers.

Syntax:
fmod(a, b)

Return data type: numeric

Arguments:

Argument Description

a Dividend

b Divisor

Arguments

Examples and results:

Examples Results

fmod(7,2) Returns 1

fmod(7.5,2) Returns 1.5

fmod(9,3) Returns 0

fmod(-4,3) Returns -1

Examples and results

Script syntax and chart functions - Qlik Sense, May 2024 1251

8 Script and chart functions

Examples Results

fmod(4,-3) Returns 1

fmod(-4,-3) Returns -1

Frac
Frac() returns the fraction part of x.

The fraction is defined in such a way that Frac(x) + Floor(x) = x. In simple terms, this means that
the fractional part of a positive number is the difference between the number (x) and the integer
that precedes the fractional part.

For example: The fractional part of 11.43 = 11.43 - 11 = 0.43

For a negative number, say -1.4, Floor(-1.4) = -2, which produces the following result:

The fractional part of -1.4 = -1.4 - (-2) = -1.4 + 2 = 0.6

Syntax:
Frac(x)

Return data type: numeric

Arguments:

Argument Description

x Number to return fraction for.

Arguments

Examples and results:

Examples Results

Frac(11.43) Returns
0.43

Frac(-1.4) Returns
0.6

Extract the time component from the numeric representation of a timestamp, thus
omitting the date.

Time(Frac(44518.663888889))

Returns
3:56:00
PM

Examples and results

Script syntax and chart functions - Qlik Sense, May 2024 1252

8 Script and chart functions

Mod
Mod() is a mathematical modulo function that returns the non-negative remainder of an integer
division. The first argument is the dividend, the second argument is the divisor, Both arguments
must be integer values.

Syntax:
Mod(integer_number1, integer_number2)

Return data type: integer

Limitations:

integer_number2 must be greater than 0.

Examples and results:

Examples Results

Mod(7,2) Returns 1

Mod(7.5,2) Returns NULL

Mod(9,3) Returns 0

Mod(-4,3) Returns 2

Mod(4,-3) Returns NULL

Mod(-4,-3) Returns NULL

Examples and results

Odd
Odd() returns True (-1), if integer_number is an odd integer or zero. It returns False (0), if integer_
number is an even integer, and NULL if integer_number is not an integer.

Syntax:
Odd(integer_number)

Return data type: Boolean

Examples and results:

Examples Results

Odd(3) Returns -1, True

Odd(2 * 10) Returns 0, False

Odd(3.14) Returns NULL

Examples and results

Script syntax and chart functions - Qlik Sense, May 2024 1253

8 Script and chart functions

Permut
Permut() returns the number of permutations of q elements that can be selected from a set of p
items. As represented by the formula: Permut(p,q) = (p)! / (p - q)! The order in which the items
are selected is significant.

Syntax:
Permut(p, q)

Return data type: integer

Limitations:

Non-integer arguments will be truncated.

Examples and results:

Examples Results

In how many ways could the gold, silver and bronze medals be distributed after a
100 m final with 8 participants?

Permut(8,3)

Returns
336

Examples and results

Round
Round() returns the result of rounding a number up or down to the nearest multiple of step shifted
by the offset number.

If the number to round is exactly in the middle of an interval, it is rounded upwards.

Syntax:
Round(x[, step[, offset]])

Return data type: numeric

If you are rounding a floating point number you may observe erroneous results. These
rounding errors occur because floating point numbers are represented by a finite
number of binary digits. Therefore, results are calculated using a number that is already
rounded. If these rounding errors will affect your work, multiply the numbers to convert
them to integers before rounding.

Script syntax and chart functions - Qlik Sense, May 2024 1254

8 Script and chart functions

Arguments:

Argument Description

x Input number.

step Interval increment. The default value is 1.

offset Defines the base of the step interval. The default value is 0.

Arguments

Examples and results:

Examples Results

Round(3.8) Returns 4

In this example, the size of the step is 1 and the base of the step interval is
0.

The intervals are ...0 <= x <1, 1 <= x < 2, 2<= x <3, 3<= x <4...

Round(3.8,4) Returns 4

Round(2.5) Returns 3.

In this example, the size of the step is 1 and the base of the step interval is
0.

The intervals are ...0 <= x <1, 1 <= x <2, 2<= x <3...

Round(2,4) Returns 4. Rounded up because 2 is exactly half of the step interval of 4.

In this example, the size of the step is 4 and the base of the step interval is
0.

The intervals are ...0 <= x <4, 4 <= x <8, 8<= x <12...

Round(2,6) Returns 0. Rounded down because 2 is less than half of the step interval of
6.

In this example, the size of the step is 6 and the base of the step interval is
0.

The intervals are ...0 <= x <6, 6 <= x <12, 12<= x <18...

Examples and results

Script syntax and chart functions - Qlik Sense, May 2024 1255

8 Script and chart functions

Examples Results

Round(3.88 ,0.1) Returns 3.9

In this example, the size of the step is 0.1 and the base of the step interval
is 0.

The intervals are ... 3.7 <= x <3.8, 3.8 <= x <3.9, 3.9 <= x < 4.0...

Round

(3.88875,1/1000)
Returns 3.889

In this example, the size of the step is 0.001, which rounds the number up
and limits it to three decimal places.

Round(3.88 ,5) Returns 5

Round(1.1 ,1,0.5) Returns 1.5

In this example, the size of the step is 1 and the base of the step interval is
0.5.

The intervals are ...0.5 <= x <1.5, 1.5 <= x <2.5, 2.5<= x <3.5...

Sign
Sign() returns 1, 0 or -1 depending on whether x is a positive number, 0, or a negative number.

Syntax:
Sign(x)

Return data type: numeric

Limitations:

If no numeric value is found, NULL is returned.

Examples and results:

Examples Results

Sign(66) Returns 1

Sign(0) Returns 0

Sign(- 234) Returns -1

Examples and results

8.14 Geospatial functions
These functions are used to handle geospatial data in map visualizations. Qlik Sense
follows GeoJSON specifications for geospatial data and supports the following:

Script syntax and chart functions - Qlik Sense, May 2024 1256

8 Script and chart functions

l Point
l Linestring
l Polygon
l Multipolygon

For more information on GeoJSON specifications, see:
≤ GeoJSON.org

Geospatial functions overview
Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

There are two categories of geospatial functions: aggregation and non-aggregation.

Aggregation functions take a geometry set (points or areas) as input, and return a single geometry.
For example, multiple areas can be merged together, and a single boundary for the aggregation can
be drawn on the map.

Non-aggregation function take a sinlge geometry and return one geometry. For example, for the
function GeoGetPolygonCenter(), if the boundary geometry of one area is set as input, the point
geometry (longitude and latitude) for the center of that area is returned.

The following are aggregation functions:

GeoAggrGeometry
GeoAggrGeometry() is used to aggregate a number of areas into a larger area, for example
aggregating a number of sub-regions to a region.

GeoAggrGeometry (field_name)

GeoBoundingBox
GeoBoundingBox() is used to aggregate a geometry into an area and calculate the smallest
bounding box that contains all coordinates.

GeoBoundingBox (field_name)

GeoCountVertex
GeoCountVertex() is used to find the number of vertices a polygon geometry contains.

GeoCountVertex(field_name)

GeoInvProjectGeometry
GeoInvProjectGeometry() is used to aggregate a geometry into an area and apply the inverse of a
projection.

GeoInvProjectGeometry(type, field_name)

GeoProjectGeometry
GeoProjectGeometry() is used to aggregate a geometry into an area and apply a projection.

Script syntax and chart functions - Qlik Sense, May 2024 1257

http://geojson.org/

8 Script and chart functions

GeoProjectGeometry(type, field_name)

GeoReduceGeometry
GeoReduceGeometry() is used to reduce the number of vertices of a geometry, and to aggregate a
number of areas into one area, but still displaying the boundary lines from the individual areas.

GeoReduceGeometry (geometry)

The following are non-aggregation functions:

GeoGetBoundingBox
GeoGetBoundingBox() is used in scripts and chart expressions to calculate the smallest geospatial
bounding box that contains all coordinates of a geometry.

GeoGetBoundingBox (geometry)

GeoGetPolygonCenter
GeoGetPolygonCenter() is used in scripts and chart expressions to calculate and return the center
point of a geometry.

GeoGetPolygonCenter (geometry)

GeoMakePoint
GeoMakePoint() is used in scripts and chart expressions to create and tag a point with latitude and
longitude.

GeoMakePoint (lat_field_name, lon_field_name)

GeoProject
GeoProject() is used in scripts and chart expressions to apply a projection to a geometry.

GeoProject (type, field_name)

GeoAggrGeometry
GeoAggrGeometry() is used to aggregate a number of areas into a larger area, for
example aggregating a number of sub-regions to a region.

Syntax:
GeoAggrGeometry(field_name)

Return data type: string

Arguments:

Argument Description

field_name A field or expression referring to a field containing the geometry to be
represented. This could be either a point (or set of points) giving longitude and
latitude, or an area.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1258

8 Script and chart functions

Typically, GeoAggrGeometry() can be used to combine geospatial boundary data. For example,
you might have postcode areas for suburbs in a city and sales revenues for each area. If a sales
person’s territory covers several postcode areas, it might be useful to present total sales by sales
territory, rather than individual areas, and show the results on a color-filled map.

GeoAggrGeometry() can calculate the aggregation of the individual suburb geometries and
generate the merged territory geometry in the data model. If then, the sales territory boundaries are
adjusted, when the data is reloaded the new merged boundaries and revenues are reflected in the
map.

As GeoAggrGeometry() is an aggregating function, if you use it in the script a LOAD statement
with a Group by clause is required.

The boundary lines of maps created using GeoAggrGeometry() are those of the merged
areas. If you want to display the individual boundary lines of the pre-aggregated areas,
use GeoReduceGeometry().

Examples:
This example loads a KML file with area data, and then loads a table with the aggregated area data.

[MapSource]:

LOAD [world.Name],

[world.Point],

[world.Area]

FROM [lib://Downloads/world.kml]

(kml, Table is [World.shp/Features]);

Map:

LOAD world.Name,

GeoAggrGeometry(world.Area) as [AggrArea]

resident MapSource Group By world.Name;

Drop Table MapSource;

GeoBoundingBox
GeoBoundingBox() is used to aggregate a geometry into an area and calculate the
smallest bounding box that contains all coordinates.

A GeoBoundingBox is represented as a list of four values: left, right, top, bottom.

Syntax:
GeoBoundingBox(field_name)

Script syntax and chart functions - Qlik Sense, May 2024 1259

8 Script and chart functions

Return data type: string

Arguments:

Argument Description

field_name A field or expression referring to a field containing the geometry to be
represented. This could be either a point (or set of points) giving longitude and
latitude, or an area.

Arguments

GeoBoundingBox() aggregates a set of geometries and returns four coordinates for the smallest
rectangle that contains all the coordinates of that aggregated geometry.

To visualize the result on a map, transfer the resulting string of four coordinates into a polygon
format, tag the transferred field with a geopolygon format, and drag and drop that field into the map
object. The rectangular boxes .will then be displayed in the map visualization.

GeoCountVertex
GeoCountVertex() is used to find the number of vertices a polygon geometry
contains.

Syntax:
GeoCountVertex(field_name)

Return data type: integer

Arguments:

Argument Description

field_name A field or expression referring to a field containing the geometry to be
represented. This could be either a point (or set of points) giving longitude and
latitude, or an area.

Arguments

GeoGetBoundingBox
GeoGetBoundingBox() is used in scripts and chart expressions to calculate the
smallest geospatial bounding box that contains all coordinates of a geometry.

A geospatial bounding box, created by the function GeoBoundingBox() is represented as a list of
four values: left, right, top, bottom.

Syntax:
GeoGetBoundingBox(field_name)

Script syntax and chart functions - Qlik Sense, May 2024 1260

8 Script and chart functions

Return data type: string

Arguments:

Argument Description

field_name A field or expression referring to a field containing the geometry to be
represented. This could be either a point (or set of points) giving longitude and
latitude, or an area.

Arguments

Do not use the Group by clause in the data load editor with this and other non-
aggregating geospatial functions, because this will cause an error on load.

GeoGetPolygonCenter
GeoGetPolygonCenter() is used in scripts and chart expressions to calculate and
return the center point of a geometry.

In some cases, the requirement is to plot a dot instead of color fill on a map. If the existing
geospatial data is only available in the form of area geometry (for example, a boundary), use
GeoGetPolygonCenter() to retrieve a pair of longitude and latitude for the center of area.

Syntax:
GeoGetPolygonCenter(field_name)

Return data type: string

Arguments:

Argument Description

field_name A field or expression referring to a field containing the geometry to be
represented. This could be either a point (or set of points) giving longitude and
latitude, or an area.

Arguments

Do not use the Group by clause in the data load editor with this and other non-
aggregating geospatial functions, because this will cause an error on load.

GeoInvProjectGeometry
GeoInvProjectGeometry() is used to aggregate a geometry into an area and apply the
inverse of a projection.

Script syntax and chart functions - Qlik Sense, May 2024 1261

8 Script and chart functions

Syntax:
GeoInvProjectGeometry(type, field_name)

Return data type: string

Arguments:

Argument Description

type Projection type used in transforming the geometry of the map. This can take one
of two values: 'unit', (default), which results in a 1:1 projection, or 'mercator',
which uses the standard Mercator projection.

field_name A field or expression referring to a field containing the geometry to be
represented. This could be either a point (or set of points) giving longitude and
latitude, or an area.

Arguments

Example:

Example Result

In a Load statement:
GeoInvProjectGeometry

('mercator',AreaPolygon)

as InvProjectGeometry

The geometry loaded as AreaPolygon is transformed using the
inverse transformation of the Mercator projection and stored as
InvProjectGeometry for use in visualizations.

Scripting example

GeoMakePoint
GeoMakePoint() is used in scripts and chart expressions to create and tag a point with
latitude and longitude. GeoMakePoint returns points in the order of longitude and
latitude.

Syntax:
GeoMakePoint(lat_field_name, lon_field_name)

Return data type: string, formatted [longitude, latitude]

Arguments:

Argument Description

lat_field_name A field or expression referring to a field representing the latitude of the point.

lon_field_name A field or expression referring to a field representing the longitude of the point.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1262

8 Script and chart functions

Do not use the Group by clause in the data load editor with this and other non-
aggregating geospatial functions, because this will cause an error on load.

GeoProject
GeoProject() is used in scripts and chart expressions to apply a projection to a
geometry.

Syntax:
GeoProject(type, field_name)

Return data type: string

Arguments:

Argument Description

type Projection type used in transforming the geometry of the map. This can take one
of two values: 'unit', (default), which results in a 1:1 projection, or 'mercator',
which uses the web Mercator projection.

field_name A field or expression referring to a field containing the geometry to be
represented. This could be either a point (or set of points) giving longitude and
latitude, or an area.

Arguments

Do not use the Group by clause in the data load editor with this and other non-
aggregating geospatial functions, because this will cause an error on load.

Example:

Example Result

In a Load statement:
GeoProject

('mercator',Area) as

GetProject

The Mercator projection is applied to the geometry loaded as Area,
and the result is stored as GetProject.

Script examples

GeoProjectGeometry
GeoProjectGeometry() is used to aggregate a geometry into an area and apply a
projection.

Syntax:
GeoProjectGeometry(type, field_name)

Script syntax and chart functions - Qlik Sense, May 2024 1263

8 Script and chart functions

Return data type: string

Arguments:

Argument Description

type Projection type used in transforming the geometry of the map. This can take one
of two values: 'unit', (default), which results in a 1:1 projection, or 'mercator',
which uses the web Mercator projection.

field_name A field or expression referring to a field containing the geometry to be
represented. This could be either a point (or set of points) giving longitude and
latitude, or an area.

Arguments

Example:

Example Result

In a Load statement:
GeoProjectGeometry

('mercator',AreaPolygon) as

ProjectGeometry

The geometry loaded as AreaPolygon is transformed using the
Mercator projection and stored as ProjectGeometry for use in
visualizations.

GeoReduceGeometry
GeoReduceGeometry() is used to reduce the number of vertices of a geometry, and to
aggregate a number of areas into one area, but still displaying the boundary lines from
the individual areas.

Syntax:
GeoReduceGeometry(field_name[, value])

Return data type: string

Arguments:

Argument Description

field_name A field or expression referring to a field containing the geometry to be
represented. This could be either a point (or set of points) giving longitude and
latitude, or an area.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1264

8 Script and chart functions

Argument Description

value The amount of reduction to apply to the geometry. The range is from 0 to 1, with 0
representing no reduction and 1 representing maximal reduction of vertices.

Using a value of 0.9 or higher with a complex data set can reduce the
number of vertices to a level where the visual representation is
inaccurate.

GeoReduceGeometry() also performs a similar function to, GeoAggrGeometry() in that it
aggregates a number of areas into one area. The difference being that individual boundary lines
from the pre-aggregation data are displayed on the map if you use GeoReduceGeometry().

As GeoReduceGeometry() is an aggregating function, if you use it in the script a LOAD statement
with a Group by clause is required.

Examples:
This example loads a KML file with area data, and then loads a table with the reduced and
aggregated area data.

[MapSource]:

LOAD [world.Name],

[world.Point],

[world.Area]

FROM [lib://Downloads/world.kml]

(kml, Table is [World.shp/Features]);

Map:

LOAD world.Name,

GeoReduceGeometry(world.Area,0.5) as [ReducedArea]

resident MapSource Group By world.Name;

Drop Table MapSource;

8.15 Interpretation functions
The interpretation functions evaluate the contents of input text fields or expressions,
and impose a specified data format on the resulting numeric value. With these
functions, you can specify the format of the number, in accordance with its data type,
including attributes such as: decimal separator, thousands separator,and date format.

The interpretation functions all return a dual value with both the string and the number value, but
can be thought of as performing a string-to-number conversion. The functions take the text value
of the input expression and generate a number representing the string.

In contrast, the formatting functions do the opposite: they take numeric expressions and evaluate
them as strings, specifying the display format of the resulting text.

Script syntax and chart functions - Qlik Sense, May 2024 1265

8 Script and chart functions

If no interpretation functions are used, Qlik Sense interprets the data as a mix of numbers, dates,
times, time stamps and strings, using the default settings for number format, date format, and time
format, defined by script variables and by the operating system.

All interpretation functions can be used in both data load scripts and chart expressions.

All number representations are given with a decimal point as the decimal separator.

Interpretation functions overview
Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

Date#
Date# evaluates an expression as a date in the format specified in the second argument, if
supplied. If the format code is omitted, the default date format set in the operating system is used.

Date# (page 1267)(text[, format])

Interval#
Interval#() evaluates a text expression as a time interval in the format set in the operating system,
by default, or in the format specified in the second argument, if supplied.

Interval# (page 1268)(text[, format])

Money#
Money#() converts a text string to a money value, in the format set in the load script or the
operating system, unless a format string is supplied. Custom decimal and thousand separator
symbols are optional parameters.

Money# (page 1269)(text[, format[, dec_sep[, thou_sep]]])

Num#
Num#() interprets a text string as a numerical value, that is it converts the input string to a number
using the format specified in the second parameter. If the second parameter is omitted, it uses the
decimal and thousand separators set in the data load script. Custom decimal and thousand
separator symbols are optional parameters.

Num# (page 1270)(text[, format[, dec_sep[, thou_sep]]])

Text
Text() forces the expression to be treated as text, even if a numeric interpretation is possible.

Text(expr)

Time#
Time#() evaluates an expression as a time value, in the time format set in the data load script or the
operating system, unless a format string is supplied..

Script syntax and chart functions - Qlik Sense, May 2024 1266

8 Script and chart functions

Time# (page 1271)(text[, format])

Timestamp#
Timestamp#() evaluates an expression as a date and time value, in the timestamp format set in the
data load script or the operating system, unless a format string is supplied.

Timestamp# (page 1272)(text[, format])

See also:
p Formatting functions (page 1231)

Date#
Date# evaluates an expression as a date in the format specified in the second
argument, if supplied.

Syntax:
Date#(text[, format])

Return data type: dual

Arguments:

Argument Description

text The text string to be evaluated.

format String describing the format of the text string to be evaluated. If omitted, the date
format set in the system variables in the data load script or the operating system
is used.

Arguments

Examples and results:
The following example uses the date format M/D/YYYY. The date format is specified in the SET
DateFormat statement at the top of the data load script.

Add this example script to your app and run it.

Load *,

Num(Date#(StringDate)) as Date;

LOAD * INLINE [

StringDate

8/7/97

8/6/1997

]

If you create a table with StringDate and Date as dimensions, the results are as follows:

Script syntax and chart functions - Qlik Sense, May 2024 1267

8 Script and chart functions

StringDate Date

8/7/97 35649

8/6/1997 35648

Results

Interval#
Interval#() evaluates a text expression as a time interval in the format set in the
operating system, by default, or in the format specified in the second argument, if
supplied.

Syntax:
Interval#(text[, format])

Return data type: dual

Arguments:

Argument Description

text The text string to be evaluated.

format String describing the expected input format to use when converting the string to
a numeric interval.

If omitted, the short date format, time format, and decimal separator set in the
operating system are used.

Arguments

The interval# function converts a text time interval to a numeric equivalent.

Examples and results:
The examples below assume the following operating system settings:

l Short date format: YY-MM-DD
l Time format: M/D/YY
l Number decimal separator: .

Example Result

Interval#(A, 'D hh:mm')

where A='1 09:00'
1.375

Results

Script syntax and chart functions - Qlik Sense, May 2024 1268

8 Script and chart functions

Money#
Money#() converts a text string to a money value, in the format set in the load script or
the operating system, unless a format string is supplied. Custom decimal and thousand
separator symbols are optional parameters.

Syntax:
Money#(text[, format[, dec_sep [, thou_sep]]])

Return data type: dual

Arguments:

Argument Description

text The text string to be evaluated.

format String describing the expected input format to use when converting the string to
a numeric interval.

If omitted, the money format set in the operating system is used.

dec_sep String specifying the decimal number separator. If omitted, the
MoneyDecimalSep value set in the data load script is used.

thou_sep String specifying the thousands number separator. If omitted, the
MoneyThousandSep value set in the data load script is used.

Arguments

The money# function generally behaves just like the num# function but takes its default values for
decimal and thousand separator from the script variables for money format or the system settings
for currency.

Examples and results:
The examples below assume the two following operating system settings:

l Money format default setting 1: kr # ##0,00
l Money format default setting 2: $ #,##0.00

Money#(A , '# ##0,00 kr')

where A=35 648,37 kr

Results Setting 1 Setting 2

String 35 648.37 kr 35 648.37 kr

Number 35648.37 3564837

Results

Script syntax and chart functions - Qlik Sense, May 2024 1269

8 Script and chart functions

Money#(A, ' $#', '.', ',')

where A= $35,648.37

Results Setting 1 Setting 2

String $35,648.37 $35,648.37

Number 35648.37 35648.37

Results

Num#
Num#() interprets a text string as a numerical value, that is it converts the input string
to a number using the format specified in the second parameter. If the second
parameter is omitted, it uses the decimal and thousand separators set in the data load
script. Custom decimal and thousand separator symbols are optional parameters.

Syntax:
Num#(text[, format[, dec_sep [, thou_sep]]])

Return data type: dual

The Num#() function returns a dual value with both the string and the numeric value. The function
takes the textual representation of the input expression and generates a number. It does not
change the format of the number: the output is formatted in the same way as the input.

Arguments:

Argument Description

text The text string to be evaluated.

format String specifying the number format used in the first parameter. If omitted, the
decimal and thousand separators that are set in the data load script are used.

dec_sep String specifying the decimal number separator. If omitted, the value of the
variable DecimalSep that is set in the data load script is used.

thou_sep String specifying the thousands number separator. If omitted, the value of the
variable ThousandSep that is set in the data load script is used.

Arguments

Examples and results:
The following table shows the result of Num#(A, '#', '.' , ',') for different values of A.

A String representation Numeric value (here displayed with decimal point)

35,648.31 35,648.31 35648.31

Results

Script syntax and chart functions - Qlik Sense, May 2024 1270

8 Script and chart functions

A String representation Numeric value (here displayed with decimal point)

35 648.312 35 648.312 35648.312

35.648,3123 35.648,3123 -

35 648,31234 35 648,31234 -

Text
Text() forces the expression to be treated as text, even if a numeric interpretation is possible.

Syntax:
Text (expr)

Return data type: dual

Example:

Text(A)

where A=1234

String Number

1234 -

Results

Example:

Text(pi())

String Number

3.1415926535898 -

Results

Time#
Time#() evaluates an expression as a time value, in the time format set in the data load
script or the operating system, unless a format string is supplied..

Syntax:
time#(text[, format])

Script syntax and chart functions - Qlik Sense, May 2024 1271

8 Script and chart functions

Return data type: dual

Arguments:

Argument Description

text The text string to be evaluated.

format String describing the format of the text string to be evaluated. If omitted, the
short date format, time format, and decimal separator set in the operating system
is used.

Arguments

Example:

l Time format default setting 1: hh:mm:ss
l Time format default setting 2: hh.mm.ss

time#(A)

where A=09:00:00

Results Setting 1 Setting 2

String: 09:00:00 09:00:00

Number: 0.375 -

Results

Example:

l Time format default setting 1: hh:mm:ss
l Time format default setting 2: hh.mm.ss

time#(A, 'hh.mm')

where A=09.00

Results Setting 1 Setting 2

String: 09.00 09.00

Number: 0.375 0.375

Results

Timestamp#
Timestamp#() evaluates an expression as a date and time value, in the timestamp
format set in the data load script or the operating system, unless a format string is
supplied.

Script syntax and chart functions - Qlik Sense, May 2024 1272

8 Script and chart functions

Syntax:
timestamp#(text[, format])

Return data type: dual

Arguments:

Argument Description

text The text string to be evaluated.

format String describing the format of the text string to be evaluated. If omitted, the
short date format, time format, and decimal separator set in the operating system
is used. ISO 8601 is supported for timestamps.

Arguments

Example:

The following example uses the date format M/D/YYYY. The date format is specified in the SET
DateFormat statement at the top of the data load script

Add this example script to your app and run it.

Load *,

Timestamp(Timestamp#(String)) as TS;

LOAD * INLINE [

String

2015-09-15T12:13:14

1952-10-16T13:14:00+0200

1109-03-01T14:15

];

If you create a table with String and TS as dimensions, the results are as follows:

String TS

2015-09-15T12:13:14 9/15/2015 12:13:14 PM

1952-10-16T13:14:00+0200 10/16/1952 11:14:00 AM

1109-03-01T14:15 3/1/1109 2:15:00 PM

Results

8.16 Inter-record functions
Inter-record functions are used:

l In the data load script, when a value from previously loaded records of data is needed for the
evaluation of the current record.

l In a chart expression, when another value from the data set of a visualization is needed.

Script syntax and chart functions - Qlik Sense, May 2024 1273

8 Script and chart functions

Sorting on y-values in charts or sorting by expression columns in tables is not allowed
when an inter-record chart function is used in any of the chart's expressions. These sort
alternatives are therefore automatically disabled. When you use an inter-record chart
function in a visualization or table, the sorting of the visualization will revert back to the
sorted input to the inter-record function. This limitation does not apply to the equivalent
script function, if there is one.

Self-referencing expression definitions can only reliably be made in tables with fewer
than 100 rows, but this may vary depending on the hardware that the Qlik engine is
running on.

Row functions
These functions can only be used in chart expressions.
Above
Above() evaluates an expression at a row above the current row within a column segment in a
table. The row for which it is calculated depends on the value of offset, if present, the default being
the row directly above. For charts other than tables, Above() evaluates for the row above the
current row in the chart's straight table equivalent.

Above - chart function([TOTAL [<fld{,fld}>]] expr [, offset [,count]])

Below
Below() evaluates an expression at a row below the current row within a column segment in a table.
The row for which it is calculated depends on the value of offset, if present, the default being the
row directly below. For charts other than tables, Below() evaluates for the row below the current
column in the chart's straight table equivalent.

Below - chart function([TOTAL[<fld{,fld}>]] expression [, offset [,count]])

Bottom
Bottom() evaluates an expression at the last (bottom) row of a column segment in a table. The row
for which it is calculated depends on the value of offset, if present, the default being the bottom
row. For charts other than tables, the evaluation is made on the last row of the current column in the
chart's straight table equivalent.

Bottom - chart function([TOTAL[<fld{,fld}>]] expr [, offset [,count]])

Top
Top() evaluates an expression at the first (top) row of a column segment in a table. The row for
which it is calculated depends on the value of offset, if present, the default being the top row. For
charts other than tables, theTop() evaluation is made on the first row of the current column in the
chart's straight table equivalent.

Top - chart function([TOTAL [<fld{,fld}>]] expr [, offset [,count]])

Script syntax and chart functions - Qlik Sense, May 2024 1274

8 Script and chart functions

NoOfRows
NoOfRows() returns the number of rows in the current column segment in a table. For bitmap
charts, NoOfRows() returns the number of rows in the chart's straight table equivalent.

NoOfRows - chart function([TOTAL])

Column functions
These functions can only be used in chart expressions.
Column
Column() returns the value found in the column corresponding to ColumnNo in a straight table,
disregarding dimensions. For example Column(2) returns the value of the second measure column.

Column - chart function(ColumnNo)

Dimensionality
Dimensionality() returns the number of dimensions for the current row. In the case of pivot tables,
the function returns the total number of dimension columns that have non-aggregation content,
that is, do not contain partial sums or collapsed aggregates.

Dimensionality - chart function ()

Secondarydimensionality
SecondaryDimensionality() returns the number of dimension pivot table rows that have non-
aggregation content, that is, do not contain partial sums or collapsed aggregates. This function is
the equivalent of the dimensionality() function for horizontal pivot table dimensions.

SecondaryDimensionality - chart function ()

Field functions
FieldIndex
FieldIndex() returns the position of the field value value in the field field_name (by load order).

FieldIndex(field_name , value)

FieldValue
FieldValue() returns the value found in position elem_no of the field field_name (by load order).

FieldValue(field_name , elem_no)

FieldValueCount
FieldValueCount() is an integer function that returns the number of distinct values in a field.

FieldValueCount(field_name)

Pivot table functions
These functions can only be used in chart expressions.

Script syntax and chart functions - Qlik Sense, May 2024 1275

8 Script and chart functions

After
After() returns the value of an expression evaluated with a pivot table's dimension values as they
appear in the column after the current column within a row segment in the pivot table.

After - chart function([TOTAL] expression [, offset [,n]])

Before
Before() returns the value of an expression evaluated with a pivot table's dimension values as they
appear in the column before the current column within a row segment in the pivot table.

Before - chart function([TOTAL] expression [, offset [,n]])

First
First() returns the value of an expression evaluated with a pivot table's dimension values as they
appear in the first column of the current row segment in the pivot table. This function returns NULL
in all chart types except pivot tables.

First - chart function([TOTAL] expression [, offset [,n]])

Last
Last() returns the value of an expression evaluated with a pivot table's dimension values as they
appear in the last column of the current row segment in the pivot table. This function returns NULL
in all chart types except pivot tables.

Last - chart function([TOTAL] expression [, offset [,n]])

ColumnNo
ColumnNo() returns the number of the current column within the current row segment in a pivot
table. The first column is number 1.

ColumnNo - chart function([TOTAL])

NoOfColumns
NoOfColumns() returns the number of columns in the current row segment in a pivot table.

NoOfColumns - chart function([TOTAL])

Inter-record functions in the data load script
Exists
Exists() determines whether a specific field value has already been loaded into the field in the data
load script. The function returns TRUE or FALSE, so can be used in the where clause of a
LOAD statement or an IF statement.

Exists (field_name [, expr])

LookUp
Lookup() looks into a table that is already loaded and returns the value of field_name
corresponding to the first occurrence of the value match_field_value in the field match_field_
name. The table can be the current table or another table previously loaded.

Script syntax and chart functions - Qlik Sense, May 2024 1276

8 Script and chart functions

LookUp (field_name, match_field_name, match_field_value [, table_name])

Peek
Peek() returns the value of a field in a table for a row that has already been loaded. The row number
can be specified, as can the table. If no row number is specified, the last previously loaded record
will be used.

Peek (field_name[, row_no[, table_name]])

Previous
Previous() finds the value of the expr expression using data from the previous input record that has
not been discarded because of a where clause. In the first record of an internal table, the function
will return NULL.

Previous (page 1313)(expr)

See also:
p Range functions (page 1334)

Above - chart function
Above() evaluates an expression at a row above the current row within a column segment in a
table. The row for which it is calculated depends on the value of offset, if present, the default being
the row directly above. For charts other than tables, Above() evaluates for the row above the
current row in the chart's straight table equivalent.

Syntax:
Above([TOTAL] expr [, offset [,count]])

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

offset Specifying an offsetn, greater than 0, moves the evaluation of the expression n
rows further up from the current row.

Specifying an offset of 0 will evaluate the expression on the current row.

Specifying a negative offset number makes the Above function work like the
Below function with the corresponding positive offset number.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1277

8 Script and chart functions

Argument Description

count By specifying a third argument count greater than 1, the function will return a
range of count values, one for each of count table rows counting upwards from
the original cell.

In this form, the function can be used as an argument to any of the special range
functions. Range functions (page 1334)

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the
current column segment is always equal to the entire column.

On the first row of a column segment, a NULL value is returned, as there is no row above it.

A column segment is defined as a consecutive subset of cells having the same values for
the dimensions in the current sort order. Inter-record chart functions are computed in
the column segment excluding the right-most dimension in the equivalent straight table
chart. If there is only one dimension in the chart, or if the TOTAL qualifier is specified, the
expression evaluates across full table.

If the table or table equivalent has multiple vertical dimensions, the current column
segment will include only rows with the same values as the current row in all dimension
columns, except for the column showing the last dimension in the inter-field sort order.

Limitations:

l Recursive calls will return NULL.
l Sorting on y-values in charts or sorting by expression columns in tables is not allowed when

this chart function is used in any of the chart's expressions. These sort alternatives are
therefore automatically disabled. When you use this chart function in a visualization or table,
the sorting of the visualization will revert back to the sorted input to this function.

Examples and results:

Example 1:

Table visualization for Example 1

Script syntax and chart functions - Qlik Sense, May 2024 1278

8 Script and chart functions

In the screenshot of the table shown in this example, the table visualization is created from the
dimension Customer and the measures Sum(Sales) and Above(Sum(Sales)).

The column Above(Sum(Sales)) returns NULL for the Customer row containing Astrida, because
there is no row above it. The result for the row Betacab shows the value of Sum(Sales) for Astrida,
the result for Canutility shows the value for Sum(Sales) for Betacab, and so on.

For the column labeled Sum(Sales)+Above(Sum(Sales)), the row for Betacab shows the result of
the addition of the Sum(Sales) values for the rows Betacab + Astrida (539+587). The result for the
row Canutility shows the result of the addition of Sum(Sales) values for Canutility + Betacab
(683+539).

The measure labeled Above offset 3 created using the expression Sum(Sales)+Above(Sum(Sales), 3)

has the argument offset, set to 3, and has the effect of taking the value in the row three rows above
the current row. It adds the Sum(Sales) value for the current Customer to the value for the
Customerthree rows above. The values returned for the first three Customer rows are null.

The table also shows more complex measures: one created from Sum(Sales)+Above(Sum(Sales)) and
one labeled Higher?, which is created from IF(Sum(Sales)>Above(Sum(Sales)), 'Higher').

This function can also be used in charts other than tables, for example bar charts.

For other chart types, convert the chart to the straight table equivalent so you can easily
interpret which row the function relates to.

Example 2:

In the screenshots of tables shown in this example, more dimensions have been added to the
visualizations: Month and Product. For charts with more than one dimension, the results of
expressions containing the Above, Below, Top, and Bottom functions depend on the order in which
the column dimensions are sorted by Qlik Sense. Qlik Sense evaluates the functions based on the
column segments that result from the dimension that is sorted last. The column sort order is
controlled in the properties panel under Sorting and is not necessarily the order in which the
columns appear in a table.

In the following screenshot of table visualization for Example 2, the last-sorted dimension is Month,
so the Above function evaluates based on months. There is a series of results for each Product
value for each month (Jan to Aug) - a column segment. This is followed by a series for the next
column segment: for each Month for the next Product. There will be a column segment for each
Customer value for each Product.

Table visualization for Example 2

Script syntax and chart functions - Qlik Sense, May 2024 1279

8 Script and chart functions

Example 3:

In the screenshot of table visualization for Example 3, the last sorted dimension is Product. This is
done by moving the dimension Product to position 3 in the Sorting tab in the properties panel. The
Above function is evaluated for each Product, and because there are only two products, AA and
BB, there is only one non-null result in each series. In row BB for the month Jan, the value for Above
(Sum(Sales)), is 46. For row AA, the value is null. The value in each row AA for any month will
always be null, as there is no value of Product above AA. The second series is evaluated on AA and
BB for the month Feb, for the Customer value, Astrida. When all the months have been evaluated
for Astrida, the sequence is repeated for the second CustomerBetacab, and so on.

Table visualization for Example 3

Script syntax and chart functions - Qlik Sense, May 2024 1280

8 Script and chart functions

Example 4: Result

The Above function can be used as input
to the range functions. For example:
RangeAvg (Above(Sum(Sales),1,3)).

In the arguments for the Above() function, offset is
set to 1 and count is set to 3. The function finds the
results of the expressionSum(Sales) on the three
rows immediately above the current row in the
column segment (where there is a row). These three
values are used as input to the RangeAvg() function,
which finds the average of the values in the
supplied range of numbers.

A table with Customer as dimension gives the
following results for the RangeAvg() expression.

Astrida

Betacab

Canutility

Divadip:

-

587

563

603

Example 4

Data used in examples:

Monthnames:

LOAD *, Dual(MonthText,MonthNumber) as Month INLINE [

MonthText, MonthNumber

Jan, 1

Feb, 2

Mar, 3

Apr, 4

May, 5

Jun, 6

Jul, 7

Aug, 8

Sep, 9

Oct, 10

Nov, 11

Dec, 12

];

Sales2013:

Crosstable (MonthText, Sales) LOAD * inline [

Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec

Astrida|46|60|70|13|78|20|45|65|78|12|78|22

Betacab|65|56|22|79|12|56|45|24|32|78|55|15

Canutility|77|68|34|91|24|68|57|36|44|90|67|27

Divadip|57|36|44|90|67|27|57|68|47|90|80|94

] (delimiter is '|');

Script syntax and chart functions - Qlik Sense, May 2024 1281

8 Script and chart functions

See also:
p Below - chart function (page 1282)
p Bottom - chart function (page 1285)
p Top - chart function (page 1315)
p RangeAvg (page 1337)

Below - chart function
Below() evaluates an expression at a row below the current row within a column segment in a table.
The row for which it is calculated depends on the value of offset, if present, the default being the
row directly below. For charts other than tables, Below() evaluates for the row below the current
column in the chart's straight table equivalent.

Syntax:
Below([TOTAL] expr [, offset [,count]])

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

offset Specifying an offsetn, greater than 1 moves the evaluation of the expression n
rows further down from the current row.

Specifying an offset of 0 will evaluate the expression on the current row.

Specifying a negative offset number makes the Below function work like the
Above function with the corresponding positive offset number.

count By specifying a third parameter count greater than 1, the function will return a
range of count values, one for each of count table rows counting downwards
from the original cell. In this form, the function can be used as an argument to any
of the special range functions. Range functions (page 1334)

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the
current column segment is always equal to the entire column.

Arguments

On the last row of a column segment, a NULL value is returned, as there is no row below it.

Script syntax and chart functions - Qlik Sense, May 2024 1282

8 Script and chart functions

A column segment is defined as a consecutive subset of cells having the same values for
the dimensions in the current sort order. Inter-record chart functions are computed in
the column segment excluding the right-most dimension in the equivalent straight table
chart. If there is only one dimension in the chart, or if the TOTAL qualifier is specified, the
expression evaluates across full table.

If the table or table equivalent has multiple vertical dimensions, the current column
segment will include only rows with the same values as the current row in all dimension
columns, except for the column showing the last dimension in the inter-field sort order.

Limitations:

l Recursive calls will return NULL.
l Sorting on y-values in charts or sorting by expression columns in tables is not allowed when

this chart function is used in any of the chart's expressions. These sort alternatives are
therefore automatically disabled. When you use this chart function in a visualization or table,
the sorting of the visualization will revert back to the sorted input to this function.

Examples and results:

Example 1:

Table visualization for Example 1

In the table shown in screenshot for Example 1, the table visualization is created from the dimension
Customer and the measures Sum(Sales) and Below(Sum(Sales)).

The column Below(Sum(Sales)) returns NULL for the Customer row containing Divadip, because
there is no row below it. The result for the row Canutility shows the value of Sum(Sales) for
Divadip, the result for Betacab shows the value for Sum(Sales) for Canutility, and so on.

The table also shows more complex measures, which you can see in the columns labeled: Sum
(Sales)+Below(Sum(Sales)), Below +Offset 3, and Higher?. These expressions work as described in
the following paragraphs.

Script syntax and chart functions - Qlik Sense, May 2024 1283

8 Script and chart functions

For the column labeled Sum(Sales)+Below(Sum(Sales)), the row for Astrida shows the result of
the addition of the Sum(Sales) values for the rows Betacab + Astrida (539+587). The result for the
row Betacab shows the result of the addition of Sum(Sales) values for Canutility + Betacab
(539+683).

The measure labeled Below +Offset 3 created using the expression Sum(Sales)+Below(Sum(Sales),

3) has the argument offset, set to 3, and has the effect of taking the value in the row three rows
below the current row. It adds the Sum(Sales) value for the current Customer to the value from the
Customer three rows below. The values for the lowest three Customer rows are null.

The measure labeled Higher? is created from the expression:IF(Sum(Sales)>Below(Sum(Sales)),
'Higher'). This compares the values of the current row in the measure Sum(Sales) with the row
below it. If the current row is a greater value, the text "Higher" is output.

This function can also be used in charts other than tables, for example bar charts.

For other chart types, convert the chart to the straight table equivalent so you can easily
interpret which row the function relates to.

For charts with more than one dimension, the results of expressions containing the Above, Below,
Top, and Bottom functions depend on the order in which the column dimensions are sorted by Qlik
Sense. Qlik Sense evaluates the functions based on the column segments that result from the
dimension that is sorted last. The column sort order is controlled in the properties panel under
Sorting and is not necessarily the order in which the columns appear in a table.Please refer to
Example: 2 in the Above function for further details.

Example 2: Result

The Below function can be used as input to the
range functions. For example: RangeAvg (Below

(Sum(Sales),1,3)).

In the arguments for the Below() function,
offset is set to 1 and count is set to 3. The
function finds the results of the expressionSum
(Sales) on the three rows immediately below
the current row in the column segment (where
there is a row). These three values are used as
input to the RangeAvg() function, which finds
the average of the values in the supplied range
of numbers.

A table with Customer as dimension gives the
following results for the RangeAvg()
expression.

Example 2

Script syntax and chart functions - Qlik Sense, May 2024 1284

8 Script and chart functions

Example 2: Result

Astrida

Betacab

Canutility

Divadip:

659.67

720

757

-

Data used in examples:

Monthnames:

LOAD *, Dual(MonthText,MonthNumber) as Month INLINE [

MonthText, MonthNumber

Jan, 1

Feb, 2

Mar, 3

Apr, 4

May, 5

Jun, 6

Jul, 7

Aug, 8

Sep, 9

Oct, 10

Nov, 11

Dec, 12

];

Sales2013:

Crosstable (MonthText, Sales) LOAD * inline [

Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec

Astrida|46|60|70|13|78|20|45|65|78|12|78|22

Betacab|65|56|22|79|12|56|45|24|32|78|55|15

Canutility|77|68|34|91|24|68|57|36|44|90|67|27

Divadip|57|36|44|90|67|27|57|68|47|90|80|94

] (delimiter is '|');

See also:
p Above - chart function (page 1277)
p Bottom - chart function (page 1285)
p Top - chart function (page 1315)
p RangeAvg (page 1337)

Bottom - chart function
Bottom() evaluates an expression at the last (bottom) row of a column segment in a table. The row
for which it is calculated depends on the value of offset, if present, the default being the bottom
row. For charts other than tables, the evaluation is made on the last row of the current column in the
chart's straight table equivalent.

Script syntax and chart functions - Qlik Sense, May 2024 1285

8 Script and chart functions

Syntax:
Bottom([TOTAL] expr [, offset [,count]])

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

offset Specifying an offsetn greater than 1 moves the evaluation of the expression up n
rows above the bottom row.

Specifying a negative offset number makes the Bottom function work like the
Top function with the corresponding positive offset number.

count By specifying a third parameter count greater than 1, the function will return not
one but a range of count values, one for each of the last count rows of the
current column segment. In this form, the function can be used as an argument to
any of the special range functions. Range functions (page 1334)

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the
current column segment is always equal to the entire column.

Arguments

A column segment is defined as a consecutive subset of cells having the same values for
the dimensions in the current sort order. Inter-record chart functions are computed in
the column segment excluding the right-most dimension in the equivalent straight table
chart. If there is only one dimension in the chart, or if the TOTAL qualifier is specified, the
expression evaluates across full table.

If the table or table equivalent has multiple vertical dimensions, the current column
segment will include only rows with the same values as the current row in all dimension
columns, except for the column showing the last dimension in the inter-field sort order.

Limitations:

l Recursive calls will return NULL.
l Sorting on y-values in charts or sorting by expression columns in tables is not allowed when

this chart function is used in any of the chart's expressions. These sort alternatives are
therefore automatically disabled. When you use this chart function in a visualization or table,
the sorting of the visualization will revert back to the sorted input to this function.

Script syntax and chart functions - Qlik Sense, May 2024 1286

8 Script and chart functions

Examples and results:

Table visualization for Example 1

In the screenshot of the table shown in this example, the table visualization is created from the
dimension Customer and the measures Sum(Sales) and Bottom(Sum(Sales)).

The column Bottom(Sum(Sales)) returns 757 for all rows because this is the value of the bottom
row: Divadip.

The table also shows more complex measures: one created from Sum(Sales)+Bottom(Sum(Sales))

and one labeled Bottom offset 3, which is created using the expression Sum(Sales)+Bottom(Sum

(Sales), 3) and has the argument offset set to 3. It adds the Sum(Sales) value for the current row
to the value from the third row from the bottom row, that is, the current row plus the value for
Betacab.

Example: 2

In the screenshots of tables shown in this example, more dimensions have been added to the
visualizations: Month and Product. For charts with more than one dimension, the results of
expressions containing the Above, Below, Top, and Bottom functions depend on the order in which
the column dimensions are sorted by Qlik Sense. Qlik Sense evaluates the functions based on the
column segments that result from the dimension that is sorted last. The column sort order is
controlled in the properties panel under Sorting and is not necessarily the order in which the
columns appear in a table.

In the first table, the expression is evaluated based on Month, and in the second table it is
evaluated based on Product. The measure End value contains the expression Bottom(Sum(Sales)).
The bottom row for Month is Dec, and the value for Dec both the values of Product shown in the
screenshot is 22. (Some rows have been edited out of the screenshot to save space.)

First table for Example 2. The value of Bottom for the End value measure based on Month (Dec).

Script syntax and chart functions - Qlik Sense, May 2024 1287

8 Script and chart functions

Second table for Example 2. The value of Bottom for the End value measure based on Product (BB for
Astrida).

Please refer to Example: 2 in the Above function for further details.

Script syntax and chart functions - Qlik Sense, May 2024 1288

8 Script and chart functions

Example: 3 Result

The Bottom function can be used as input to
the range functions. For example: RangeAvg
(Bottom(Sum(Sales),1,3)).

In the arguments for the Bottom() function,
offset is set to 1 and count is set to 3. The
function finds the results of the expressionSum
(Sales) on the three rows starting with the row
above the bottom row in the column segment
(because offset=1), and the two rows above
that (where there is a row). These three values
are used as input to the RangeAvg() function,
which finds the average of the values in the
supplied range of numbers.

A table with Customer as dimension gives the
following results for the RangeAvg()
expression.

Astrida

Betacab

Canutility

Divadip:

659.67

659.67

659.67

659.67

Example 3

Monthnames:

LOAD *, Dual(MonthText,MonthNumber) as Month INLINE [

MonthText, MonthNumber

Jan, 1

Feb, 2

Mar, 3

Apr, 4

May, 5

Jun, 6

Jul, 7

Aug, 8

Sep, 9

Oct, 10

Nov, 11

Dec, 12

];

Sales2013:

Crosstable (MonthText, Sales) LOAD * inline [

Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec

Astrida|46|60|70|13|78|20|45|65|78|12|78|22

Betacab|65|56|22|79|12|56|45|24|32|78|55|15

Canutility|77|68|34|91|24|68|57|36|44|90|67|27

Divadip|57|36|44|90|67|27|57|68|47|90|80|94

] (delimiter is '|');

Script syntax and chart functions - Qlik Sense, May 2024 1289

8 Script and chart functions

See also:
p Top - chart function (page 1315)

Column - chart function
Column() returns the value found in the column corresponding to ColumnNo in a straight table,
disregarding dimensions. For example Column(2) returns the value of the second measure column.

Syntax:
Column(ColumnNo)

Return data type: dual

Arguments:

Argument Description

ColumnNo Column number of a column in the table containing a measure.

The Column() function disregards dimension columns.

Arguments

Limitations:

l Recursive calls will return NULL.
l If ColumnNo references a column for which there is no measure, a NULL value is returned.
l Sorting on y-values in charts or sorting by expression columns in tables is not allowed when

this chart function is used in any of the chart's expressions. These sort alternatives are
therefore automatically disabled. When you use this chart function in a visualization or table,
the sorting of the visualization will revert back to the sorted input to this function.

Examples and results:

Example: Percentage total sales

Customer Product UnitPrice UnitSales
Order
Value

Total Sales
Value

% Sales

A AA 15 10 150 505 29.70

A AA 16 4 64 505 12.67

A BB 9 9 81 505 16.04

Script syntax and chart functions - Qlik Sense, May 2024 1290

8 Script and chart functions

Customer Product UnitPrice UnitSales
Order
Value

Total Sales
Value

% Sales

B BB 10 5 50 505 9.90

B CC 20 2 40 505 7.92

B DD 25 - 0 505 0.00

C AA 15 8 120 505 23.76

C CC 19 - 0 505 0.00

Example: Percentage of sales for selected customer

Customer Product UnitPrice UnitSales
Order
Value

Total Sales
Value

% Sales

A AA 15 10 150 295 50.85

A AA 16 4 64 295 21.69

A BB 9 9 81 295 27.46

Examples Results

Order Value is added to the table as
a measure with the expression: Sum
(UnitPrice*UnitSales).

Total Sales Value is added as a
measure with the expression: Sum
(TOTAL UnitPrice*UnitSales)

% Sales is added as a measure with
the expression 100*Column(1)/Column

(2)

The result of Column(1) is taken from the column Order
Value, because this is the first measure column.

The result of Column(2) is taken from Total Sales Value,
because this is the second measure column.

See the results in the column % Sales in the example
Percentage total sales (page 1290).

Make the selection Customer A. The selection changes the Total Sales Value, and
therefore the %Sales. See the example Percentage of
sales for selected customer (page 1291).

Examples and results

Data used in examples:

ProductData:

LOAD * inline [

Customer|Product|UnitSales|UnitPrice

Astrida|AA|4|16

Astrida|AA|10|15

Astrida|BB|9|9

Betacab|BB|5|10

Script syntax and chart functions - Qlik Sense, May 2024 1291

8 Script and chart functions

Betacab|CC|2|20

Betacab|DD||25

Canutility|AA|8|15

Canutility|CC||19

] (delimiter is '|');

Dimensionality - chart function
Dimensionality() returns the number of dimensions for the current row. In the case of pivot tables,
the function returns the total number of dimension columns that have non-aggregation content,
that is, do not contain partial sums or collapsed aggregates.

Syntax:
Dimensionality ()

Return data type: integer

Limitations:

This function is only available in charts. For all chart types, except pivot table, it will return the
number of dimensions in all rows except the total, which will be 0.

Sorting on y-values in charts or sorting by expression columns in tables is not allowed when this
chart function is used in any of the chart's expressions. These sort alternatives are therefore
automatically disabled. When you use this chart function in a visualization or table, the sorting of
the visualization will revert back to the sorted input to this function.

Example: Chart expression using Dimensionality
Example: Chart expression
The Dimensionality() function can be used with a pivot table as a chart expression where you want
to apply different cell formatting depending on the number of dimensions in a row that has non-
aggregated data. This example uses the Dimensionality() function to apply a background color to
table cells that match a given condition.

Load script
Load the following data as an inline load in the data load editor to create the chart expression
example below.

ProductSales:

Load * inline [

Country,Product,Sales,Budget

Sweden,AA,100000,50000

Germany,AA,125000,175000

Canada,AA,105000,98000

Norway,AA,74850,68500

Ireland,AA,49000,48000

Sweden,BB,98000,99000

Germany,BB,115000,175000

Norway,BB,71850,68500

Script syntax and chart functions - Qlik Sense, May 2024 1292

8 Script and chart functions

Ireland,BB,31000,48000

] (delimiter is ',');

Chart expression
Create a pivot table visualization in a Qlik Sense sheet with Country and Product as dimensions.
Add Sum(Sales), Sum(Budget), and Dimensionality() as measures.

In the Properties panel, enter the following expression as the Background color expression for the
Sum(Sales) measure.

If(Dimensionality()=1 and Sum(Sales)<Sum(Budget),RGB(255,156,156),

If(Dimensionality()=2 and Sum(Sales)<Sum(Budget),RGB(178,29,29)

))

Result:

Explanation
The expression If(Dimensionality()=1 and Sum(Sales)<Sum(Budget),RGB(255,156,156), If

(Dimensionality()=2 and Sum(Sales)<Sum(Budget),RGB(178,29,29))) contains conditional statements
that check the dimensionality value and the Sum(Sales) and Sum(Budget) for each product. If the
conditions are met, a background color is applied to the Sum(Sales) value.

Exists
Exists() determines whether a specific field value has already been loaded into the
field in the data load script. The function returns TRUE or FALSE, so can be used in the
where clause of a LOAD statement or an IF statement.

Script syntax and chart functions - Qlik Sense, May 2024 1293

8 Script and chart functions

You can also use Not Exists() to determine if a field value has not been loaded, but
caution is recommended if you use Not Exists() in a where clause. The Exists() function
tests both previously loaded tables and previously loaded values in the current table. So,
only the first occurrence will be loaded. When the second occurrence is encountered,
the value is already loaded. See the examples for more information.

Syntax:
Exists(field_name [, expr])

Return data type: Boolean

Arguments:

Argument Description

field_name The name of the field where you want to search for a value. You can use an
explicit field name without quotes.

The field must already be loaded by the script. That means, you cannot refer to a
field that is loaded in a clause further down in the script.

expr The value that you want to check if it exists. You can use an explicit value or an
expression that refers to one or several fields in the current load statement.

You cannot refer to fields that are not included in the current load
statement.

This argument is optional. If you omit it, the function will check if the value of
field_name in the current record already exists.

Arguments

Examples and results:

Example 1

Exists (Employee)

Returns -1 (True) if the value of the field Employee in the current record already exists in any
previously read record containing that field.

The statements Exists (Employee, Employee) and Exists (Employee) are equivalent.

Example 2

Exists(Employee, 'Bill')

Returns -1 (True) if the field value 'Bill' is found in the current content of the field Employee.

Script syntax and chart functions - Qlik Sense, May 2024 1294

8 Script and chart functions

Example 3

Employees:

LOAD * inline [

Employee|ID|Salary

Bill|001|20000

John|002|30000

Steve|003|35000

] (delimiter is '|');

Citizens:

Load * inline [

Employee|Address

Bill|New York

Mary|London

Steve|Chicago

Lucy|Madrid

Lucy|Paris

John|Miami

] (delimiter is '|') where Exists (Employee);

Drop Tables Employees;

This results in a table that you can use in a table visualization using the dimensions Employee and
Address.

The where clause, where Exists (Employee), means only the names from the table Citizens that are
also in Employees are loaded into the new table. The Drop statement removes the table Employees
to avoid confusion.

Employee Address

Bill New York

John Miami

Steve Chicago

Results

Example 4

Employees:

Load * inline [

Employee|ID|Salary

Bill|001|20000

John|002|30000

Steve|003|35000

] (delimiter is '|');

Citizens:

Load * inline [

Script syntax and chart functions - Qlik Sense, May 2024 1295

8 Script and chart functions

Employee|Address

Bill|New York

Mary|London

Steve|Chicago

Lucy|Madrid

Lucy|Paris

John|Miami

] (delimiter is '|') where not Exists (Employee);

Drop Tables Employees;

The where clause includes not: where not Exists (Employee).

This means that only the names from the table Citizens that are not in Employees are loaded into
the new table.

Note that there are two values for Lucy in the Citizens table, but only one is included in the result
table. When you load the first row with the value Lucy, it is included in the Employee field. Hence,
when the second line is checked, the value already exists.

Employee Address

Mary London

Lucy Madrid

Results

Example 5

This example shows how to load all values.

Employees:

Load Employee As Name;

LOAD * inline [

Employee|ID|Salary

Bill|001|20000

John|002|30000

Steve|003|35000

] (delimiter is '|');

Citizens:

Load * inline [

Employee|Address

Bill|New York

Mary|London

Steve|Chicago

Lucy|Madrid

Lucy|Paris

John|Miami

] (delimiter is '|') where not Exists (Name, Employee);

Drop Tables Employees;

Script syntax and chart functions - Qlik Sense, May 2024 1296

8 Script and chart functions

To be able to get all values for Lucy, two things were changed:

l A preceding load to the Employees table was inserted where Employee was renamed to
Name.
Load Employee As Name;

l The Where condition in Citizens was changed to:
not Exists (Name, Employee).

This creates fields for Name and Employee. When the second row with Lucy is checked, it still does
not exist in Name.

Employee Address

Mary London

Lucy Madrid

Lucy Paris

Results

FieldIndex
FieldIndex() returns the position of the field value value in the field field_name (by load order).

Syntax:
FieldIndex(field_name , value)

Return data type: integer

Arguments:

Argument Description

field_name Name of the field for which the index is required. For example, the column in a
table. Must be given as a string value. This means that the field name must be
enclosed by single quotes.

value The value of the field field_name.

Arguments

Limitations:

l If value cannot be found among the field values of the field field_name, 0 is returned.
l Sorting on y-values in charts or sorting by expression columns in tables is not allowed when

this chart function is used in any of the chart's expressions. These sort alternatives are
therefore automatically disabled. When you use this chart function in a visualization or table,
the sorting of the visualization will revert back to the sorted input to this function. This
limitation does not apply to the equivalent script function.

Script syntax and chart functions - Qlik Sense, May 2024 1297

8 Script and chart functions

Examples and results:

The following examples use the field: First name from the tableNames.

Examples Results

Add the example data to your app
and run it.

The table Names is loaded, as in the sample data.

Chart function: In a table
containing the dimension First
name, add as a measure.

FieldIndex ('First name','John') 1, because 'John' appears first in the load order of the First
name field. Note that in a filter pane John would appear as
number 2 from the top as it's sorted alphabetically and not
as in the load order.

FieldIndex ('First

name','Peter')
4, because FieldIndex() returns only one value, that is the
first occurrence in the load order.

Script function: Given the table
Names is loaded, as in the
example data:

John1:

Load FieldIndex('First

name','John') as MyJohnPos

Resident Names;

MyJohnPos=1, because 'John' appears first in the load order of
the First name field. Note that in a filter pane John would
appear as number 2 from the top as it's sorted alphabetically
and not as in the load order.

Peter1:

Load FieldIndex('First

name','Peter') as MyPeterPos

Resident Names;

MyPeterPos=4, because FieldIndex() returns only one value,
that is the first occurrence in the load order.

Examples and results

Data used in example:

Names:

LOAD * inline [

First name|Last name|Initials|Has cellphone

John|Anderson|JA|Yes

Sue|Brown|SB|Yes

Mark|Carr|MC|No

Peter|Devonshire|PD|No

Jane|Elliot|JE|Yes

Peter|Franc|PF|Yes] (delimiter is '|');

John1:

Load FieldIndex('First name','John') as MyJohnPos

Resident Names;

Peter1:

Script syntax and chart functions - Qlik Sense, May 2024 1298

8 Script and chart functions

Load FieldIndex('First name','Peter') as MyPeterPos

Resident Names;

FieldValue
FieldValue() returns the value found in position elem_no of the field field_name (by load order).

Syntax:
FieldValue(field_name , elem_no)

Return data type: dual

Arguments:

Argument Description

field_name Name of the field for which the value is required. For example, the column in a
table. Must be given as a string value. This means that the field name must be
enclosed by single quotes.

elem_no The position (element) number of the field following the load order, that the value
is returned for. This could correspond to the row in a table, but it depends on the
order in which the elements (rows) are loaded.

Arguments

Limitations:

l If elem_no is larger than the number of field values, NULL is returned.
l Sorting on y-values in charts or sorting by expression columns in tables is not allowed when

this chart function is used in any of the chart's expressions. These sort alternatives are
therefore automatically disabled. When you use this chart function in a visualization or table,
the sorting of the visualization will revert back to the sorted input to this function. This
limitation does not apply to the equivalent script function.

Example

Load script
Load the following data as an inline load in the data load editor to create the example below.

Names:

LOAD * inline [

First name|Last name|Initials|Has cellphone

John|Anderson|JA|Yes

Sue|Brown|SB|Yes

Mark|Carr|MC |No

Peter|Devonshire|PD|No

Jane|Elliot|JE|Yes

Peter|Franc|PF|Yes] (delimiter is '|');

John1:

Script syntax and chart functions - Qlik Sense, May 2024 1299

8 Script and chart functions

Load FieldValue('First name',1) as MyPos1

Resident Names;

Peter1:

Load FieldValue('First name',5) as MyPos2

Resident Names;

Create a visualization
Create a table visualization in a Qlik Sense sheet. Add fields First name, MyPos1, and MyPos2 to
the table.

Result

First name MyPos1 MyPos2

Jane John Jane

John John Jane

Mark John Jane

Peter John Jane

Sue John Jane

Explanation
FieldValue('First name','1') results in John as the value for MyPos1 for all first names because John
appears first in the load order of the First name field. Note that in a filter pane John would appear
as number 2 from the top, after Jane, as it's sorted alphabetically and not as in the load order.

FieldValue('First name','5') results in Jane as the value for MyPos2 for all first names because Jane
appears fifth in the load order of the First name field.

FieldValueCount
FieldValueCount() is an integer function that returns the number of distinct values in a field.

A partial reload can remove values from the data, which will not be reflected in the number
returned. The returned number will correspond to all distinct values that were loaded in either the
initial reload or any subsequent partial reload.

Sorting on y-values in charts or sorting by expression columns in tables is not allowed
when this chart function is used in any of the chart's expressions. These sort alternatives
are therefore automatically disabled. When you use this chart function in a visualization
or table, the sorting of the visualization will revert back to the sorted input to this
function. This limitation does not apply to the equivalent script function.

Script syntax and chart functions - Qlik Sense, May 2024 1300

8 Script and chart functions

Syntax:
FieldValueCount(field_name)

Return data type: integer

Arguments:

Argument Description

field_name Name of the field for which the value is required. For example, the column in a
table. Must be given as a string value. This means that the field name must be
enclosed by single quotes.

Arguments

Examples and results:

The following examples use the field First name from the table Names.

Examples Results

Add the example data to your app and run it. The table Names is loaded, as in the
sample data.

Chart function: In a table containing the dimension
First name, add as a measure.

FieldValueCount('First name') 5 as Peter appears twice.

FieldValueCount('Initials') 6 as Initials only has distinct values.

Script function: Given the table Names is loaded, as in
the example data:

FieldCount1:

Load FieldValueCount('First name') as MyFieldCount1

Resident Names;

MyFieldCount1=5, because 'Peter'
appears twice.

FieldCount2:

Load FieldValueCount('Initials') as MyInitialsCount1

Resident Names;

MyFieldCount1=6, because 'Initials' only
has distinct values.

Examples and results

Data used in examples:
Names:

LOAD * inline [

First name|Last name|Initials|Has cellphone

John|Anderson|JA|Yes

Sue|Brown|SB|Yes

Mark|Carr|MC|No

Peter|Devonshire|PD|No

Jane|Elliot|JE|Yes

Peter|Franc|PF|Yes] (delimiter is '|');

FieldCount1:

Load FieldValueCount('First name') as MyFieldCount1

Script syntax and chart functions - Qlik Sense, May 2024 1301

8 Script and chart functions

Resident Names;

FieldCount2:

Load FieldValueCount('Initials') as MyInitialsCount1

Resident Names;

LookUp
Lookup() looks into a table that is already loaded and returns the value of field_name
corresponding to the first occurrence of the value match_field_value in the field
match_field_name. The table can be the current table or another table previously
loaded.

Syntax:
lookup(field_name, match_field_name, match_field_value [, table_name])

Return data type: dual

Arguments:

Argument Description

field_name Name of the field for which the return value is required. Input value must be given
as a string (for example, quoted literals).

match_field_
name

Name of the field to look up match_field_value in. Input value must be given as a
string (for example, quoted literals).

match_field_
value

Value to look up in match_field_name field.

table_name Name of the table in which to look up the value. Input value must be given as a
string (for example quoted literals).

If table_name is omitted the current table is assumed.

Arguments

Arguments without quotes refer to the current table. To refer to other tables, enclose an
argument in single quotes.

Limitations:

The order in which the search is made is the load order, unless the table is the result of complex
operations such as joins, in which case, the order is not well defined. Both field_name and match_
field_name must be fields in the same table, specified by table_name.

If no match is found, NULL is returned.

Script syntax and chart functions - Qlik Sense, May 2024 1302

8 Script and chart functions

Example

Load script
Load the following data as an inline load in the data load editor to create the example below.

ProductList:

Load * Inline [

ProductID|Product|Category|Price

1|AA|1|1

2|BB|1|3

3|CC|2|8

4|DD|3|2

] (delimiter is '|');

OrderData:

Load *, Lookup('Category', 'ProductID', ProductID, 'ProductList') as CategoryID

Inline [

InvoiceID|CustomerID|ProductID|Units

1|Astrida|1|8

1|Astrida|2|6

2|Betacab|3|10

3|Divadip|3|5

4|Divadip|4|10

] (delimiter is '|');

Drop Table ProductList;

Create a visualization
Create a table visualization in a Qlik Sense sheet. Add fields ProductID, InvoiceID, CustomerID,
Units, and CategoryID to the table.

Result

ProductID InvoiceID CustomerID Units CategoryID

1 1 Astrida 8 1

2 1 Astrida 6 1

3 2 Betacab 10 2

3 3 Divadip 5 2

4 4 Divadip 10 3

Resulting table

Explanation
The sample data uses the Lookup() function in the following form:

Lookup('Category', 'ProductID', ProductID, 'ProductList')

The ProductList table is loaded first.

Script syntax and chart functions - Qlik Sense, May 2024 1303

8 Script and chart functions

The Lookup() function is used to build the OrderData table. It specifies the third argument as
ProductID. This is the field for which the value is to be looked up in the second argument
'ProductID' in the ProductList, as denoted by the enclosing single quotes.

The function returns the value for 'Category' (in the ProductList table), loaded as CategoryID.

The drop statement deletes the ProductList table from the data model because it is not required,
which leaves the resulting OrderData table.

The Lookup() function is flexible and can access any previously loaded table. However, it
is slow compared with the Applymap() function.

See also:
p ApplyMap (page 1326)

NoOfRows - chart function
NoOfRows() returns the number of rows in the current column segment in a table. For bitmap
charts, NoOfRows() returns the number of rows in the chart's straight table equivalent.

If the table or table equivalent has multiple vertical dimensions, the current column segment will
include only rows with the same values as the current row in all dimension columns, except for the
column showing the last dimension in the inter-field sort order.

Sorting on y-values in charts or sorting by expression columns in tables is not allowed
when this chart function is used in any of the chart's expressions. These sort alternatives
are therefore automatically disabled. When you use this chart function in a visualization
or table, the sorting of the visualization will revert back to the sorted input to this
function.

Syntax:
NoOfRows([TOTAL])

Return data type: integer

Arguments:

Argument Description

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the
current column segment is always equal to the entire column.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1304

8 Script and chart functions

Example: Chart expression using NoOfRows
Example - chart expression

Load script
Load the following data as an inline load in the data load editor to create the chart expression
examples below.

Temp:

LOAD * inline [

Region|SubRegion|RowNo()|NoOfRows()

Africa|Eastern

Africa|Western

Americas|Central

Americas|Northern

Asia|Eastern

Europe|Eastern

Europe|Northern

Europe|Western

Oceania|Australia

] (delimiter is '|');

Chart expression
Create a table visualization in a Qlik Sense sheet with Region and SubRegion as dimensions. Add
RowNo(), NoOfRows(), and NoOfRows(Total) as measures.

Result

Region SubRegion RowNo() NoOfRows()
NoOfRows
(Total)

Africa Eastern 1 2 9

Africa Western 2 2 9

Americas Central 1 2 9

Americas Northern 2 2 9

Asia Eastern 1 1 9

Europe Eastern 1 3 9

Europe Northern 2 3 9

Eurrope Western 3 3 9

Oceania Australia 1 1 9

Script syntax and chart functions - Qlik Sense, May 2024 1305

8 Script and chart functions

Explanation
In this example, the sort order is by the first dimension Region. As a result, each column segment is
made up of a group of regions that has the same value, for example, Africa.

The RowNo() column shows the row numbers for each column segment, for example, there are two
rows for the Africa region. The row numbering then begins at 1 again for the next column segment,
which is Americas.

The NoOfRows() column counts the number of rows in each column segment, for example, Europe
has three rows in the column segment.

The NoOfRows(Total) column disregards the dimensions because of the TOTAL argument for
NoOfRows() and counts the rows in the table.

If the table was sorted on the second dimension, SubRegion, the column segments would be based
on that dimension so the row numbering would change for each SubRegion.

See also:
p RowNo - chart function (page 592)

Peek
Peek() returns the value of a field in a table for a row that has already been loaded. The
row number can be specified, as can the table. If no row number is specified, the last
previously loaded record will be used.

The peek() function is most often used to find the relevant boundaries in a previously loaded table,
that is, the first value or last value of a specific field. In most cases, this value is stored in a variable
for later use, for example, as a condition in a do-while loop.

Syntax:
Peek(
field_name
[, row_no[, table_name]])

Return data type: dual

Arguments:

Argument Description

field_name Name of the field for which the return value is required.Input value must be given
as a string (for example, quoted literals).

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1306

8 Script and chart functions

Argument Description

row_no The row in the table that specifies the field required. Can be an expression, but
must resolve to an integer. 0 denotes the first record, 1 the second, and so on.
Negative numbers indicate order from the end of the table. -1 denotes the last
record read.

If no row_no is stated, -1 is assumed.

table_name A table label without the ending colon. If no table_name is stated, the current
table is assumed. If used outside the LOAD statement or referring to another
table, the table_name must be included.

Limitations:

The function can only return values from already loaded records. This means that in the first record
of a table, a call using -1 as row_no will return NULL.

Examples and results:

Example 1
Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

EmployeeDates:

Load * Inline [

EmployeeCode|StartDate|EndDate

101|02/11/2010|23/06/2012

102|01/11/2011|30/11/2013

103|02/01/2012|

104|02/01/2012|31/03/2012

105|01/04/2012|31/01/2013

106|02/11/2013|

] (delimiter is '|');

First_last_Employee:

Load

EmployeeCode,

Peek('EmployeeCode',0,'EmployeeDates') As FirstCode,

Peek('EmployeeCode',-1,'EmployeeDates') As LastCode

Resident EmployeeDates;

Employee code StartDate EndDate FirstCode LastCode

101 02/11/2010 23/06/2012 101 106

102 01/11/2011 30/11/2013 101 106

103 02/01/2012 101 106

104 02/01/2012 31/03/2012 101 106

Resulting table

Script syntax and chart functions - Qlik Sense, May 2024 1307

8 Script and chart functions

Employee code StartDate EndDate FirstCode LastCode

105 01/04/2012 31/01/2013 101 106

106 02/11/2013 101 106

FirstCode = 101 because Peek('EmployeeCode',0, 'EmployeeDates') returns the first value of
EmployeeCode in the table EmployeeDates.

LastCode = 106 because Peek('EmployeeCode',-1, 'EmployeeDates') returns the last value of
EmployeeCode in the table EmployeeDates.

Substituting the value of the argument row_no returns the values of other rows in the table, as
follows:

Peek('EmployeeCode',2, 'EmployeeDates') returns the third value, 103, in the table as the FirstCode.

However, note that without specifying the table as the third argument table_name in these
examples, the function references the current (in this case, internal) table.

Example 2
If you want to access data further down in a table, you need to do it in two steps: first, load the
entire table into a temporary table, and then re-sort it when using Peek().

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

T1:

LOAD * inline [

ID|Value

1|3

1|4

1|6

3|7

3|8

2|1

2|11

5|2

5|78

5|13

] (delimiter is '|');

T2:

LOAD *,

IF(ID=Peek('ID'), Peek('List')&','&Value,Value) AS List

RESIDENT T1

ORDER BY ID ASC;

DROP TABLE T1;

Create a table in a sheet in your app with ID, List, and Value as the dimensions.

Script syntax and chart functions - Qlik Sense, May 2024 1308

8 Script and chart functions

ID List Value

1 3,4 4

1 3,4,6 6

1 3 3

2 1,11 11

2 1 1

3 7,8 8

3 7 7

5 2,78 78

5 2,78,13 13

5 2 2

Resulting table

The IF() statement is built from the temporary table T1.
Peek('ID') references the field ID in the previous row in the current table T2.
Peek('List') references the field List in the previous row in the table T2, currently being built as the
expression is evaluated.

The statement is evaluated as follows:
If the current value of ID is the same as the previous value of ID, then write the value of Peek('List')
concatenated with the current value of Value. Otherwise, write the current value of Value only.

If Peek('List') already contains a concatenated result, the new result of Peek('List') will be
concatenated to it.

Note the Order by clause. This specifies how the table is ordered (by ID in ascending
order). Without this, the Peek() function will use whatever arbitrary ordering the internal
table has, which can lead to unpredictable results.

Example 3
Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Amounts:

Load

Date#(Month,'YYYY-MM') as Month,

Amount,

Peek(Amount) as AmountMonthBefore

Inline

[Month,Amount

2022-01,2

2022-02,3

2022-03,7

Script syntax and chart functions - Qlik Sense, May 2024 1309

8 Script and chart functions

2022-04,9

2022-05,4

2022-06,1];

Amount AmountMonthBefore Month

1 4 2022-06

2 - 2022-01

3 2 2022-02

4 9 2022-05

7 3 2022-03

9 7 2022-04

Resulting table

The field AmountMonthBefore will hold the amount from the previous month.

Here, the row_no and table_name parameters are omitted, so the default values are used. In this
example, the following three function calls are equivalent:

l Peek(Amount)
l Peek(Amount,-1)
l Peek(Amount,-1,'Amounts')

Using -1 as row_no means that the value from previous row will be used. By substituting this value,
values of other rows in the table can be fetched:

Peek(Amount,2) returns the third value in the table: 7.

Example 4
Data needs to be correctly sorted in order to get the correct results but, unfortunately, this is not
always the case. Furthermore, the Peek() function cannot be used to reference data that has not
yet been loaded. By using temporary tables and running multiple passes through the data, such
problems can be avoided.

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

tmp1Amounts:

Load * Inline

[Month,Product,Amount

2022-01,B,3

2022-01,A,8

2022-02,B,4

2022-02,A,6

2022-03,B,1

2022-03,A,6

2022-04,A,5

2022-04,B,5

Script syntax and chart functions - Qlik Sense, May 2024 1310

8 Script and chart functions

2022-05,B,6

2022-05,A,7

2022-06,A,4

2022-06,B,8];

tmp2Amounts:

Load *,

If(Product=Peek(Product),Peek(Amount)) as AmountMonthBefore

Resident tmp1Amounts

Order By Product, Month Asc;

Drop Table tmp1Amounts;

Amounts:

Load *,

If(Product=Peek(Product),Peek(Amount)) as AmountMonthAfter

Resident tmp2Amounts

Order By Product, Month Desc;

Drop Table tmp2Amounts;

Explanation

The initial table is sorted according to month, which means that the peek() function would in many
cases return the amount for the wrong product. Hence, this table needs to be re-sorted. This is
done by running a second pass through the data creating a new table tmp2Amounts. Note the
Order By clause. It orders the records first by product, then by month in ascending order.

The If() function is needed since the AmountMonthBefore only should be calculated if the previous
row contains the data for the same product but for the previous month. By comparing the product
on the current row with the product on the previous row, this condition can be validated.

When the second table is created, the first table tmp1Amounts is dropped using a Drop Table
statement.

Finally, a third pass is made through the data, but now with the months sorted in reverse order. This
way, AmountMonthAfter can also be calculated.

Order by clauses specify how the table is ordered; without these, the Peek() function will
use whatever arbitrary ordering the internal table has, which can lead to unpredictable
results.

Result

Month Product Amount AmountMonthBefore AmountMonthAfter

2022-01 A 8 - 6

2022-02 B 3 - 4

Resulting table

Script syntax and chart functions - Qlik Sense, May 2024 1311

8 Script and chart functions

Month Product Amount AmountMonthBefore AmountMonthAfter

2022-03 A 6 8 6

2022-04 B 4 3 1

2022-05 A 6 6 5

2022-06 B 1 4 5

2022-01 A 5 6 7

2022-02 B 5 1 6

2022-03 A 7 5 4

2022-04 B 6 5 8

2022-05 A 4 7 -

2022-06 B 8 6 -

Example 5
Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

T1:

Load * inline [

Quarter, Value

2003q1, 10000

2003q1, 25000

2003q1, 30000

2003q2, 1250

2003q2, 55000

2003q2, 76200

2003q3, 9240

2003q3, 33150

2003q3, 89450

2003q4, 1000

2003q4, 3000

2003q4, 5000

2004q1, 1000

2004q1, 1250

2004q1, 3000

2004q2, 5000

2004q2, 9240

2004q2, 10000

2004q3, 25000

2004q3, 30000

2004q3, 33150

2004q4, 55000

2004q4, 76200

2004q4, 89450];

T2:

Script syntax and chart functions - Qlik Sense, May 2024 1312

8 Script and chart functions

Load *, rangesum(SumVal,peek('AccSumVal')) as AccSumVal;

Load Quarter, sum(Value) as SumVal resident T1 group by Quarter;

Result

Quarter SumVal AccSumVal

2003q1 65000 65000

2003q2 132450 197450

2003q3 131840 329290

2003q4 9000 338290

2004q1 5250 343540

2004q2 24240 367780

2004q3 88150 455930

2004q4 220650 676580

Resulting table

Explanation

The load statement Load *, rangesum(SumVal,peek('AccSumVal')) as AccSumVal includes a
recursive call where the previous values are added to the current value. This operation is used to
calculate an accumulation of values in the script.

See also:

Previous
Previous() finds the value of the expr expression using data from the previous input
record that has not been discarded because of a where clause. In the first record of an
internal table, the function will return NULL.

Syntax:
Previous(expr)

Script syntax and chart functions - Qlik Sense, May 2024 1313

8 Script and chart functions

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.
The expression can contain nested previous() functions in order to access
records further back. Data are fetched directly from the input source, making it
possible to refer also to fields that have not been loaded into Qlik Sense, that
is,even if they have not been stored in its associative database.

Arguments

Limitations:

In the first record of an internal table, the function returns NULL.

Example:

Input the following into your load script:

Sales2013:

Load *, (Sales - Previous(Sales))as Increase Inline [

Month|Sales

1|12

2|13

3|15

4|17

5|21

6|21

7|22

8|23

9|32

10|35

11|40

12|41

] (delimiter is '|');

By using the Previous() function in the Load statement, we can compare the current value of Sales
with the preceding value, and use it in a third field Increase.

Month Sales Increase

1 12 -

2 13 1

3 15 2

4 17 2

Resulting table

Script syntax and chart functions - Qlik Sense, May 2024 1314

8 Script and chart functions

Month Sales Increase

5 21 4

6 21 0

7 22 1

8 23 1

9 32 9

10 35 3

11 40 5

12 41 1

Top - chart function
Top() evaluates an expression at the first (top) row of a column segment in a table. The row for
which it is calculated depends on the value of offset, if present, the default being the top row. For
charts other than tables, theTop() evaluation is made on the first row of the current column in the
chart's straight table equivalent.

Syntax:
Top([TOTAL] expr [, offset [,count]])

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

offset Specifying an offsetof n, greater than 1, moves the evaluation of the expression
down n rows below the top row.

Specifying a negative offset number makes the Top function work like the
Bottom function with the corresponding positive offset number.

count By specifying a third parameter count greater than 1, the function will return a
range of count values, one for each of the last count rows of the current column
segment. In this form, the function can be used as an argument to any of the
special range functions. Range functions (page 1334)

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the
current column segment is always equal to the entire column.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1315

8 Script and chart functions

A column segment is defined as a consecutive subset of cells having the same values for
the dimensions in the current sort order. Inter-record chart functions are computed in
the column segment excluding the right-most dimension in the equivalent straight table
chart. If there is only one dimension in the chart, or if the TOTAL qualifier is specified, the
expression evaluates across full table.

If the table or table equivalent has multiple vertical dimensions, the current column
segment will include only rows with the same values as the current row in all dimension
columns, except for the column showing the last dimension in the inter-field sort order.

Limitations:

l Recursive calls will return NULL.
l Sorting on y-values in charts or sorting by expression columns in tables is not allowed when

this chart function is used in any of the chart's expressions. These sort alternatives are
therefore automatically disabled. When you use this chart function in a visualization or table,
the sorting of the visualization will revert back to the sorted input to this function.

Examples and results:

Example: 1

In the screenshot of the table shown in this example, the table visualizationi s created from the
dimension Customer and the measures Sum(Sales) and Top(Sum(Sales)).

The column Top(Sum(Sales)) returns 587 for all rows because this is the value of the top row:
Astrida.

The table also shows more complex measures: one created from Sum(Sales)+Top(Sum(Sales)) and
one labeled Top offset 3, which is created using the expression Sum(Sales)+Top(Sum(Sales), 3) and
has the argument offset set to 3. It adds the Sum(Sales) value for the current row to the value from
the third row from the top row, that is, the current row plus the value for Canutility.

Example 1

Script syntax and chart functions - Qlik Sense, May 2024 1316

8 Script and chart functions

Example: 2

In the screenshots of tables shown in this example, more dimensions have been added to the
visualizations: Month and Product. For charts with more than one dimension, the results of
expressions containing the Above, Below, Top, and Bottom functions depend on the order in which
the column dimensions are sorted by Qlik Sense. Qlik Sense evaluates the functions based on the
column segments that result from the dimension that is sorted last. The column sort order is
controlled in the properties panel under Sorting and is not necessarily the order in which the
columns appear in a table.

First table for Example 2. The value of Top for the First value measure based on Month (Jan).

Second table for Example 2. The value of Top for the First value measure based on Product (AA for Astrida).

Please refer to Example: 2 in the Above function for further details.

Script syntax and chart functions - Qlik Sense, May 2024 1317

8 Script and chart functions

Example: 3 Result

The Top function can be used as input to the
range functions. For example: RangeAvg (Top

(Sum(Sales),1,3)).

In the arguments for the Top() function, offset
is set to 1 and count is set to 3. The function
finds the results of the expressionSum(Sales)
on the three rows starting with the row below
the bottom row in the column segment
(because the offset=1), and the two rows
below that (where there is a row). These three
values are used as input to the RangeAvg()
function, which finds the average of the values
in the supplied range of numbers.

A table with Customer as dimension gives the
following results for the RangeAvg()
expression.

Astrida

Betacab

Canutility

Divadip:

603

603

603

603

Example 3

Monthnames:

LOAD *, Dual(MonthText,MonthNumber) as Month INLINE [

MonthText, MonthNumber

Jan, 1

Feb, 2

Mar, 3

Apr, 4

May, 5

Jun, 6

Jul, 7

Aug, 8

Sep, 9

Oct, 10

Nov, 11

Dec, 12

];

Sales2013:

Crosstable (MonthText, Sales) LOAD * inline [

Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec

Astrida|46|60|70|13|78|20|45|65|78|12|78|22

Betacab|65|56|22|79|12|56|45|24|32|78|55|15

Canutility|77|68|34|91|24|68|57|36|44|90|67|27

Divadip|57|36|44|90|67|27|57|68|47|90|80|94

] (delimiter is '|');

Script syntax and chart functions - Qlik Sense, May 2024 1318

8 Script and chart functions

See also:
p Bottom - chart function (page 1285)
p Above - chart function (page 1277)
p Sum - chart function (page 353)
p RangeAvg (page 1337)
p Range functions (page 1334)

SecondaryDimensionality - chart function
SecondaryDimensionality() returns the number of dimension pivot table rows that have non-
aggregation content, that is, do not contain partial sums or collapsed aggregates. This function is
the equivalent of the dimensionality() function for horizontal pivot table dimensions.

Syntax:
SecondaryDimensionality()

Return data type: integer

Limitations:

l Unless used in pivot tables, the SecondaryDimensionality function always returns 0.
l Sorting on y-values in charts or sorting by expression columns in tables is not allowed when

this chart function is used in any of the chart's expressions. These sort alternatives are
therefore automatically disabled. When you use this chart function in a visualization or table,
the sorting of the visualization will revert back to the sorted input to this function.

After - chart function
After() returns the value of an expression evaluated with a pivot table's dimension values as they
appear in the column after the current column within a row segment in the pivot table.

Syntax:
after([TOTAL] expr [, offset [, count]])

Sorting on y-values in charts or sorting by expression columns in tables is not allowed
when this chart function is used in any of the chart's expressions. These sort alternatives
are therefore automatically disabled. When you use this chart function in a visualization
or table, the sorting of the visualization will revert back to the sorted input to this
function.

This function returns NULL in all chart types except pivot tables.

Script syntax and chart functions - Qlik Sense, May 2024 1319

8 Script and chart functions

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

offset Specifying an offset n, greater than 1 moves the evaluation of the expression n
rows further to the right from the current row.

Specifying an offset of 0 will evaluate the expression on the current row.

Specifying a negative offset number makes the After function work like the
Before function with the corresponding positive offset number.

count By specifying a third parameter count greater than 1, the function will return a
range of values, one for each of the table rows up to the value of count, counting
to the right from the original cell.

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the
current column segment is always equal to the entire column.

On the last column of a row segment a NULL value will be returned, as there is no column after this
one.

If the pivot table has multiple horizontal dimensions, the current row segment will include only
columns with the same values as the current column in all dimension rows except for the row
showing the last horizontal dimension of the inter-field sort order. The inter-field sort order for
horizontal dimensions in pivot tables is defined simply by the order of the dimensions from top to
bottom.

Example:

after(sum(Sales))

after(sum(Sales), 2)

after(total sum(Sales))

rangeavg (after(sum(x),1,3)) returns an average of the three results of the sum(x) function
evaluated in the three columns immediately to the right of the current column.

Before - chart function
Before() returns the value of an expression evaluated with a pivot table's dimension values as they
appear in the column before the current column within a row segment in the pivot table.

Syntax:
before([TOTAL] expr [, offset [, count]])

This function returns NULL in all chart types except pivot tables.

Script syntax and chart functions - Qlik Sense, May 2024 1320

8 Script and chart functions

Sorting on y-values in charts or sorting by expression columns in tables is not allowed
when this chart function is used in any of the chart's expressions. These sort alternatives
are therefore automatically disabled. When you use this chart function in a visualization
or table, the sorting of the visualization will revert back to the sorted input to this
function.

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

offset Specifying an offset n, greater than 1 moves the evaluation of the expression n
rows further to the left from the current row.

Specifying an offset of 0 will evaluate the expression on the current row.

Specifying a negative offset number makes the Before function work like the
After function with the corresponding positive offset number.

count By specifying a third parameter count greater than 1, the function will return a
range of values, one for each of the table rows up to the value of count, counting
to the left from the original cell.

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the
current column segment is always equal to the entire column.

Arguments

On the first column of a row segment a NULL value will be returned, as there is no column before
this one.

If the pivot table has multiple horizontal dimensions, the current row segment will include only
columns with the same values as the current column in all dimension rows except for the row
showing the last horizontal dimension of the inter-field sort order.The inter-field sort order for
horizontal dimensions in pivot tables is defined simply by the order of the dimensions from top to
bottom.

Examples:

before(sum(Sales))

before(sum(Sales), 2)

before(total sum(Sales))

rangeavg (before(sum(x),1,3)) returns an average of the three results of the sum(x) function
evaluated in the three columns immediately to the left of the current column.

Script syntax and chart functions - Qlik Sense, May 2024 1321

8 Script and chart functions

First - chart function
First() returns the value of an expression evaluated with a pivot table's dimension values as they
appear in the first column of the current row segment in the pivot table. This function returns NULL
in all chart types except pivot tables.

Sorting on y-values in charts or sorting by expression columns in tables is not allowed
when this chart function is used in any of the chart's expressions. These sort alternatives
are therefore automatically disabled. When you use this chart function in a visualization
or table, the sorting of the visualization will revert back to the sorted input to this
function.

Syntax:
first([TOTAL] expr [, offset [, count]])

Arguments:

Argument Description

expression The expression or field containing the data to be measured.

offset Specifying an offset n, greater than 1 moves the evaluation of the expression n
rows further to the right from the current row.

Specifying an offset of 0 will evaluate the expression on the current row.

Specifying a negative offset number makes the First function work like the Last
function with the corresponding positive offset number.

count By specifying a third parameter count greater than 1, the function will return a
range of values, one for each of the table rows up to the value of count, counting
to the right from the original cell.

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the
current column segment is always equal to the entire column.

Arguments

If the pivot table has multiple horizontal dimensions, the current row segment will include only
columns with the same values as the current column in all dimension rows except for the row
showing the last horizontal dimension of the inter-field sort order.The inter-field sort order for
horizontal dimensions in pivot tables is defined simply by the order of the dimensions from top to
bottom.

Examples:

first(sum(Sales))

first(sum(Sales), 2)

first(total sum(Sales)

Script syntax and chart functions - Qlik Sense, May 2024 1322

8 Script and chart functions

rangeavg (first(sum(x),1,5)) returns an average of the results of the sum(x) function
evaluated on the five leftmost columns of the current row segment.

Last - chart function
Last() returns the value of an expression evaluated with a pivot table's dimension values as they
appear in the last column of the current row segment in the pivot table. This function returns NULL
in all chart types except pivot tables.

Sorting on y-values in charts or sorting by expression columns in tables is not allowed
when this chart function is used in any of the chart's expressions. These sort alternatives
are therefore automatically disabled. When you use this chart function in a visualization
or table, the sorting of the visualization will revert back to the sorted input to this
function.

Syntax:
last([TOTAL] expr [, offset [, count]])

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

offset Specifying an offset n, greater than 1 moves the evaluation of the expression n
rows further to the left from the current row.

Specifying an offset of 0 will evaluate the expression on the current row.

Specifying a negative offset number makes the First function work like the Last
function with the corresponding positive offset number.

count By specifying a third parameter count greater than 1, the function will return a
range of values, one for each of the table rows up to the value of count, counting
to the left from the original cell.

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the
current column segment is always equal to the entire column.

Arguments

If the pivot table has multiple horizontal dimensions, the current row segment will include only
columns with the same values as the current column in all dimension rows except for the row
showing the last horizontal dimension of the inter-field sort order.The inter-field sort order for
horizontal dimensions in pivot tables is defined simply by the order of the dimensions from top to
bottom.

Example:

last(sum(Sales))

last(sum(Sales), 2)

Script syntax and chart functions - Qlik Sense, May 2024 1323

8 Script and chart functions

last(total sum(Sales)

rangeavg (last(sum(x),1,5)) returns an average of the results of the sum(x) function evaluated on
the five rightmost columns of the current row segment.

ColumnNo - chart function
ColumnNo() returns the number of the current column within the current row segment in a pivot
table. The first column is number 1.

Syntax:
ColumnNo([total])

Arguments:

Argument Description

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the
current column segment is always equal to the entire column.

Arguments

If the pivot table has multiple horizontal dimensions, the current row segment will include only
columns with the same values as the current column in all dimension rows except for the row
showing the last horizontal dimension of the inter-field sort order.The inter-field sort order for
horizontal dimensions in pivot tables is defined simply by the order of the dimensions from top to
bottom.

Sorting on y-values in charts or sorting by expression columns in tables is not allowed
when this chart function is used in any of the chart's expressions. These sort alternatives
are therefore automatically disabled. When you use this chart function in a visualization
or table, the sorting of the visualization will revert back to the sorted input to this
function.

Example:

if(ColumnNo()=1, 0, sum(Sales) / before(sum(Sales)))

NoOfColumns - chart function
NoOfColumns() returns the number of columns in the current row segment in a pivot table.

Sorting on y-values in charts or sorting by expression columns in tables is not allowed
when this chart function is used in any of the chart's expressions. These sort alternatives
are therefore automatically disabled. When you use this chart function in a visualization
or table, the sorting of the visualization will revert back to the sorted input to this
function.

Script syntax and chart functions - Qlik Sense, May 2024 1324

8 Script and chart functions

Syntax:
NoOfColumns([total])

Arguments:

Argument Description

TOTAL If the table is one-dimensional or if the qualifier TOTAL is used as argument, the
current column segment is always equal to the entire column.

Arguments

If the pivot table has multiple horizontal dimensions, the current row segment will include only
columns with the same values as the current column in all dimension rows except for the row
showing the last dimension in the inter-field sort order.The inter-field sort order for horizontal
dimensions in pivot tables is defined simply by the order of the dimensions from top to bottom.

Example:

if(ColumnNo()=NoOfColumns(), 0, after(sum(Sales)))

8.17 Logical functions
This section describes functions handling logical operations. All functions can be used
in both the data load script and in chart expressions.

IsNum
Returns -1 (True) if the expression can be interpreted as a number, otherwise 0 (False).

IsNum(expr)

IsText
Returns -1 (True) if the expression has a text representation, otherwise 0 (False).

IsText(expr)

Both IsNum and IsText return 0 if the expression is NULL.

Example:

The following example loads an inline table with mixed text and numerical values, and adds two
fields to check if the value is a numerical value, respectively a text value.

Load *, IsNum(Value), IsText(Value)

Inline [

Value

23

Green

Blue

Script syntax and chart functions - Qlik Sense, May 2024 1325

8 Script and chart functions

12

33Red];

The resulting table looks like this:

Value IsNum(Value) IsText(Value)

23 -1 0

Green 0 -1

Blue 0 -1

12 -1 0

33Red 0 -1

Resulting table

8.18 Mapping functions
This section describes functions for handling mapping tables. A mapping table can be used to
replace field values or field names during script execution.

Mapping functions can only be used in the data load script

Mapping functions overview
Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

ApplyMap
The ApplyMap script function is used for mapping the output of an expression to a previously
loaded mapping table.

ApplyMap ('mapname', expr [, defaultexpr])

MapSubstring
The MapSubstring script function is used to map parts of any expression to a previously loaded
mapping table. The mapping is case sensitive and non-iterative, and substrings are mapped from
left to right.

MapSubstring ('mapname', expr)

ApplyMap
The ApplyMap script function is used for mapping the output of an expression to a previously
loaded mapping table.

Syntax:
ApplyMap('map_name', expression [, default_mapping])

Script syntax and chart functions - Qlik Sense, May 2024 1326

8 Script and chart functions

Return data type: dual

Arguments:

Argument Description

map_name The name of a mapping table that has previously been created through the
mapping load or the mapping select statement. Its name must be enclosed by
single, straight quotation marks.

If you use this function in a macro expanded variable and refer to a
mapping table that does not exist, the function call fails and a field is
not created.

expression The expression, the result of which should be mapped.

default_
mapping

If stated, this value will be used as a default value if the mapping table does not
contain a matching value for expression. If not stated, the value of expression will
be returned as is.

Arguments

The output field of ApplyMap should not have the same name as one of its input fields.
This may cause unexpected results. Example not to use: ApplyMap('Map', A) as A.

Example:

In this example we load a list of salespersons with a country code representing their country of
residence. We use a table mapping a country code to a country to replace the country code with the
country name. Only three countries are defined in the mapping table, other country codes are
mapped to 'Rest of the world'.

// Load mapping table of country codes:

map1:

mapping LOAD *

Inline [

CCode, Country

Sw, Sweden

Dk, Denmark

No, Norway

] ;

// Load list of salesmen, mapping country code to country

// If the country code is not in the mapping table, put Rest of the world

Salespersons:

LOAD *,

ApplyMap('map1', CCode,'Rest of the world') As Country

Inline [

CCode, Salesperson

Script syntax and chart functions - Qlik Sense, May 2024 1327

8 Script and chart functions

Sw, John

Sw, Mary

Sw, Per

Dk, Preben

Dk, Olle

No, Ole

Sf, Risttu

] ;

// We don't need the CCode anymore

Drop Field 'CCode';

The resulting table (Salespersons) looks like this:

Salesperson Country

John Sweden

Mary Sweden

Per Sweden

Preben Denmark

Olle Denmark

Ole Norway

Risttu Rest of the world

Resulting table

MapSubstring
The MapSubstring script function is used to map parts of any expression to a
previously loaded mapping table. The mapping is case sensitive and non-iterative, and
substrings are mapped from left to right.

Syntax:
MapSubstring('map_name', expression)

Script syntax and chart functions - Qlik Sense, May 2024 1328

8 Script and chart functions

Return data type: string

Arguments:

Argument Description

map_name The name of a mapping table previously read by a mapping load or a mapping
select statement. The name must be enclosed by single straight quotation
marks.

If you use this function in a macro expanded variable and refer to a
mapping table that does not exist, the function call fails and a field is
not created.

expression The expression whose result is to be mapped by substrings.

Arguments

Example:

In this example we load a list of product models. Each model has a set of attributes that are
described by a composite code. Using the mapping table with MapSubstring, we can expand the
attribute codes to a description.

map2:

mapping LOAD *

Inline [

AttCode, Attribute

R, Red

Y, Yellow

B, Blue

C, Cotton

P, Polyester

S, Small

M, Medium

L, Large

] ;

Productmodels:

LOAD *,

MapSubString('map2', AttCode) as Description

Inline [

Model, AttCode

Twixie, R C S

Boomer, B P L

Raven, Y P M

Seedling, R C L

SeedlingPlus, R C L with hood

Younger, B C with patch

MultiStripe, R Y B C S/M/L

] ;

Script syntax and chart functions - Qlik Sense, May 2024 1329

8 Script and chart functions

// We don't need the AttCode anymore

Drop Field 'AttCode';

The resulting table looks like this:

Model Description

Twixie Red Cotton Small

Boomer Blue Polyester Large

Raven Yellow Polyester Medium

Seedling Red Cotton Large

SeedlingPlus Red Cotton Large with hood

Younger Blue Cotton with patch

MultiStripe Red Yellow Blue Cotton Small/Medium/Large

Resulting table

8.19 Mathematical functions
This section describes functions for mathematical constants and Boolean values. These functions
do not have any parameters, but the parentheses are still required.

All functions can be used in both the data load script and in chart expressions.

e
The function returns the base of the natural logarithms, e (2.71828...).

e()

false
The function returns a dual value with text value 'False' and numeric value 0, which can be used as
logical false in expressions.

false()

pi
The function returns the value of π (3.14159...).

pi()

rand
The function returns a random number between 0 and 1. This can be used to create sample data.

rand()

Script syntax and chart functions - Qlik Sense, May 2024 1330

8 Script and chart functions

Example:

This example script creates a table of 1000 records with randomly selected upper case characters,
that is, characters in the range 65 to 91 (65+26).

Load

Chr(Floor(rand() * 26) + 65) as UCaseChar,

RecNo() as ID

Autogenerate 1000;

true
The function returns a dual value with text value 'True' and numeric value -1, which can be used as
logical true in expressions.

true()

8.20 NULL functions
This section describes functions for returning or detecting NULL values.

All functions can be used in both the data load script and in chart expressions.

NULL functions overview
Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

EmptyIsNull
The EmptyIsNull function converts empty strings to NULL. Hence, it returns NULL if the parameter
is an empty string, otherwise it returns the parameter.

EmptyIsNull (expr)

IsNull
The IsNull function tests if the value of an expression is NULL and if so, returns -1 (True), otherwise
0 (False).

IsNull (expr)

Null
The Null function returns a NULL value.

NULL()

EmptyIsNull
The EmptyIsNull function converts empty strings to NULL. Hence, it returns NULL if
the parameter is an empty string, otherwise it returns the parameter.

Syntax:
EmptyIsNull(exp)

Script syntax and chart functions - Qlik Sense, May 2024 1331

8 Script and chart functions

Examples and results:

Example Result

EmptyIsNull(AdditionalComments) This expression will return as null any empty string values
of the AdditionalComments field instead of empty strings.
Non-empty strings and numbers are returned.

EmptyIsNull(PurgeChar

(PhoneNumber, ' -()'))
This expression will strip any dashes, spaces and
parentheses from the PhoneNumber field. If there are no
characters left, the EmptyIsNull function returns the empty
string as null; an empty phone number is the same as no
phone number.

Scripting examples

IsNull
The IsNull function tests if the value of an expression is NULL and if so, returns -1
(True), otherwise 0 (False).

Syntax:
IsNull(expr)

A string with length zero is not considered as a NULL and will cause IsNull to return
False.

Example: Data load script

In this example, an inline table with four rows is loaded, where the first three lines contain either
nothing, - or 'NULL' in the Value column. We convert these values to true NULL value
representations with the middle preceding LOAD using the Null function.

The first preceding LOAD adds a field checking if the value is NULL,using the IsNull function.

NullsDetectedAndConverted:

LOAD *,

If(IsNull(ValueNullConv), 'T', 'F') as IsItNull;

LOAD *,

If(len(trim(Value))= 0 or Value='NULL' or Value='-', Null(), Value) as ValueNullConv;

LOAD * Inline

[ID, Value

0,

1,NULL

2,-

3,Value];

This is the resulting table. In the ValueNullConv column, the NULL values are represented by -.

Script syntax and chart functions - Qlik Sense, May 2024 1332

8 Script and chart functions

ID Value ValueNullConv IsItNull

0 - T

1 NULL - T

2 - - T

3 Value Value F

Resulting table

NULL
The Null function returns a NULL value.

Syntax:
Null()

Example: Data load script

In this example, an inline table with four rows is loaded, where the first three lines contain either
nothing, - or 'NULL' in the Value column. We want to convert these values to true NULL value
representations.

The middle preceding LOAD performs the conversion using the Null function.

The first preceding LOAD adds a field checking if the value is NULL, just for illustration purposes in
this example.

NullsDetectedAndConverted:

LOAD *,

If(IsNull(ValueNullConv), 'T', 'F') as IsItNull;

LOAD *,

If(len(trim(Value))= 0 or Value='NULL' or Value='-', Null(), Value) as ValueNullConv;

LOAD * Inline

[ID, Value

0,

1,NULL

2,-

3,Value];

This is the resulting table. In the ValueNullConv column, the NULL values are represented by -.

ID Value ValueNullConv IsItNull

0 - T

1 NULL - T

2 - - T

3 Value Value F

Resulting table

Script syntax and chart functions - Qlik Sense, May 2024 1333

8 Script and chart functions

8.21 Range functions
The range functions are functions that take an array of values and produce a single
value as a result. All range functions can be used in both the data load script and in
chart expressions.

For example, in a visualization, a range function can calculate a single value from an inter-record
array. In the data load script, a range function can calculate a single value from an array of values in
an internal table.

Range functions replace the following general numeric functions: numsum, numavg,
numcount, nummin and nummax, which should now be regarded as obsolete.

Basic range functions
RangeMax
RangeMax() returns the highest numeric values found within the expression or field.

RangeMax(first_expr[, Expression])

RangeMaxString
RangeMaxString() returns the last value in the text sort order that it finds in the expression or field.

RangeMaxString(first_expr[, Expression])

RangeMin
RangeMin() returns the lowest numeric values found within the expression or field.

RangeMin(first_expr[, Expression])

RangeMinString
RangeMinString() returns the first value in the text sort order that it finds in the expression or field.

RangeMinString(first_expr[, Expression])

RangeMode
RangeMode() finds the most commonly occurring value (mode value) in the expression or field.

RangeMode(first_expr[, Expression])

RangeOnly
RangeOnly() is a dual function that returns a value if the expression evaluates to one unique value.
If this is not the case then NULL is returned.

RangeOnly(first_expr[, Expression])

Script syntax and chart functions - Qlik Sense, May 2024 1334

8 Script and chart functions

RangeSum
RangeSum() returns the sum of a range of values. All non-numeric values are treated as 0.

RangeSum(first_expr[, Expression])

Counter range functions
RangeCount
RangeCount() returns the number of values, both text and numeric, in the expression or field.

RangeCount(first_expr[, Expression])

RangeMissingCount
RangeMissingCount() returns the number of non-numeric values (including NULL) in the
expression or field.

RangeMissingCount(first_expr[, Expression])

RangeNullCount
RangeNullCount() finds the number of NULL values in the expression or field.

RangeNullCount(first_expr[, Expression])

RangeNumericCount
RangeNumericCount() finds the number of numeric values in an expression or field.

RangeNumericCount(first_expr[, Expression])

RangeTextCount
RangeTextCount() returns the number of text values in an expression or field.

RangeTextCount(first_expr[, Expression])

Statistical range functions
RangeAvg
RangeAvg() returns the average of a range. Input to the function can be either a range of values or
an expression.

RangeAvg(first_expr[, Expression])

RangeCorrel
RangeCorrel() returns the correlation coefficient for two sets of data. The correlation coefficient is
a measure of the relationship between the data sets.

RangeCorrel(x_values , y_values[, Expression])

RangeFractile
RangeFractile() returns the value that corresponds to the n-th fractile (quantile) of a range of
numbers.

RangeFractile(fractile, first_expr[,Expression])

Script syntax and chart functions - Qlik Sense, May 2024 1335

8 Script and chart functions

RangeKurtosis
RangeKurtosis() returns the value that corresponds to the kurtosis of a range of numbers.

RangeKurtosis(first_expr[, Expression])

RangeSkew
RangeSkew() returns the value corresponding to the skewness of a range of numbers.

RangeSkew(first_expr[, Expression])

RangeStdev
RangeStdev() finds the standard deviation of a range of numbers.

RangeStdev(expr1[, Expression])

Financial range functions
RangeIRR
RangeIRR() returns the internal rate of return for a series of cash flows represented by the input
values.

RangeIRR (value[, value][, Expression])

RangeNPV
RangeNPV() returns the net present value of an investment based on a discount rate and a series
of future periodic payments (negative values) and incomes (positive values). The result has a
default number format of money.

RangeNPV (discount_rate, value[, value][, Expression])

RangeXIRR
RangeXIRR() returns the internal rate of return (yearly) for a schedule of cash flows that is not
necessarily periodic. To calculate the internal rate of return for a series of periodic cash flows, use
the RangeIRR function.

RangeXIRR (values, dates[, Expression])

RangeXNPV
RangeXNPV() returns the net present value for a schedule of cash flows (not necessarily periodic)
represented by paired numbers in the expressions given by pmt and date. All payments are
discounted based on a 365-day year.

RangeXNPV (discount_rate, values, dates[, Expression])

See also:
p Inter-record functions (page 1273)

Script syntax and chart functions - Qlik Sense, May 2024 1336

8 Script and chart functions

RangeAvg
RangeAvg() returns the average of a range. Input to the function can be either a range of values or
an expression.

Syntax:
RangeAvg(first_expr[, Expression])

Return data type: numeric

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list
of values.

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Limitations:

If no numeric value is found, NULL is returned.

Examples and results:

Examples Results

RangeAvg (1,2,4) Returns 2.33333333

RangeAvg (1,'xyz') Returns 1

RangeAvg (null(), 'abc') Returns NULL

Scripting examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

RangeTab3:

LOAD recno() as RangeID, RangeAvg(Field1,Field2,Field3) as MyRangeAvg INLINE [

Field1, Field2, Field3

10,5,6

2,3,7

8,2,8

18,11,9

5,5,9

9,4,2

];

Script syntax and chart functions - Qlik Sense, May 2024 1337

8 Script and chart functions

The resulting table shows the returned values of MyRangeAvg for each of the records in the table.

RangeID MyRangeAvg

1 7

2 4

3 6

4 12.666

5 6.333

6 5

Resulting table

Example with expression:

RangeAvg (Above(MyField),0,3))

Returns a sliding average of the result of the range of three values of MyField calculated on the
current row and two rows above the current row. By specifying the third argument as 3, the Above
() function returns three values, where there are sufficient rows above, which are taken as input to
the RangeAvg() function.

Data used in examples:

Disable sorting of MyField to ensure that the example works as expected.

MyField
RangeAvg (Above
(MyField,0,3))

Comments

10 10 Because this is the top row, the range consists of
one value only.

2 6 There is only one row above this row, so the range is:
10,2.

8 6.6666666667 The equivalent to RangeAvg(10,2,8)

18 9.333333333 -

5 10. 333333333 -

9 10.6666666667 -

Sample data

RangeTab:

LOAD * INLINE [

MyField

10

2

8

18

Script syntax and chart functions - Qlik Sense, May 2024 1338

8 Script and chart functions

5

9

] ;

See also:
p Avg - chart function (page 407)
p Count - chart function (page 357)

RangeCorrel
RangeCorrel() returns the correlation coefficient for two sets of data. The correlation coefficient is
a measure of the relationship between the data sets.

Syntax:
RangeCorrel(x_value , y_value[, Expression])

Return data type: numeric

Data series should be entered as (x,y) pairs. For example, to evaluate two series of data, array 1 and
array 2, where the array 1 = 2,6,9 and array 2 = 3,8,4 you would write RangeCorrel (2,3,6,8,9,4)

which returns 0.269.

Arguments:

Argument Description

x-value, y-
value

Each value represents a single value or a range of values as returned by an inter-
record functions with a third optional parameter. Each value or range of values
must correspond to an x-value or a range of y-values.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Limitations:

The function needs at least two pairs of coordinates to be calculated.

Text values, NULL values and missing values return NULL.

Examples and results:

Examples Results

RangeCorrel

(2,3,6,8,9,4,8,5)
Returns 0.2492. This function can be loaded in the script or added into a
visualization in the expression editor.

Function examples

Script syntax and chart functions - Qlik Sense, May 2024 1339

8 Script and chart functions

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

RangeList:

Load * Inline [

ID1|x1|y1|x2|y2|x3|y3|x4|y4|x5|y5|x6|y6

01|46|60|70|13|78|20|45|65|78|12|78|22

02|65|56|22|79|12|56|45|24|32|78|55|15

03|77|68|34|91|24|68|57|36|44|90|67|27

04|57|36|44|90|67|27|57|68|47|90|80|94

] (delimiter is '|');

XY:

LOAD recno() as RangeID, * Inline [

X|Y

2|3

6|8

9|4

8|5

](delimiter is '|');

In a table with ID1 as a dimension and the measure RangeCorrel
(x1,y1,x2,y2,x3,y3,x4,y4,x5,y5,x6,y6)), the RangeCorrel() function finds the value of Correl over
the range of six x,y pairs, for each of the ID1 values.

ID1 MyRangeCorrel

01 -0.9517

02 -0.5209

03 -0.5209

04 -0.1599

Resulting table

Example:

XY:

LOAD recno() as RangeID, * Inline [

X|Y

2|3

6|8

9|4

8|5

](delimiter is '|');

Script syntax and chart functions - Qlik Sense, May 2024 1340

8 Script and chart functions

In a table with RangeID as a dimension and the measure: RangeCorrel(Below(X,0,4,BelowY,0,4)),
the RangeCorrel() function uses the results of the Below() functions, which because of the third
argument (count) set to 4, produce a range of four x-y values from the loaded table XY.

RangeID MyRangeCorrel2

01 0.2492

02 -0.9959

03 -1.0000

04 -

Resulting table

The value for RangeID 01 is the same as manually entering RangeCorrel(2,3,6,8,9,4,8,5). For the
other values of RangeID, the series produced by the Below() function are: (6,8,9,4,8,5), (9,4,8,5),
and (8,5), the last of which produces a null result.

See also:
p Correl - chart function (page 411)

RangeCount
RangeCount() returns the number of values, both text and numeric, in the expression or field.

Syntax:
RangeCount(first_expr[, Expression])

Return data type: integer

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list
of values.

Argument Description

first_expr The expression or field containing the data to be counted.

Expression Optional expressions or fields containing the range of data to be counted.

Arguments

Limitations:

NULL values are not counted.

Script syntax and chart functions - Qlik Sense, May 2024 1341

8 Script and chart functions

Examples and results:

Examples Results

RangeCount (1,2,4) Returns 3

RangeCount (2,'xyz') Returns 2

RangeCount (null()) Returns 0

RangeCount (2,'xyz', null()) Returns 2

Function examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

RangeTab3:

LOAD recno() as RangeID, RangeCount(Field1,Field2,Field3) as MyRangeCount INLINE [

Field1, Field2, Field3

10,5,6

2,3,7

8,2,8

18,11,9

5,5,9

9,4,2

];

The resulting table shows the returned values of MyRangeCount for each of the records in the
table.

RangeID MyRangeCount

1 3

2 3

3 3

4 3

5 3

6 3

Results table

Example with expression:

RangeCount (Above(MyField,1,3))

Returns the number of values contained in the three results of MyField. By specifying the first
argument of the Above() function as 1 and second argument as 3, it returns the values from the first
three fields above the current row, where there are sufficient rows, which are taken as input to the
RangeCount() function.

Script syntax and chart functions - Qlik Sense, May 2024 1342

8 Script and chart functions

Data used in examples:

MyField RangeCount(Above(MyField,1,3))

10 0

2 1

8 2

18 3

5 3

9 3

Sample data

Data used in examples:

RangeTab:

LOAD * INLINE [

MyField

10

2

8

18

5

9

] ;

See also:
p Count - chart function (page 357)

RangeFractile
RangeFractile() returns the value that corresponds to the n-th fractile (quantile) of a range of
numbers.

RangeFractile() uses linear interpolation between closest ranks when calculating the
fractile.

Syntax:
RangeFractile(fractile, first_expr[, Expression])

Return data type: numeric

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list
of values.

Script syntax and chart functions - Qlik Sense, May 2024 1343

8 Script and chart functions

Argument Description

fractile A number between 0 and 1 corresponding to the fractile (quantile expressed as a
fraction) to be calculated.

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Examples and results:

Examples Results

RangeFractile (0.24,1,2,4,6) Returns 1.72

RangeFractile(0.5,1,2,3,4,6) Returns 3

RangeFractile (0.5,1,2,5,6) Returns 3.5

Function examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

RangeTab:

LOAD recno() as RangeID, RangeFractile(0.5,Field1,Field2,Field3) as MyRangeFrac INLINE [

Field1, Field2, Field3

10,5,6

2,3,7

8,2,8

18,11,9

5,5,9

9,4,2

];

The resulting table shows the returned values of MyRangeFrac for each of the records in the table.

RangeID MyRangeFrac

1 6

2 3

3 8

4 11

5 5

6 4

Resulting table

Script syntax and chart functions - Qlik Sense, May 2024 1344

8 Script and chart functions

Example with expression:

RangeFractile (0.5, Above(Sum(MyField),0,3))

In this example, the inter-record function Above() contains the optional offset and count
arguments. This produces a range of results that can be used as input to the any of the range
functions. In this case, Above(Sum(MyField),0,3) returns the values of MyField for the current row and
the two rows above. These values provide the input to the RangeFractile() function. So, for the
bottom row in the table below, this is the equivalent of RangeFractile(0.5, 3,4,6), that is,
calculating the 0.5 fractile for the series 3, 4, and 6. The first two rows in the table below, the
number of values in the range is reduced accordingly, where there no rows above the current row.
Similar results are produced for other inter-record functions.

MyField RangeFractile(0.5, Above(Sum(MyField),0,3))

1 1

2 1.5

3 2

4 3

5 4

6 5

Sample data

Data used in examples:

RangeTab:

LOAD * INLINE [

MyField

1

2

3

4

5

6

] ;

See also:
p Above - chart function (page 1277)
p Fractile - chart function (page 414)

RangeIRR
RangeIRR() returns the internal rate of return for a series of cash flows represented by
the input values.

The internal rate of return is the interest rate received for an investment consisting of payments
(negative values) and income (positive values) that occur at regular periods.

Script syntax and chart functions - Qlik Sense, May 2024 1345

8 Script and chart functions

This function uses a simplified version of the Newton method for calculating the internal rate of
return (IRR).

Syntax:
RangeIRR(value[, value][, Expression])

Return data type: numeric

Argument Description

value A single value or a range of values as returned by an inter record function with a
third optional parameter. The function needs at least one positive and one
negative value to be calculated.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Limitations:

Text values, NULL values and missing values are disregarded.

Examples Results

RangeIRR(-70000,12000,15000,18000,21000,26000) Returns 0.0866

Add the example script to your app and run it. To see the result, add
the fields listed in the results column to a sheet in your app.

RangeTab3:

LOAD *,

recno() as RangeID,

RangeIRR(Field1,Field2,Field3) as RangeIRR;

LOAD * INLINE [

Field1|Field2|Field3

-10000|5000|6000

-2000|NULL|7000

-8000|'abc'|8000

-1800|11000|9000

-5000|5000|9000

-9000|4000|2000

] (delimiter is '|');

The resulting table shows
the returned values of
RangeIRR for each of the
records in the table.

RangeID RangeIRR

1 0.0639

2 0.8708

3 -

4 5.8419

5 0.9318

6 -0.2566

Example table

See also:
p Inter-record functions (page 1273)

RangeKurtosis
RangeKurtosis() returns the value that corresponds to the kurtosis of a range of numbers.

Script syntax and chart functions - Qlik Sense, May 2024 1346

8 Script and chart functions

Syntax:
RangeKurtosis(first_expr[, Expression])

Return data type: numeric

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list
of values.

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Limitations:

If no numeric value is found, NULL is returned.

Examples and results:

Examples Results

RangeKurtosis (1,2,4,7) Returns -0.28571428571429

Function examples

See also:
p Kurtosis - chart function (page 422)

RangeMax
RangeMax() returns the highest numeric values found within the expression or field.

Syntax:
RangeMax(first_expr[, Expression])

Return data type: numeric

Arguments:

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1347

8 Script and chart functions

Limitations:

If no numeric value is found, NULL is returned.

Examples and results:

Examples Results

RangeMax (1,2,4) Returns 4

RangeMax (1,'xyz') Returns 1

RangeMax (null(), 'abc') Returns NULL

Function examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

RangeTab3:

LOAD recno() as RangeID, RangeMax(Field1,Field2,Field3) as MyRangeMax INLINE [

Field1, Field2, Field3

10,5,6

2,3,7

8,2,8

18,11,9

5,5,9

9,4,2

];

The resulting table shows the returned values of MyRangeMax for each of the records in the table.

RangeID MyRangeMax

1 10

2 7

3 8

4 18

5 9

6 9

Resulting table

Example with expression:

RangeMax (Above(MyField,0,3))

Script syntax and chart functions - Qlik Sense, May 2024 1348

8 Script and chart functions

Returns the maximum value in the range of three values of MyField calculated on the current row
and two rows above the current row. By specifying the third argument as 3, the Above() function
returns three values, where there are sufficient rows above, which are taken as input to the
RangeMax() function.

Data used in examples:

Disable sorting of MyField to ensure that the example works as expected.

MyField RangeMax (Above(Sum(MyField),1,3))

10 10

2 10

8 10

18 18

5 18

9 18

Sample data

Data used in examples:

RangeTab:

LOAD * INLINE [

MyField

10

2

8

18

5

9

] ;

RangeMaxString
RangeMaxString() returns the last value in the text sort order that it finds in the expression or field.

Syntax:
RangeMaxString(first_expr[, Expression])

Return data type: string

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list
of values.

Script syntax and chart functions - Qlik Sense, May 2024 1349

8 Script and chart functions

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Examples and results:

Examples Results

RangeMaxString (1,2,4) Returns 4

RangeMaxString ('xyz','abc') Returns 'xyz'

RangeMaxString (5,'abc') Returns 'abc'

RangeMaxString (null()) Returns NULL

Function examples

Example with expression:

RangeMaxString (Above(MaxString(MyField),0,3))

Returns the last (in text sort order) of the three results of the MaxString(MyField) function
evaluated on the current row and two rows above the current row.

Data used in examples:

Disable sorting of MyField to ensure that the example works as expected.

MyField RangeMaxString(Above(MaxString(MyField),0,3))

10 10

abc abc

8 abc

def def

xyz xyz

9 xyz

Sample data

Data used in examples:

RangeTab:

LOAD * INLINE [

MyField

10

'abc'

8

'def'

Script syntax and chart functions - Qlik Sense, May 2024 1350

8 Script and chart functions

'xyz'

9

] ;

See also:
p MaxString - chart function (page 541)

RangeMin
RangeMin() returns the lowest numeric values found within the expression or field.

Syntax:
RangeMin(first_expr[, Expression])

Return data type: numeric

Arguments:

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Limitations:

If no numeric value is found, NULL is returned.

Examples and results:

Examples Results

RangeMin (1,2,4) Returns 1

RangeMin (1,'xyz') Returns 1

RangeMin (null(), 'abc') Returns NULL

Function examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

RangeTab3:

LOAD recno() as RangeID, RangeMin(Field1,Field2,Field3) as MyRangeMin INLINE [

Field1, Field2, Field3

10,5,6

2,3,7

8,2,8

18,11,9

Script syntax and chart functions - Qlik Sense, May 2024 1351

8 Script and chart functions

5,5,9

9,4,2

];

The resulting table shows the returned values of MyRangeMin for each of the records in the table.

RangeID MyRangeMin

1 5

2 2

3 2

4 9

5 5

6 2

Resulting table

Example with expression:

RangeMin (Above(MyField,0,3)

Returns the minimum value in the range of three values of MyField calculated on the current row
and two rows above the current row. By specifying the third argument as 3, the Above() function
returns three values, where there are sufficient rows above, which are taken as input to the
RangeMin() function.

Data used in examples:

MyField RangeMin(Above(MyField,0,3))

10 10

2 2

8 2

18 2

5 5

9 5

Sample data

Data used in examples:

RangeTab:

LOAD * INLINE [

MyField

10

2

8

18

5

9

Script syntax and chart functions - Qlik Sense, May 2024 1352

8 Script and chart functions

] ;

See also:
p Min - chart function (page 344)

RangeMinString
RangeMinString() returns the first value in the text sort order that it finds in the expression or field.

Syntax:
RangeMinString(first_expr[, Expression])

Return data type: string

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list
of values.

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Examples and results:

Examples Results

RangeMinString (1,2,4) Returns 1

RangeMinString ('xyz','abc') Returns 'abc'

RangeMinString (5,'abc') Returns 5

RangeMinString (null()) Returns NULL

Function examples

Example with expression:

RangeMinString (Above(MinString(MyField),0,3))

Returns the first (in text sort order) of the three results of the MinString(MyField) function
evaluated on the current row and two rows above the current row.

Data used in examples:

Disable sorting of MyField to ensure that the example works as expected.

Script syntax and chart functions - Qlik Sense, May 2024 1353

8 Script and chart functions

MyField RangeMinString(Above(MinString(MyField),0,3))

10 10

abc 10

8 8

def 8

xyz 8

9 9

Sample data

Data used in examples:

RangeTab:

LOAD * INLINE [

MyField

10

'abc'

8

'def'

'xyz'

9

] ;

See also:
p MinString - chart function (page 544)

RangeMissingCount
RangeMissingCount() returns the number of non-numeric values (including NULL) in the
expression or field.

Syntax:
RangeMissingCount(first_expr[, Expression])

Return data type: integer

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list
of values.

Argument Description

first_expr The expression or field containing the data to be counted.

Expression Optional expressions or fields containing the range of data to be counted.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1354

8 Script and chart functions

Examples and results:

Examples Results

RangeMissingCount (1,2,4) Returns 0

RangeMissingCount (5,'abc') Returns 1

RangeMissingCount (null()) Returns 1

Function examples

Example with expression:

RangeMissingCount (Above(MinString(MyField),0,3))

Returns the number of non-numeric values in the three results of the MinString(MyField) function
evaluated on the current row and two rows above the current row.

Disable sorting of MyField to ensure that the example works as expected.

MyField
RangeMissingCount
(Above(MinString
(MyField),0,3))

Explanation

10 2 Returns 2 because there are no rows above this
row so 2 of the 3 values are missing.

abc 2 Returns 2 because there is only 1 row above the
current row and the current row is non-numeric
('abc').

8 1 Returns 1 because 1 of the 3 rows includes a
non-numeric ('abc').

def 2 Returns 2 because 2 of the 3 rows include non-
numeric values ('def' and 'abc').

xyz 2 Returns 2 because 2 of the 3 rows include non-
numeric values (' xyz' and 'def').

9 2 Returns 2 because 2 of the 3 rows include non-
numeric values (' xyz' and 'def').

Sample data

Data used in examples:

RangeTab:

LOAD * INLINE [

MyField

10

'abc'

8

Script syntax and chart functions - Qlik Sense, May 2024 1355

8 Script and chart functions

'def'

'xyz'

9

] ;

See also:
p MissingCount - chart function (page 361)

RangeMode
RangeMode() finds the most commonly occurring value (mode value) in the expression or field.

Syntax:
RangeMode(first_expr {, Expression})

Return data type: numeric

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list
of values.

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Limitations:

If more than one value shares the highest frequency, NULL is returned.

Examples and results:

Examples Results

RangeMode (1,2,9,2,4) Returns 2

RangeMode ('a',4,'a',4) Returns NULL

RangeMode (null()) Returns NULL

Function examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

RangeTab3:

LOAD recno() as RangeID, RangeMode(Field1,Field2,Field3) as MyRangeMode INLINE [

Script syntax and chart functions - Qlik Sense, May 2024 1356

8 Script and chart functions

Field1, Field2, Field3

10,5,6

2,3,7

8,2,8

18,11,9

5,5,9

9,4,2

];

The resulting table shows the returned values of MyRangeMode for each of the records in the
table.

RangeID MyRangMode

1 -

2 -

3 8

4 -

5 5

6 -

Results table

Example with expression:

RangeMode (Above(MyField,0,3))

Returns the most commonly occurring value in the three results of MyField evaluated on the current
row and two rows above the current row. By specifying the third argument as 3, the Above()
function returns three values, where there are sufficient rows above, which are taken as input to the
RangeMode() function.

Data used in example:

RangeTab:

LOAD * INLINE [

MyField

10

2

8

18

5

9

] ;

Disable sorting of MyField to ensure that the example works as expected.

Script syntax and chart functions - Qlik Sense, May 2024 1357

8 Script and chart functions

MyField RangeMode(Above(MyField,0,3))

10 Returns 10 because there are no rows above so the single value is the most
commonly occurring.

2 -

8 -

18 -

5 -

9 -

Sample data

See also:
p Mode - chart function (page 347)

RangeNPV
RangeNPV() returns the net present value of an investment based on a discount rate
and a series of future periodic payments (negative values) and incomes (positive
values). The result has a default number format of money.

For cash flows that are not necessarily periodic, see RangeXNPV (page 1371).

Syntax:
RangeNPV(discount_rate, value[,value][, Expression])

Return data type: numeric

Argument Description

discount_
rate

The interest rate per period.

value A payment or income occurring at the end of each period. Each value may be a
single value or a range of values as returned by an inter-record function with a
third optional parameter.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Limitations:

Text values, NULL values and missing values are disregarded.

Script syntax and chart functions - Qlik Sense, May 2024 1358

8 Script and chart functions

Examples Results

RangeNPV(0.1,-10000,3000,4200,6800) Returns 1188.44

Add the example script to your app and run it. To see the result,
add the fields listed in the results column to a sheet in your app.

RangeTab3:

LOAD *,

recno() as RangeID,

RangeNPV(Field1,Field2,Field3) as RangeNPV;

LOAD * INLINE [

Field1|Field2|Field3

10|5|-6000

2|NULL|7000

8|'abc'|8000

18|11|9000

5|5|9000

9|4|2000

] (delimiter is '|');

The resulting table shows
the returned values of
RangeNPV for each of the
records in the table.

RangeID RangeNPV

1 $-49.13

2 $777.78

3 $98.77

4 $25.51

5 $250.83

6 $20.40

See also:
p Inter-record functions (page 1273)

RangeNullCount
RangeNullCount() finds the number of NULL values in the expression or field.

Syntax:
RangeNullCount(first_expr [, Expression])

Return data type: integer

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list
of values.

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1359

8 Script and chart functions

Examples and results:

Examples Results

RangeNullCount (1,2,4) Returns 0

RangeNullCount (5,'abc') Returns 0

RangeNullCount (null(), null()) Returns 2

Function examples

Example with expression:

RangeNullCount (Above(Sum(MyField),0,3))

Returns the number of NULL values in the three results of the Sum(MyField) function evaluated on
the current row and two rows above the current row.

Copying MyField in example below will not result in NULL value.

MyField RangeNullCount(Above(Sum(MyField),0,3))

10 Returns 2 because there are no rows above this row so 2 of the 3 values are missing
(=NULL).

'abc' Returns 1 because there is only one row above the current row, so one of the three
values is missing (=NULL).

8 Returns 0 because none of the three rows is a NULL value.

Sample data

Data used in examples:

RangeTab:

LOAD * INLINE [

MyField

10

'abc'

8

] ;

See also:
p NullCount - chart function (page 363)

RangeNumericCount
RangeNumericCount() finds the number of numeric values in an expression or field.

Syntax:
RangeNumericCount(first_expr[, Expression])

Script syntax and chart functions - Qlik Sense, May 2024 1360

8 Script and chart functions

Return data type: integer

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list
of values.

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Examples and results:

Examples Results

RangeNumericCount (1,2,4) Returns 3

RangeNumericCount (5,'abc') Returns 1

RangeNumericCount (null()) Returns 0

Function examples

Example with expression:

RangeNumericCount (Above(MaxString(MyField),0,3))

Returns the number of numeric values in the three results of the MaxString(MyField) function
evaluated on the current row and two rows above the current row.

Disable sorting of MyField to ensure that the example works as expected.

MyField RangeNumericCount(Above(MaxString(MyField),0,3))

10 1

abc 1

8 2

def 1

xyz 1

9 1

Sample data

Data used in examples:

RangeTab:

Script syntax and chart functions - Qlik Sense, May 2024 1361

8 Script and chart functions

LOAD * INLINE [

MyField

10

'abc'

8

def

xyz

9

] ;

See also:
p NumericCount - chart function (page 366)

RangeOnly
RangeOnly() is a dual function that returns a value if the expression evaluates to one unique value.
If this is not the case then NULL is returned.

Syntax:
RangeOnly(first_expr[, Expression])

Return data type: dual

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list
of values.

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Examples and results:

Examples Results

RangeOnly (1,2,4) Returns NULL

RangeOnly (5,'abc') Returns NULL

RangeOnly (null(), 'abc') Returns 'abc'

RangeOnly(10,10,10) Returns 10

See also:
p Only - chart function (page 350)

Script syntax and chart functions - Qlik Sense, May 2024 1362

8 Script and chart functions

RangeSkew
RangeSkew() returns the value corresponding to the skewness of a range of numbers.

Syntax:
RangeSkew(first_expr[, Expression])

Return data type: numeric

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list
of values.

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Limitations:

If no numeric value is found, NULL is returned.

Examples and results:

Examples Results

rangeskew (1,2,4) Returns 0.93521952958283

rangeskew (above

(SalesValue,0,3))
Returns a sliding skewness of the range of three values returned from the
above() function calculated on the current row and the two rows above
the current row.

Function examples

Data used in example:

CustID RangeSkew(Above(SalesValue,0,3))

1-20 -, -, 0.5676, 0.8455, 1.0127, -0.8741, 1.7243, -1.7186, 1.5518, 1.4332, 0,

1.1066, 1.3458, 1.5636, 1.5439, 0.6952, -0.3766

Sample data

SalesTable:

LOAD recno() as CustID, * inline [

SalesValue

101

163

126

Script syntax and chart functions - Qlik Sense, May 2024 1363

8 Script and chart functions

139

167

86

83

22

32

70

108

124

176

113

95

32

42

92

61

21

] ;

See also:
p Skew - chart function (page 453)

RangeStdev
RangeStdev() finds the standard deviation of a range of numbers.

Syntax:
RangeStdev(first_expr[, Expression])

Return data type: numeric

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list
of values.

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Limitations:

If no numeric value is found, NULL is returned.

Script syntax and chart functions - Qlik Sense, May 2024 1364

8 Script and chart functions

Examples and results:

Examples Results

RangeStdev (1,2,4) Returns 1.5275252316519

RangeStdev (null()) Returns NULL

RangeStdev (above

(SalesValue),0,3))
Returns a sliding standard of the range of three values returned from the
above() function calculated on the current row and the two rows above
the current row.

Function examples

Data used in example:

CustID RangeStdev(SalesValue, 0,3))

1-20 -,43.841, 34.192, 18.771, 20.953, 41.138, 47.655, 36.116, 32.716, 25.325,

38,000, 27.737, 35.553, 33.650, 42.532, 33.858, 32.146, 25.239, 35.595

Sample data

SalesTable:

LOAD recno() as CustID, * inline [

SalesValue

101

163

126

139

167

86

83

22

32

70

108

124

176

113

95

32

42

92

61

21

] ;

See also:
p Stdev - chart function (page 456)

RangeSum
RangeSum() returns the sum of a range of values. All non-numeric values are treated as 0.

Script syntax and chart functions - Qlik Sense, May 2024 1365

8 Script and chart functions

Syntax:
RangeSum(first_expr[, Expression])

Return data type: numeric

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list
of values.

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Arguments

Limitations:

The RangeSum function treats all non-numeric values as 0.

Examples and results:

Examples Results

RangeSum (1,2,4) Returns 7

RangeSum (5,'abc') Returns 5

RangeSum (null()) Returns 0

Examples

Example:

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

RangeTab3:

LOAD recno() as RangeID, Rangesum(Field1,Field2,Field3) as MyRangeSum INLINE [

Field1, Field2, Field3

10,5,6

2,3,7

8,2,8

18,11,9

5,5,9

9,4,2

];

The resulting table shows the returned values of MyRangeSum for each of the records in the table.

Script syntax and chart functions - Qlik Sense, May 2024 1366

8 Script and chart functions

RangeID MyRangeSum

1 21

2 12

3 18

4 38

5 19

6 15

Resulting table

Example with expression:

RangeSum (Above(MyField,0,3))

Returns the sum of the three values of MyField): from the current row and two rows above the
current row. By specifying the third argument as 3, the Above() function returns three values,
where there are sufficient rows above, which are taken as input to the RangeSum() function.

Data used in examples:

Disable sorting of MyField to ensure that the example works as expected.

MyField RangeSum(Above(MyField,0,3))

10 10

2 12

8 20

18 28

5 31

9 32

Sample data

Data used in examples:

RangeTab:

LOAD * INLINE [

MyField

10

2

8

18

5

9

] ;

Script syntax and chart functions - Qlik Sense, May 2024 1367

8 Script and chart functions

See also:
p Sum - chart function (page 353)
p Above - chart function (page 1277)

RangeTextCount
RangeTextCount() returns the number of text values in an expression or field.

Syntax:
RangeTextCount(first_expr[, Expression])

Return data type: integer

Arguments:

The arguments of this function may contain inter-record functions which in themselves return a list
of values.

Argument Description

first_expr The expression or field containing the data to be measured.

Expression Optional expressions or fields containing the range of data to be measured.

Argument

Examples and results:

Examples Results

RangeTextCount (1,2,4) Returns 0

RangeTextCount (5,'abc') Returns 1

RangeTextCount (null()) Returns 0

Function examples

Example with expression:

RangeTextCount (Above(MaxString(MyField),0,3))

Returns the number of text values within the three results of the MaxString(MyField) function
evaluated over the current row and two rows above the current row.

Data used in examples:

Disable sorting of MyField to ensure that the example works as expected.

Script syntax and chart functions - Qlik Sense, May 2024 1368

8 Script and chart functions

MyField MaxString(MyField) RangeTextCount(Above(Sum(MyField),0,3))

10 10 0

abc abc 1

8 8 1

def def 2

xyz xyz 2

9 9 2

Example data

Data used in examples:

RangeTab:

LOAD * INLINE [

MyField

10

'abc'

8

null()

'xyz'

9

] ;

See also:
p TextCount - chart function (page 370)

RangeXIRR
RangeXIRR() returns the internal rate of return (yearly) for a schedule of cash flows
that is not necessarily periodic. To calculate the internal rate of return for a series of
periodic cash flows, use the RangeIRR function.

Qlik's XIRR functionality (XIRR() and RangeXIRR() functions) uses the following equation, solving
for the Rate value, to determine the correct XIRR value:

XNPV(Rate, pmt, date) = 0

The equation is solved using a simplified version of the Newton method.

Syntax:
RangeXIRR(value, date{, value, date})

Script syntax and chart functions - Qlik Sense, May 2024 1369

8 Script and chart functions

Return data type: numeric

Argument Description

value A cash flow or a series of cash flows that correspond to a schedule of payments
in dates. The series of values must contain at least one positive and one negative
value.

date A payment date or a schedule of payment dates that corresponds to the cash
flow payments.

Arguments

When working with this function, the following limitations apply:

l Text values, NULL values and missing values are disregarded.
l All payments are discounted based on a 365-day year.
l This function requires at least one valid negative and at least one valid positive payment

(with corresponding valid dates). If these payments are not provided, a NULL value is
returned.

The following topics might help you work with this function:

l RangeXNPV (page 1371): Use this function calculate the net present value for a schedule of
cash flows that is not necessarily periodic.

l XIRR (page 384): The XIRR() function calculates the aggregated internal rate of return
(yearly) for a schedule of cash flows (that is not necessarily periodic).

Across different versions of Qlik Sense Client-Managed, there are variations in the
underlying algorithm used by this function. For more information about recent updates
to the algorithm, see support article XIRR function Fix and Update.

Examples and results:

Examples Results

RangeXIRR(-2500,'2008-01-01',2750,'2008-09-01') Returns 0.1532

Examples and results

See also:
p RangeIRR (page 1345)
p RangeXNPV (page 1371)
p XIRR (page 384)
≤ XIRR function Fix and Update

Script syntax and chart functions - Qlik Sense, May 2024 1370

https://community.qlik.com/t5/Member-Articles/XIRR-function-Fix-and-Update/ta-p/2049021
https://community.qlik.com/t5/Member-Articles/XIRR-function-Fix-and-Update/ta-p/2049021

8 Script and chart functions

RangeXNPV
RangeXNPV() returns the net present value for a schedule of cash flows (not
necessarily periodic) represented by paired numbers in the expressions given by pmt
and date. All payments are discounted based on a 365-day year.

Syntax:
RangeXNPV(discount_rate, value, date{, value, date})

Return data type: numeric

Argument Description

discount_rate discount_rate is the yearly rate that the payments should be discounted by.

value A cash flow or a series of cash flows that corresponds to a schedule of
payments in dates. Each value may be a single value or a range of values as
returned by an inter-record function with a third optional parameter. The
series of values must contain at least one positive and one negative value.

date A payment date or a schedule of payment dates that corresponds to the
cash flow payments.

Arguments

When working with this function, the following limitations apply:

l Text values, NULL values and missing values are disregarded.
l All payments are discounted based on a 365-day year.

Example - script
Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l Financial data contained in a table called RangeTab3.
l The use of the RangeXNPV() function to compute net present value.

Load script

RangeTab3:

LOAD *,

recno() as RangeID,

RangeXNPV(DiscountRate,Value1,Date1,Value2,Date2) as RangeXNPV;

LOAD * INLINE [

Script syntax and chart functions - Qlik Sense, May 2024 1371

8 Script and chart functions

DiscountRate|Value1|Date1|Value2|Date2

0.1|-100|2021-01-01|100|2022-01-01|

0.1|-100|2021-01-01|110|2022-01-01|

0.1|-100|2021-01-01|125|2022-01-01|

] (delimiter is '|');

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

l RangeID

l RangeXNPV

RangeID RangeXNPV

1 -$9.09

2 -$0.00

3 $13.64

Results table

Example - chart expression
Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

l Financial data contained in a table called RangeTab3.
l The use of the RangeXNPV() function to compute net present value.

Load script

RangeTab3:

LOAD *,

recno() as RangeID,

RangeXNPV(DiscountRate,Value1,Date1,Value2,Date2) as RangeXNPV;

LOAD * INLINE [

DiscountRate|Value1|Date1|Value2|Date2

0.1|-100|2021-01-01|100|2022-01-01|

0.1|-100|2021-01-01|110|2022-01-01|

0.1|-100|2021-01-01|125|2022-01-01|

] (delimiter is '|');

Script syntax and chart functions - Qlik Sense, May 2024 1372

8 Script and chart functions

Results

Do the following:

Load the data and open a sheet. Create a new table and add the following calculation as a measure.

=RangeXNPV(0.1, -2500,'2008-01-01',2750,'2008-09-01')

=XIRR(Payments, Date)

$80.25

Results table

See also:
p XNPV (page 390)

8.22 Relational functions
This is a group of functions that calculate properties of individual dimensional values in a chart,
using already aggregated numbers.

The functions are relational in the sense that the function output depends not only on the value of
the data point itself, but also on the value’s relation to other data points. For example, a rank cannot
be calculated without a comparison with other dimensional values.

These functions can only be used in chart expressions. They cannot be used in the load script.

A dimension is needed in the chart, since this defines the other data points needed for the
comparison. Consequently, a relational function is not meaningful in a dimensionless chart (for
example, a KPI object).

Ranking functions

Suppression of zero values is automatically disabled when these functions are used.
NULL values are disregarded.

Rank
Rank() evaluates the rows of the chart in the expression, and for each row, displays the relative
position of the value of the dimension evaluated in the expression. When evaluating the expression,
the function compares the result with the result of the other rows containing the current column
segment and returns the ranking of the current row within the segment.

Rank - chart function([TOTAL [<fld {, fld}>]] expr[, mode[, fmt]])

Script syntax and chart functions - Qlik Sense, May 2024 1373

8 Script and chart functions

HRank
HRank() evaluates the expression, and compares the result with the result of the other columns
containing the current row segment of a pivot table. The function then returns the ranking of the
current column within the segment.

HRank - chart function([TOTAL] expr[, mode[, fmt]])

Clustering functions
KMeans2D
The property group Site license contains properties related to the license for the Qlik Sense
system. All fields are mandatory and must not be empty.

Property name Description

Owner name The user name of the Qlik Sense product owner.

Owner
organization

The name of the organization that the Qlik Sense product owner is a
member of.

Serial number The serial number assigned to the Qlik Sense software.

Control number The control number assigned to the Qlik Sense software.

LEF access The License Enabler File (LEF) assigned to the Qlik Sense software.

Site licence properties

KMeans2D() evaluates the rows of the chart by applying k-means clustering, and for each chart
row displays the cluster id of the cluster this data point has been assigned to. The columns that are
used by the clustering algorithm are determined by the parameters coordinate_1, and coordinate_2,
respectively. These are both aggregations. The number of clusters that are created is determined
by the num_clusters parameter. Data can be optionally normalized by the norm parameter.

KMeans2D - chart function(num_clusters, coordinate_1, coordinate_2 [, norm])

KMeansND
KMeansND() evaluates the rows of the chart by applying k-means clustering, and for each chart
row displays the cluster id of the cluster this data point has been assigned to. The columns that are
used by the clustering algorithm are determined by the parameters coordinate_1, and coordinate_2,
etc., up to n columns. These are all aggregations. The number of clusters that are created is
determined by the num_clusters parameter.

KMeansND - chart function(num_clusters, num_iter, coordinate_1, coordinate_2

[,coordinate_3 [, ...]])

KMeansCentroid2D
KMeansCentroid2D() evaluates the rows of the chart by applying k-means clustering, and for each
chart row displays the desired coordinate of the cluster this data point has been assigned to. The
columns that are used by the clustering algorithm are determined by the parameters coordinate_1,
and coordinate_2, respectively. These are both aggregations. The number of clusters that are

Script syntax and chart functions - Qlik Sense, May 2024 1374

8 Script and chart functions

created is determined by the num_clusters parameter. Data can be optionally normalized by the
norm parameter.

KMeansCentroid2D - chart function(num_clusters, coordinate_no, coordinate_1,

coordinate_2 [, norm])

KMeansCentroidND
KMeansCentroidND() evaluates the rows of the chart by applying k-means clustering, and for each
chart row displays the desired coordinate of the cluster this data point has been assigned to. The
columns that are used by the clustering algorithm are determined by the parameters coordinate_1,
coordinate_2, etc., up to n columns. These are all aggregations. The number of clusters that are
created is determined by the num_clusters parameter.

KMeansCentroidND - chart function(num_clusters, num_iter, coordinate_no,

coordinate_1, coordinate_2 [,coordinate_3 [, ...]])

Time series decomposition functions
STL_Trend
STL_Trend is a time series decomposition function. Along with STL_Seasonal and STL_Residual,
this function is used to decompose a time series into seasonal, trend, and residual components. In
the context of the STL algorithm, time series decomposition is used to identify both a recurring
seasonal pattern and a general trend, given an input metric and other parameters. The STL_Trend
function will identify a general trend, independent of seasonal patterns or cycles, from time series
data.

STL_Trend - chart function(target_measure, period_int [,seasonal_smoother

[,trend_smoother]])

STL_Seasonal
STL_Seasonal is a time series decomposition function. Along with STL_Trend and STL_Residual,
this function is used to decompose a time series into seasonal, trend, and residual components. In
the context of the STL algorithm, time series decomposition is used to identify both a recurring
seasonal pattern and a general trend, given an input metric and other parameters. The STL_
Seasonal function can identify a seasonal pattern within a time series, separating this from the
general trend displayed by the data.

STL_Seasonal - chart function(target_measure, period_int [,seasonal_smoother

[,trend_smoother]])

STL_Residual
STL_Residual is a time series decomposition function. Along with STL_Seasonal and STL_Trend,
this function is used to decompose a time series into seasonal, trend, and residual components. In
the context of the STL algorithm, time series decomposition is used to identify both a recurring
seasonal pattern and a general trend, given an input metric and other parameters. In performing this
operation, part of the variation in the input metric will neither fit within the seasonal nor the trend
component, and will be defined as the residual component. The STL_Residual chart function
captures this portion of the calculation.

Script syntax and chart functions - Qlik Sense, May 2024 1375

8 Script and chart functions

STL_Residual - chart function(target_measure, period_int [,seasonal_smoother

[,trend_smoother]])

Rank - chart function
Rank() evaluates the rows of the chart in the expression, and for each row, displays the relative
position of the value of the dimension evaluated in the expression. When evaluating the expression,
the function compares the result with the result of the other rows containing the current column
segment and returns the ranking of the current row within the segment.

Column segments

For charts other than tables, the current column segment is defined as it appears in the charts
straight table equivalent.

Syntax:
Rank([TOTAL] expr[, mode[, fmt]])

Script syntax and chart functions - Qlik Sense, May 2024 1376

8 Script and chart functions

Return data type: dual

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

mode Specifies the number representation of the function result.

fmt Specifies the text representation of the function result.

TOTAL If the chart is one-dimensional, or if the expression is preceded by the TOTAL
qualifier, the function is evaluated along the entire column. If the table or table
equivalent has multiple vertical dimensions, the current column segment will
include only rows with the same values as the current row in all dimension
columns except for the column showing the last dimension in the inter-field sort
order.

Arguments

The ranking is returned as a dual value, which in the case when each row has a unique ranking, is an
integer between 1 and the number of rows in the current column segment.

In the case where several rows share the same ranking, the text and number representation can be
controlled with the mode and fmt parameters.

mode
The second argument, mode, can take the following values:

Value Description

0 (default) If all ranks within the sharing group fall on the low side of the middle
value of the entire ranking, all rows get the lowest rank within the
sharing group.

If all ranks within the sharing group fall on the high side of the middle
value of the entire ranking, all rows get the highest rank within the
sharing group.

If ranks within the sharing group span over the middle value of the entire
ranking, all rows get the value corresponding to the average of the top
and bottom ranking in the entire column segment.

1 Lowest rank on all rows.

2 Average rank on all rows.

3 Highest rank on all rows.

4 Lowest rank on first row, then incremented by one for each row.

mode examples

Script syntax and chart functions - Qlik Sense, May 2024 1377

8 Script and chart functions

fmt
The third argument, fmt, can take the following values:

Value Description

0 (default) Low value - high value on all rows (for example 3 - 4).

1 Low value on all rows.

2 Low value on first row, blank on the following rows.

fmtexamples

The order of rows for mode 4 and fmt 2 is determined by the sort order of the chart dimensions.

Examples and results:

Create two visualizations from the dimensions Product and Sales and another from Product and
UnitSales. Add measures as shown in the following table.

Examples Results

Example 1. Create a table with the
dimensions Customer and Sales and
the measure Rank(Sales)

The result depends on the sort order of the dimensions. If
the table is sorted on Customer, the table lists all the
values of Sales for Astrida, then Betacab, and so on. The
results for Rank(Sales) will show 10 for the Sales value
12, 9 for the Sales value 13, and so on, with the rank value
of 1 returned for the Sales value 78. The next column
segment begins with Betacab, for which the first value of
Sales in the segment is 12. The rank value of Rank(Sales)
for this is given as 11.

If the table is sorted on Sales, the column segments
consist of the values of Sales and the corresponding
Customer. Because there are two Sales values of 12 (for
Astrida and Betacab), the value of Rank(Sales) for that
column segment is 1-2, for each value of Customer. This
is because there are two values of Customer for the
Sales value 12. If there had been 4 values, the result
would be 1-4, for all rows. This shows what the result
looks like for the default value (0) of the argument fmt.

Example 2. Replace the dimension
Customer with Product and add the
measure Rank(Sales,1,2)

This returns 1 on the first row on each column segment
and leaves all other rows blank, because arguments
mode and fmt are set to 1 and 2 respectively.

Rank examples

Results for example 1, with table sorted on Customer:

Script syntax and chart functions - Qlik Sense, May 2024 1378

8 Script and chart functions

Customer Sales Rank(Sales)

Astrida 12 10

Astrida 13 9

Astrida 20 8

Astrida 22 7

Astrida 45 6

Astrida 46 5

Astrida 60 4

Astrida 65 3

Astrida 70 2

Astrida 78 1

Betcab 12 11

Results table

Results for example 1, with table sorted on Sales:

Customer Sales Rank(Sales)

Astrida 12 1-2

Betacab 12 1-2

Astrida 13 1

Betacab 15 1

Astrida 20 1

Astrida 22 1-2

Betacab 22 1-2

Betacab 24 1-2

Canutility 24 1-2

Results table

Data used in examples:

ProductData:

Load * inline [

Customer|Product|UnitSales|UnitPrice

Astrida|AA|4|16

Astrida|AA|10|15

Astrida|BB|9|9

Betacab|BB|5|10

Betacab|CC|2|20

Betacab|DD|0|25

Script syntax and chart functions - Qlik Sense, May 2024 1379

8 Script and chart functions

Canutility|AA|8|15

Canutility|CC|0|19

] (delimiter is '|');

Sales2013:

crosstable (Month, Sales) LOAD * inline [

Customer|Jan|Feb|Mar|Apr|May|Jun|Jul|Aug|Sep|Oct|Nov|Dec

Astrida|46|60|70|13|78|20|45|65|78|12|78|22

Betacab|65|56|22|79|12|56|45|24|32|78|55|15

Canutility|77|68|34|91|24|68|57|36|44|90|67|27

Divadip|57|36|44|90|67|27|57|68|47|90|80|94

] (delimiter is '|');

See also:
p Sum - chart function (page 353)

HRank - chart function
HRank() evaluates the expression, and compares the result with the result of the other columns
containing the current row segment of a pivot table. The function then returns the ranking of the
current column within the segment.

Syntax:
HRank([TOTAL] expr [, mode [, fmt]])

Return data type: dual

This function only works in pivot tables. In all other chart types it returns NULL.

Arguments:

Argument Description

expr The expression or field containing the data to be measured.

mode Specifies the number representation of the function result.

fmt Specifies the text representation of the function result.

TOTAL If the chart is one-dimensional, or if the expression is preceded by the TOTAL
qualifier, the function is evaluated along the entire column. If the table or table
equivalent has multiple vertical dimensions, the current column segment will
include only rows with the same values as the current row in all dimension
columns except for the column showing the last dimension in the inter-field sort
order.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1380

8 Script and chart functions

If the pivot table is one-dimensional or if the expression is preceded by the total qualifier, the
current row segment is always equal to the entire row. If the pivot table has multiple horizontal
dimensions, the current row segment will include only columns with the same values as the current
column in all dimension rows except for the row showing the last horizontal dimension of the inter-
field sort order.

The ranking is returned as a dual value, which in the case when each column has a unique ranking
will be an integer between 1 and the number of columns in the current row segment.

In the case where several columns share the same ranking, the text and number representation can
be controlled with the mode and format arguments.

The second argument, mode, specifies the number representation of the function result:

Value Description

0 (default) If all ranks within the sharing group fall on the low side of the middle
value of the entire ranking, all columns get the lowest rank within the
sharing group.

If all ranks within the sharing group fall on the high side of the middle
value of the entire ranking, all columns get the highest rank within the
sharing group.

If ranks within the sharing group span over the middle value of the entire
ranking, all rows get the value corresponding to the average of the top
and bottom ranking in the entire column segment.

1 Lowest rank on all columns in the group.

2 Average rank on all columns in the group.

3 Highest rank on all columns in the group.

4 Lowest rank on first column, then incremented by one for each column
in the group.

mode examples

The third argument, format, specifies the text representation of the function result:

Value Description

0 (default) Low value&' - '&high value on all columns in the group (for example 3 -
4).

1 Low value on all columns in the group.

2 Low value on first column, blank on the following columns in the group.

format examples

The order of columns for mode 4 and format 2 is determined by the sort order of the chart
dimensions.

Script syntax and chart functions - Qlik Sense, May 2024 1381

8 Script and chart functions

Examples:

HRank(sum(Sales))

HRank(sum(Sales), 2)

HRank(sum(Sales), 0, 1)

Optimizing with k-means: A real-world example
The following example illustrates a real world use case where the KMeans clustering and Centroid
functions are applied to a dataset. The KMeans function segregates data points into clusters that
share similarities. The clusters become more compact and differentiated as the KMeans algorithm
is applied over a configurable number of iterations.

KMeans is used across many fields in a wide variety of use cases; some examples of clustering use
cases include customer segmentation, fraud detection, predicting account attrition, targeting client
incentives, cybercrime identification, and delivery route optimization. The KMeans clustering
algorithm is increasingly being used where enterprises are trying to infer patterns and optimize
service offerings.

Qlik Sense KMeans and Centroid functions
Qlik Sense provides two KMeans functions that group data points into clusters based on similarity.
See KMeans2D - chart function (page 1391) and KMeansND - chart function (page 1406). The
KMeans2D function accepts two dimensions and works well for visualizing results through a
scatter plot chart. The KMeansND function accepts more than two dimensions. As it is easy to
conceptualize a 2D outcome on standard charts, the following demonstration applies KMeans on a
scatter plot chart using two dimensions. KMeans clustering can be visualized through coloring by
expression; or by dimension as described in this example.

Qlik Sense centroid functions determine the arithmetic mean position of all the data points in the
cluster and identify a central point, or centroid for that cluster. For each chart row (or record), the
centroid function displays the coordinate of the cluster this data point has been assigned to. See
KMeansCentroid2D - chart function (page 1421) and KMeansCentroidND - chart function (page
1422).

Use case and example overview
The following example stages through a simulated real world scenario. A textile company in New
York state, USA, must decrease expenses by minimizing delivery costs. One way to do that is to
relocate warehouses closer to their distributors. The company employs 118 distributors across the
state of New York. The following demonstration simulates how an operations manager could
segment distributors into five clustered geographies using the KMeans function and then identify
five optimal warehouse locations central to those clusters using the centroid function. The
objective is to discover mapping coordinates that can be used to identify five central warehouse
locations.

Script syntax and chart functions - Qlik Sense, May 2024 1382

8 Script and chart functions

The dataset
The dataset is based on randomly generated names and addresses in New York state with real
latitude and longitude coordinates. The dataset contains the following ten columns: id, first_name,
last_name, telephone, address, city, state, zip, latitude, longitude. The dataset is available below as
a file you can download locally and then upload to Qlik Sense or inline for data load editor. The app
being created is named Distributors KMeans and Centroid and the first sheet in the app is named
Distribution cluster analysis.

Select the following link to download the sample data file: DistributorData.csv

Distributor dataset: Inline load for data load editor in Qlik Sense (page 1389)

Title: DistributorData

Total number of records: 118

Applying the KMeans2D function
In this example, configuration of a scatter plot chart is demonstrated using the DistributorData
dataset, the KMeans2D function is applied, and the chart is colored by dimension.

Note that Qlik Sense KMeans functions support auto-clustering using a method called depth
difference (DeD). When a user sets 0 for the number of clusters, the optimal number of clusters for
that dataset is determined. For this example however, a variable is created for the num_clusters
argument (refer to KMeans2D - chart function (page 1391) for syntax). Therefore, the desired
number of clusters (k=5) is specified by a variable.

1. A scatter plot chart is dragged onto the sheet and named Distributors (by dimension).
2. A variable is created to specify the number of clusters. The variable is named vDistClusters.

For the variable Definition, 5 is entered.
3. Data configuration for the chart:

a. Under Dimensions, id field is selected for Bubble. Cluster id is entered for the Label.
b. Under Measures, Avg([latitude]) is the expression for X-axis.
c. Under Measures, Avg([longitude]) is the expression for Y-axis.

4. Appearance configuration:
a. Under Colors and legend, Custom is chosen for Colors.
b. By dimension is selected for coloring the chart.
c. The following expression is entered: =pick(aggr(KMeans2D(vDistClusters,only

(latitude),only(longitude)),id)+1, 'Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4', 'Cluster
5')

d. The checkbox for Persistent colors is selected.

Script syntax and chart functions - Qlik Sense, May 2024 1383

DistributorData.csv

8 Script and chart functions

Scatter plot before KMeans coloring by dimension is applied

Scatter plot after KMeans coloring by dimension is applied

Adding a table: Distributors
It can be helpful to have a table handy for quick access to relevant data. The scatter plot chart
shows ids though a table with corresponding distributor names is added for reference.

1. A table named Distributors is dragged onto the sheet with the following Columns
(Dimensions) added: id, first_name, and last_name.

Script syntax and chart functions - Qlik Sense, May 2024 1384

8 Script and chart functions

Table: Distributor names

Adding a bar chart: # observations per cluster
For the warehouse distribution scenario, it is helpful to know how many distributors will be served
by each warehouse. Therefore, a bar chart is created that measures how many distributors are
assigned to each cluster.

1. A bar chart is dragged onto the sheet. The chart is named: # observations per cluster.
2. Data configuration for the bar chart:

a. A Dimension labeled Clusters is added (the label can be added after the expression is
applied). The following expression is entered: =pick(aggr(KMeans2D
(vDistClusters,only(latitude),only(longitude)),id)+1, 'Cluster 1', 'Cluster 2', 'Cluster 3',
'Cluster 4', 'Cluster 5')

b. A Measure labeled # of observations is added. The following expression is entered:
=count(aggr(KMeans2D(vDistClusters,only(latitude),only(longitude)),id))

3. Appearance configuration:
a. Under Colors and legend, Custom is chosen for Colors.
b. By dimension is selected for coloring the chart.
c. The following expression is entered: =pick(aggr(KMeans2D(vDistClusters,only

(latitude),only(longitude)),id)+1, 'Cluster 1', 'Cluster 2', 'Cluster 3', 'Cluster 4', 'Cluster
5')

d. The checkbox for Persistent colors is selected.
e. Show legend is turned off.
f. Under Presentation, Value labels is toggled to Auto.
g. Under X-axis: Clusters, Labels only is selected.

Script syntax and chart functions - Qlik Sense, May 2024 1385

8 Script and chart functions

Bar chart: # observations per cluster

Applying the Centroid2D function
A second table is added for the Centroid2D function that will identify the coordinates for potential
warehouse locations. This table shows the central location (centroid values) for the five identified
distributor groups.

1. A Table is dragged onto the sheet and named Cluster centroids with the following columns
added::

a. A Dimension labeled Clusters is added. The following expression is entered:=pick
(aggr(KMeans2D(vDistClusters,only(latitude),only(longitude)),id)+1,'Warehouse
1','Warehouse 2','Warehouse 3','Warehouse 4','Warehouse 5')

b. A Measure labeled latitude (D1) is added. The following expression is entered:=only
(aggr(KMeansCentroid2D(vDistClusters,0,only(latitude),only(longitude)),id))
Note the parameter coordinate_no corresponds to the first dimension(0). In this case
the dimension latitude is plotted against the x-axis. If we were working with the
CentroidND function and there were up to six dimensions, these parameter entries
could be any of six values: 0,1,2,3,4,or 5.

c. A Measure labeled longitude (D2) is added. The following expression is entered:=only
(aggr(KMeansCentroid2D(vDistClusters,1,only(latitude),only(longitude)),id))
The parameter coordinate_no in this expression corresponds to the second
dimension(1). The dimension longitude is plotted against the y-axis.

Script syntax and chart functions - Qlik Sense, May 2024 1386

8 Script and chart functions

Table: Cluster centroid calculations

Centroid mapping
The next step is to map the centroids. It is up to the app developer if they prefer to place the
visualization on separate sheets.

1. A map named Centroid mapping is dragged onto the sheet.
2. In the Layers section. Add layer is selected, then Point layer is selected.

a. The Field id is selected and Dist ids Label is added.
b. In the Location section, the checkbox for Latitude and Longitude fields is selected.
c. For Latitude, the latitude field is selected.
d. For Longitude, the longitude field is selected.
e. In the Size & Shape section, Bubble is selected for Shape, and the Size is decreased

to preference on the slider.
f. In the Colors section, Single color is selected and blue is selected for the Color and

grey for the Outline color (these choices are also a matter of preference).
3. In the Layers section, a second Point layer is added by selecting Add layer and then

selecting Point layer.
a. The following expression is entered: =aggr(KMeans2D(vDistClusters,only

(latitude),only(longitude)),id)
b. The Label Clusters is added.
c. In the Location section, the checkbox for Latitude and Longitude fields is selected.
d. For Latitude which in this case is plotted along the x-axis, the following expression is

added: =aggr(KMeansCentroid2D(vDistClusters,0,only(latitude),only(longitude)),id)
e. For Longitude which in this case is plotted along the y-axis, the following expression

is added: =aggr(KMeansCentroid2D(vDistClusters,1,only(latitude),only(longitude)),id)
f. In the Size & Shape section, Triangle is selected for Shape, and the Size is decreased

on the slider to preference.
g. Under Colors and legend, Custom is selected for Colors.

Script syntax and chart functions - Qlik Sense, May 2024 1387

8 Script and chart functions

h. By dimension is selected for coloring the chart. The following expression is entered:
=pick(aggr(KMeans2D(vDistClusters,only(latitude),only(longitude)),id)+1,'Cluster
1','Cluster 2','Cluster 3','Cluster 4','Cluster 5')

i. The dimension is labeled Clusters.
4. In Map settings, Adaptive is selected for Projection. Metric is selected for Units of

measurement.

Map: Centroids mapped by cluster

Conclusion
Using the KMeans function for this real-world scenario, distributors have been segmented into
similar groups or clusters based on similarity; in this case, proximity to one another. The Centroid
function was applied to those clusters to identify five mapping coordinates. Those coordinates
provide an initial central location at which to build or locate warehouses. The centroid function is
applied to the map chart, so that app users can visualize where the centroids are located relative to
surrounding cluster data points. The resulting coordinates represent potential warehouse locations
that could minimize delivery costs to distributors in New York state.

Script syntax and chart functions - Qlik Sense, May 2024 1388

8 Script and chart functions

App: KMeans and centroid analysis example

Distributor dataset: Inline load for data load editor in Qlik Sense
DistributorData:

Load * Inline [

id,first_name,last_name,telephone,address,city,state,zip,latitude,longitude

1,Kaiya,Snow,(716) 201-1212,6231 Tonawanda Creek Rd #APT 308,Lockport,NY,14094,43.08926,-

78.69313

2,Dean,Roy,(716) 201-1588,6884 E High St,Lockport,NY,14094,43.16245,-78.65036

3,Eden,Paul,(716) 202-4596,4647 Southwestern Blvd #APT 350,Hamburg,NY,14075,42.76003,-78.83194

4,Bryanna,Higgins,(716) 203-7041,418 Park Ave,Dunkirk,NY,14048,42.48279,-79.33088

5,Elisabeth,Lee,(716) 203-7043,36 E Courtney St,Dunkirk,NY,14048,42.48299,-79.31928

6,Skylar,Robinson,(716) 203-7166,26 Greco Ln,Dunkirk,NY,14048,42.4612095,-79.3317925

7,Cody,Bailey,(716) 203-7201,114 Lincoln Ave,Dunkirk,NY,14048,42.4801269,-79.322232

8,Dario,Sims,(408) 927-1606,N Castle Dr,Armonk,NY,10504,41.11979,-73.714864

9,Deacon,Hood,(410) 244-6221,4856 44th St,Woodside,NY,11377,40.748372,-73.905445

10,Zackery,Levy,(410) 363-8874,61 Executive Blvd,Farmingdale,NY,11735,40.7197457,-73.430239

11,Rey,Hawkins,(412) 344-8687,4585 Shimerville Rd,Clarence,NY,14031,42.972075,-78.6592452

12,Phillip,Howard,(413) 269-4049,464 Main St #101,Port Washington,NY,11050,40.8273756,-

73.7009971

13,Shirley,Tyler,(434) 985-8943,114 Glann Rd,Apalachin,NY,13732,42.0482515,-76.1229725

14,Aniyah,Jarvis,(440) 244-1808,87 N Middletown Rd,Pearl River,NY,10965,41.0629,-74.0159

15,Alayna,Woodard,(478) 335-3704,70 W Red Oak Ln,West Harrison,NY,10604,41.0162722,-73.7234926

16,Jermaine,Lambert,(508) 561-9836,24 Kellogg Rd,New Hartford,NY,13413,43.0555739,-75.2793197

17,Harper,Gibbs,(239) 466-0238,Po Box 33,Cottekill,NY,12419,41.853392,-74.106082

18,Osvaldo,Graham,(252) 246-0816,6878 Sand Hill Rd,East Syracuse,NY,13057,43.073215,-76.081448

19,Roberto,Wade,(270) 469-1211,3936 Holley Rd,Moravia,NY,13118,42.713044,-76.481227

20,Kate,Mcguire,(270) 788-3080,6451 State 64 Rte #3,Naples,NY,14512,42.707366,-77.380489

21,Dale,Andersen,(281) 480-5690,205 W Service Rd,Champlain,NY,12919,44.9645392,-73.4470831

22,Lorelai,Burch,(302) 644-2133,1 Brewster St,Glen Cove,NY,11542,40.865177,-73.633019

23,Amiyah,Flowers,(303) 223-0055,46600 Us Interstate 81 Rte,Alexandria

Bay,NY,13607,44.309626,-75.988365

Script syntax and chart functions - Qlik Sense, May 2024 1389

8 Script and chart functions

24,Mckinley,Clements,(303) 918-3230,200 Summit Lake Dr,Valhalla,NY,10595,41.101145,-73.778298

25,Marc,Gibson,(607) 203-1233,25 Robinson St,Binghamton,NY,13901,42.107416,-75.901614

26,Kali,Norman,(607) 203-1400,1 Ely Park Blvd #APT 15,Binghamton,NY,13905,42.125866,-75.925026

27,Laci,Cain,(607) 203-1437,16 Zimmer Road,Kirkwood,NY,13795,42.066516,-75.792627

28,Mohammad,Perez,(607) 203-1652,71 Endicott Ave #APT 12,Johnson City,NY,13790,42.111894,-

75.952187

29,Izabelle,Pham,(607) 204-0392,434 State 369 Rte,Port Crane,NY,13833,42.185838,-75.823074

30,Kiley,Mays,(607) 204-0870,244 Ballyhack Rd #14,Port Crane,NY,13833,42.175612,-75.814917

31,Peter,Trevino,(607) 205-1374,125 Melbourne St.,Vestal,NY,13850,42.080254,-76.051124

32,Ani,Francis,(607) 208-4067,48 Caswell St,Afton,NY,13730,42.232065,-75.525674

33,Jared,Sheppard,(716) 386-3002,4709 430th Rte,Bemus Point,NY,14712,42.162175,-79.39176

34,Dulce,Atkinson,(914) 576-2266,501 Pelham Rd,New Rochelle,NY,10805,40.895449,-73.782602

35,Jayla,Beasley,(716) 526-1054,5010 474th Rte,Ashville,NY,14710,42.096859,-79.375561

36,Dane,Donovan,(718) 545-3732,5014 31st Ave,Woodside,NY,11377,40.756967,-73.909506

37,Brendon,Clay,(585) 322-7780,133 Cummings Ave,Gainesville,NY,14066,42.664309,-78.085651

38,Asia,Nunez,(718) 426-1472,2407 Gilmore ,East Elmhurst,NY,11369,40.766662,-73.869185

39,Dawson,Odonnell,(718) 342-2179,5019 H Ave,Brooklyn,NY,11234,40.633245,-73.927591

40,Kyle,Collins,(315) 733-7078,502 Rockhaven Rd,Utica,NY,13502,43.129184,-75.226726

41,Eliza,Hardin,(315) 331-8072,502 Sladen Place,West Point,NY,10996,41.3993,-73.973003

42,Kasen,Klein,(518) 298-4581,2407 Lake Shore Rd,Chazy,NY,12921,44.925561,-73.387373

43,Reuben,Bradford,(518) 298-4581,33 Lake Flats Dr,Champlain,NY,12919,44.928092,-73.387884

44,Henry,Grimes,(518) 523-3990,2407 Main St,Lake Placid,NY,12946,44.291487,-73.98474

45,Kyan,Livingston,(518) 585-7364,241 Alexandria Ave,Ticonderoga,NY,12883,43.836553,-73.43155

46,Kaitlyn,Short,(516) 678-3189,241 Chance Dr,Oceanside,NY,11572,40.638534,-73.63079

47,Damaris,Jacobs,(914) 664-5331,241 Claremont Ave,Mount Vernon,NY,10552,40.919852,-73.827848

48,Alivia,Schroeder,(315) 469-4473,241 Lafayette Rd,Syracuse,NY,13205,42.996446,-76.12957

49,Bridget,Strong,(315) 298-4355,241 Maltby Rd,Pulaski,NY,13142,43.584966,-76.136317

50,Francis,Lee,(585) 201-7021,166 Ross St,Batavia,NY,14020,43.0031502,-78.17487

51,Makaila,Phelps,(585) 201-7422,58 S Main St,Batavia,NY,14020,42.99941,-78.1939285

52,Jazlynn,Stephens,(585) 203-1087,1 Sinclair Dr,Pittsford,NY,14534,43.084157,-77.545452

53,Ryann,Randolph,(585) 203-1519,331 Eaglehead Rd,East Rochester,NY,14445,43.10785,-77.475552

54,Rosa,Baker,(585) 204-4011,42 Ossian St,Dansville,NY,14437,42.560761,-77.70088

55,Marcel,Barry,(585) 204-4013,42 Jefferson St,Dansville,NY,14437,42.557735,-77.702983

56,Dennis,Schmitt,(585) 204-4061,750 Dansville Mount Morris Rd,Dansville,NY,14437,42.584458,-

77.741648

57,Cassandra,Kim,(585) 204-4138,3 Perine Ave APT1,Dansville,NY,14437,42.562865,-77.69661

58,Kolton,Jacobson,(585) 206-5047,4925 Upper Holly Rd,Holley,NY,14470,43.175957,-78.074465

59,Nathanael,Donovan,(718) 393-3501,9604 57th Ave,Corona,NY,11373,40.736077,-73.864858

60,Robert,Frazier,(718) 271-3067,300 56th Ave,Corona,NY,11373,40.735304,-73.873997

61,Jessie,Mora,(315) 405-8991,9607 Forsyth Loop,Watertown,NY,13603,44.036466,-75.833437

62,Martha,Rollins,(347) 242-2642,22 Main St,Corona,NY,11373,40.757727,-73.829331

63,Emely,Townsend,(718) 699-0751,60 Sanford Ave,Corona,NY,11373,40.755466,-73.831029

64,Kylie,Cooley,(347) 561-7149,9608 95th Ave,Ozone Park,NY,11416,40.687564,-73.845715

65,Wendy,Cameron,(585) 571-4185,9608 Union St,Scottsville,NY,14546,43.013327,-77.7907839

66,Kayley,Peterson,(718) 654-5027,961 E 230th St,Bronx,NY,10466,40.889275,-73.850555

67,Camden,Ochoa,(718) 760-8699,59 Vark St,Yonkers,NY,10701,40.929322,-73.89957

68,Priscilla,Castillo,(910) 326-7233,9359 Elm St,Chadwicks,NY,13319,43.024902,-75.26886

69,Dana,Schultz,(913) 322-4580,99 Washington Ave,Hastings on Hudson,NY,10706,40.99265,-

73.879748

70,Blaze,Medina,(914) 207-0015,60 Elliott Ave,Yonkers,NY,10705,40.921498,-73.896682

71,Finnegan,Tucker,(914) 207-0015,90 Hillside Drive,Yonkers,NY,10705,40.922514,-73.892911

72,Pranav,Palmer,(914) 214-8376,5 Bruce Ave,Harrison,NY,10528,40.970916,-73.711493

73,Kolten,Wong,(914) 218-8268,70 Barker St,Mount Kisco,NY,10549,41.211993,-73.723202

74,Jasiah,Vazquez,(914) 231-5199,30 Broadway,Dobbs Ferry,NY,10522,41.004629,-73.879825

75,Lamar,Pierce,(914) 232-0380,68 Ridge Rd,Katonah,NY,10536,41.256662,-73.707964

76,Carla,Coffey,(914) 232-0469,197 Beaver Dam Rd,Katonah,NY,10536,41.247934,-73.664363

Script syntax and chart functions - Qlik Sense, May 2024 1390

8 Script and chart functions

77,Brooklynn,Harmon,(716) 595-3227,8084 Glasgow Rd,Cassadega,NY,14718,42.353861,-79.329558

78,Raquel,Hodges,(585) 398-8125,809 County Road ,Victor,NY,14564,43.011745,-77.398806

79,Jerimiah,Gardner,(585) 787-9127,809 Houston Rd,Webster,NY,14580,43.224204,-77.491353

80,Clarence,Hammond,(720) 746-1619,809 Pierpont Ave,Piermont,NY,10968,41.0491181,-73.918622

81,Rhys,Gill,(518) 427-7887,81 Columbia St,Albany,NY,12210,42.652824,-73.752096

82,Edith,Parrish,(845) 452-7621,81 Glenwood Ave,Poughkeepsie,NY,12603,41.691058,-73.910829

83,Kobe,Mcintosh,(845) 371-1101,81 Heitman Dr,Spring Valley,NY,10977,41.103227,-74.054396

84,Ayden,Waters,(516) 796-2722,81 Kingfisher Rd,Levittown,NY,11756,40.738939,-73.52826

85,Francis,Rogers,(631) 427-7728,81 Knollwood Ave,Huntington,NY,11743,40.864905,-73.426107

86,Jaden,Landry,(716) 496-4038,12839 39th Rte,Chaffee,NY,14030,43.527396,-73.462786

87,Giancarlo,Campos,(518) 885-5717,1284 Saratoga Rd,Ballston Spa,NY,12020,42.968594,-73.862847

88,Eduardo,Contreras,(716) 285-8987,1285 Saunders Sett Rd,Niagara Falls,NY,14305,43.122963,-

79.029274

89,Gabriela,Davidson,(716) 267-3195,1286 Mee Rd,Falconer,NY,14733,42.147339,-79.137976

90,Evangeline,Case,(518) 272-9435,1287 2nd Ave,Watervliet,NY,12189,42.723132,-73.703818

91,Tyrone,Ellison,(518) 843-4691,1287 Midline Rd,Amsterdam,NY,12010,42.9730876,-74.1700608

92,Bryce,Bass,(518) 943-9549,1288 Leeds Athens Rd,Athens,NY,12015,42.259381,-73.876897

93,Londyn,Butler,(518) 922-7095,129 Argersinger Rd,Fultonville,NY,12072,42.910969,-74.441917

94,Graham,Becker,(607) 655-1318,129 Baker Rd,Windsor,NY,13865,42.107271,-75.66408

95,Rolando,Fitzgerald,(315) 465-4166,17164 County 90 Rte,Mannsville,NY,13661,43.713443,-

76.06232

96,Grant,Hoover,(518) 692-8363,1718 County 113 Rte,Schaghticote,NY,12154,42.900648,-73.585036

97,Mark,Goodwin,(631) 584-6761,172 Cambon Ave,Saint James,NY,11780,40.871152,-73.146032

98,Deacon,Cantu,(845) 221-7940,172 Carpenter Rd,Hopewell Junction,NY,12533,41.57388,-73.77609

99,Tristian,Walsh,(516) 997-4750,172 E Cabot Ln,Westbury,NY,11590,40.7480397,-73.54819

100,Abram,Alexander,(631) 588-3817,172 Lorenzo Cir,Ronkonkoma,NY,11779,40.837123,-73.09367

101,Lesly,Bush,(516) 489-3791,172 Nassau Blvd,Garden City,NY,11530,40.71147,-73.660753

102,Pamela,Espinoza,(716) 201-1520,172 Niagara St ,Lockport,NY,14094,43.169871,-78.70093

103,Bryanna,Newton,(914) 328-4332,172 Warren Ave,White Plains,NY,10603,41.047207,-73.79572

104,Marcelo,Schmitt,(315) 393-4432,319 Mansion Ave,Ogdensburg,NY,13669,44.690246,-75.49992

105,Layton,Valenzuela,(631) 676-2113,319 Singingwood Dr,Holbrook,NY,11741,40.801391,-73.058993

106,Roderick,Rocha,(518) 671-6037,319 Warren St,Hudson,NY,12534,42.252527,-73.790629

107,Camryn,Terrell,(315) 635-1680,3192 Olive Dr,Baldinsville,NY,13027,43.136843,-76.260303

108,Summer,Callahan,(585) 394-4195,3192 Smith Road,Canandaigua,NY,14424,42.875457,-77.228039

109,Pierre,Novak,(716) 665-2524,3194 Falconer Kimball Stand Rd,Falconer,NY,14733,42.138439,-

79.211091

110,Kennedi,Fry,(315) 543-2301,32 College Rd,Selden,NY,11784,40.861624,-73.04757

111,Wyatt,Pruitt,(716) 681-4042,277 Ransom Rd,Lancaster ,NY,14086,42.87702,-78.591302

112,Lilly,Jensen,(631) 841-0859,2772 Schliegel Blvd,Amityville,NY,11701,40.708021,-73.413015

113,Tristin,Hardin,(631) 920-0927,278 Fulton Street,West Babylon,NY,11704,40.733578,-73.357321

114,Tanya,Stafford,(716) 484-0771,278 Sampson St,Jamestown,NY,14701,42.0797,-79.247805

115,Paris,Cordova,(607) 589-4857,278 Washburn Rd,Spencer,NY,14883,42.225046,-76.510257

116,Alfonso,Morse,(718) 359-5582,200 Colden St,Flushing,NY,11355,40.750403,-73.822752

117,Maurice,Hooper,(315) 595-6694,4435 Italy Hill Rd,Branchport,NY,14418,42.597957,-77.199267

118,Iris,Wolf,(607) 539-7288,444 Harford Rd,Brooktondale,NY,14817,42.392164,-76.30756

];

KMeans2D - chart function
KMeans2D() evaluates the rows of the chart by applying k-means clustering, and for each chart
row displays the cluster id of the cluster this data point has been assigned to. The columns that are
used by the clustering algorithm are determined by the parameters coordinate_1, and coordinate_2,
respectively. These are both aggregations. The number of clusters that are created is determined
by the num_clusters parameter. Data can be optionally normalized by the norm parameter.

Script syntax and chart functions - Qlik Sense, May 2024 1391

8 Script and chart functions

KMeans2D returns one value per data point. The returned value is a dual and is the integer value
corresponding to the cluster each data point has been assigned to.

Syntax:
KMeans2D(num_clusters, coordinate_1, coordinate_2 [, norm])

Return data type: dual

Arguments:

Argument Description

num_clusters Integer that specifies the number of clusters.

coordinate_1 The aggregation that calculates the first coordinate, usually the x-axis of the
scatter chart that can be made from the chart. The additional parameter,
coordinate_2, calculates the second coordinate.

norm The optional normalization method applied to datasets before KMeans
clustering.

Possible values:

0 or ‘none’ for no normalization

1 or ‘zscore’ for z-score normalization

2 or ‘minmax’ for min-max normalization

If no parameter is supplied or if the supplied parameter is incorrect, no
normalization is applied.

Z-score normalizes data based on feature mean and standard deviation. Z-
score does not ensure each feature has the same scale but it is a better
approach than min-max when dealing with outliers.

Min-max normalization ensures that the features have the same scale by
taking the minimum and maximum values of each and recalculating each
datapoint.

Arguments

Example: Chart expression
In this example, we create a scatter plot chart using the Iris dataset, and then use KMeans to color
the data by expression.

We also create a variable for the num_clusters argument, and then use a variable input box to
change the number of clusters.

Script syntax and chart functions - Qlik Sense, May 2024 1392

8 Script and chart functions

The Iris data set is publicly available in a variety of formats. We have provided the data as an inline
table to load using the data load editor in Qlik Sense. Note that we added an Id column to the data
table for this example.

After loading the data in Qlik Sense, we do the following:

1. Drag a Scatter plot chart onto a new sheet. Name the chart Petal (color by expression).
2. Create a variable to specify the number of clusters. For the variable Name, enter

KmeansPetalClusters. For the variable Definition, enter =2.
3. Configure Data for the chart:

i. Under Dimensions, choose id for the field for Bubble. Enter Cluster Id for the Label.
ii. Under Measures, choose Sum([petal.length]) for the expression for X-axis.
iii. Under Measures, choose Sum([petal.width]) for the expression for Y-axis.

Data settings for Petal (color by expression) chart

The data points are plotted on the chart.

Script syntax and chart functions - Qlik Sense, May 2024 1393

8 Script and chart functions

Data points on Petal (color by expression) chart

4. Configure Appearance for the chart:
i. Under Colors and legend, choose Custom for Colors.
ii. Choose to color the chart By expression.
iii. Enter the following for Expression: kmeans2d($(KmeansPetalClusters), Sum

([petal.length]), Sum([petal.width]))
Note that KmeansPetalClusters is the variable that we set to 2.
Alternatively, enter the following: kmeans2d(2, Sum([petal.length]), Sum
([petal.width]))

iv. Deselect the check box for The expression is a color code.

Script syntax and chart functions - Qlik Sense, May 2024 1394

8 Script and chart functions

v. Enter the following for Label: Cluster Id

Script syntax and chart functions - Qlik Sense, May 2024 1395

8 Script and chart functions

Appearance settings for Petal (color by expression) chart

Script syntax and chart functions - Qlik Sense, May 2024 1396

8 Script and chart functions

Script syntax and chart functions - Qlik Sense, May 2024 1397

8 Script and chart functions

The two clusters on the chart are colored by the KMeans expression.
Clusters colored by expression on Petal (color by expression) chart

5. Add a Variable input box for the number of clusters.
i. Under Custom objects in the Assets panel, choose Qlik Dashboard bundle. If we did

not have access to the dashboard bundle, we could still change the number of clusters
using the variable that we created, or directly as an integer in the expression.

ii. Drag a Variable input box onto the sheet.
iii. Under Appearance, click General.
iv. Enter the following for Title: Clusters
v. Click Variable.
vi. Choose the following variable for Name: KmeansPetalClusters.
vii. Choose Slider for Show as.

Script syntax and chart functions - Qlik Sense, May 2024 1398

8 Script and chart functions

viii. Choose Values, and configure the settings as required,

Script syntax and chart functions - Qlik Sense, May 2024 1399

8 Script and chart functions

Appearance for Clusters variable input box

Script syntax and chart functions - Qlik Sense, May 2024 1400

8 Script and chart functions

Script syntax and chart functions - Qlik Sense, May 2024 1401

8 Script and chart functions

When we are done editing, we can change the number of clusters using the slider in the
Clusters variable input box.

Clusters colored by expression on Petal (color by expression) chart

Auto-clustering

KMeans functions support auto-clustering using a method called depth difference (DeD). When a
user sets 0 for the number of clusters, an optimal number of clusters for that dataset is determined.
Note that while an integer for the number of clusters (k) is not explicitly returned, it is calculated
within the KMeans algorithm. For example, if 0 is specified in the function for the value of
KmeansPetalClusters or set through a variable input box, cluster assignments are automatically
calculated for the dataset based on an optimal number of clusters.

Script syntax and chart functions - Qlik Sense, May 2024 1402

8 Script and chart functions

KMeans depth difference method determines optimal number of clusters when (k) is set to 0

Iris data set: Inline load for data load editor in Qlik Sense
IrisData:

Load * Inline [

sepal.length, sepal.width, petal.length, petal.width, variety, id

5.1, 3.5, 1.4, 0.2, Setosa, 1

4.9, 3, 1.4, 0.2, Setosa, 2

4.7, 3.2, 1.3, 0.2, Setosa, 3

4.6, 3.1, 1.5, 0.2, Setosa, 4

5, 3.6, 1.4, 0.2, Setosa, 5

5.4, 3.9, 1.7, 0.4, Setosa, 6

4.6, 3.4, 1.4, 0.3, Setosa, 7

5, 3.4, 1.5, 0.2, Setosa, 8

4.4, 2.9, 1.4, 0.2, Setosa, 9

4.9, 3.1, 1.5, 0.1, Setosa, 10

5.4, 3.7, 1.5, 0.2, Setosa, 11

4.8, 3.4, 1.6, 0.2, Setosa, 12

4.8, 3, 1.4, 0.1, Setosa, 13

4.3, 3, 1.1, 0.1, Setosa, 14

5.8, 4, 1.2, 0.2, Setosa, 15

5.7, 4.4, 1.5, 0.4, Setosa, 16

5.4, 3.9, 1.3, 0.4, Setosa, 17

5.1, 3.5, 1.4, 0.3, Setosa, 18

5.7, 3.8, 1.7, 0.3, Setosa, 19

5.1, 3.8, 1.5, 0.3, Setosa, 20

5.4, 3.4, 1.7, 0.2, Setosa, 21

Script syntax and chart functions - Qlik Sense, May 2024 1403

8 Script and chart functions

5.1, 3.7, 1.5, 0.4, Setosa, 22

4.6, 3.6, 1, 0.2, Setosa, 23

5.1, 3.3, 1.7, 0.5, Setosa, 24

4.8, 3.4, 1.9, 0.2, Setosa, 25

5, 3, 1.6, 0.2, Setosa, 26

5, 3.4, 1.6, 0.4, Setosa, 27

5.2, 3.5, 1.5, 0.2, Setosa, 28

5.2, 3.4, 1.4, 0.2, Setosa, 29

4.7, 3.2, 1.6, 0.2, Setosa, 30

4.8, 3.1, 1.6, 0.2, Setosa, 31

5.4, 3.4, 1.5, 0.4, Setosa, 32

5.2, 4.1, 1.5, 0.1, Setosa, 33

5.5, 4.2, 1.4, 0.2, Setosa, 34

4.9, 3.1, 1.5, 0.1, Setosa, 35

5, 3.2, 1.2, 0.2, Setosa, 36

5.5, 3.5, 1.3, 0.2, Setosa, 37

4.9, 3.1, 1.5, 0.1, Setosa, 38

4.4, 3, 1.3, 0.2, Setosa, 39

5.1, 3.4, 1.5, 0.2, Setosa, 40

5, 3.5, 1.3, 0.3, Setosa, 41

4.5, 2.3, 1.3, 0.3, Setosa, 42

4.4, 3.2, 1.3, 0.2, Setosa, 43

5, 3.5, 1.6, 0.6, Setosa, 44

5.1, 3.8, 1.9, 0.4, Setosa, 45

4.8, 3, 1.4, 0.3, Setosa, 46

5.1, 3.8, 1.6, 0.2, Setosa, 47

4.6, 3.2, 1.4, 0.2, Setosa, 48

5.3, 3.7, 1.5, 0.2, Setosa, 49

5, 3.3, 1.4, 0.2, Setosa, 50

7, 3.2, 4.7, 1.4, Versicolor, 51

6.4, 3.2, 4.5, 1.5, Versicolor, 52

6.9, 3.1, 4.9, 1.5, Versicolor, 53

5.5, 2.3, 4, 1.3, Versicolor, 54

6.5, 2.8, 4.6, 1.5, Versicolor, 55

5.7, 2.8, 4.5, 1.3, Versicolor, 56

6.3, 3.3, 4.7, 1.6, Versicolor, 57

4.9, 2.4, 3.3, 1, Versicolor, 58

6.6, 2.9, 4.6, 1.3, Versicolor, 59

5.2, 2.7, 3.9, 1.4, Versicolor, 60

5, 2, 3.5, 1, Versicolor, 61

5.9, 3, 4.2, 1.5, Versicolor, 62

6, 2.2, 4, 1, Versicolor, 63

6.1, 2.9, 4.7, 1.4, Versicolor, 64

5.6, 2.9, 3.6, 1.3, Versicolor, 65

6.7, 3.1, 4.4, 1.4, Versicolor, 66

5.6, 3, 4.5, 1.5, Versicolor, 67

5.8, 2.7, 4.1, 1, Versicolor, 68

6.2, 2.2, 4.5, 1.5, Versicolor, 69

5.6, 2.5, 3.9, 1.1, Versicolor, 70

5.9, 3.2, 4.8, 1.8, Versicolor, 71

6.1, 2.8, 4, 1.3, Versicolor, 72

6.3, 2.5, 4.9, 1.5, Versicolor, 73

6.1, 2.8, 4.7, 1.2, Versicolor, 74

6.4, 2.9, 4.3, 1.3, Versicolor, 75

6.6, 3, 4.4, 1.4, Versicolor, 76

Script syntax and chart functions - Qlik Sense, May 2024 1404

8 Script and chart functions

6.8, 2.8, 4.8, 1.4, Versicolor, 77

6.7, 3, 5, 1.7, Versicolor, 78

6, 2.9, 4.5, 1.5, Versicolor, 79

5.7, 2.6, 3.5, 1, Versicolor, 80

5.5, 2.4, 3.8, 1.1, Versicolor, 81

5.5, 2.4, 3.7, 1, Versicolor, 82

5.8, 2.7, 3.9, 1.2, Versicolor, 83

6, 2.7, 5.1, 1.6, Versicolor, 84

5.4, 3, 4.5, 1.5, Versicolor, 85

6, 3.4, 4.5, 1.6, Versicolor, 86

6.7, 3.1, 4.7, 1.5, Versicolor, 87

6.3, 2.3, 4.4, 1.3, Versicolor, 88

5.6, 3, 4.1, 1.3, Versicolor, 89

5.5, 2.5, 4, 1.3, Versicolor, 90

5.5, 2.6, 4.4, 1.2, Versicolor, 91

6.1, 3, 4.6, 1.4, Versicolor, 92

5.8, 2.6, 4, 1.2, Versicolor, 93

5, 2.3, 3.3, 1, Versicolor, 94

5.6, 2.7, 4.2, 1.3, Versicolor, 95

5.7, 3, 4.2, 1.2, Versicolor, 96

5.7, 2.9, 4.2, 1.3, Versicolor, 97

6.2, 2.9, 4.3, 1.3, Versicolor, 98

5.1, 2.5, 3, 1.1, Versicolor, 99

5.7, 2.8, 4.1, 1.3, Versicolor, 100

6.3, 3.3, 6, 2.5, Virginica, 101

5.8, 2.7, 5.1, 1.9, Virginica, 102

7.1, 3, 5.9, 2.1, Virginica, 103

6.3, 2.9, 5.6, 1.8, Virginica, 104

6.5, 3, 5.8, 2.2, Virginica, 105

7.6, 3, 6.6, 2.1, Virginica, 106

4.9, 2.5, 4.5, 1.7, Virginica, 107

7.3, 2.9, 6.3, 1.8, Virginica, 108

6.7, 2.5, 5.8, 1.8, Virginica, 109

7.2, 3.6, 6.1, 2.5, Virginica, 110

6.5, 3.2, 5.1, 2, Virginica, 111

6.4, 2.7, 5.3, 1.9, Virginica, 112

6.8, 3, 5.5, 2.1, Virginica, 113

5.7, 2.5, 5, 2, Virginica, 114

5.8, 2.8, 5.1, 2.4, Virginica, 115

6.4, 3.2, 5.3, 2.3, Virginica, 116

6.5, 3, 5.5, 1.8, Virginica, 117

7.7, 3.8, 6.7, 2.2, Virginica, 118

7.7, 2.6, 6.9, 2.3, Virginica, 119

6, 2.2, 5, 1.5, Virginica, 120

6.9, 3.2, 5.7, 2.3, Virginica, 121

5.6, 2.8, 4.9, 2, Virginica, 122

7.7, 2.8, 6.7, 2, Virginica, 123

6.3, 2.7, 4.9, 1.8, Virginica, 124

6.7, 3.3, 5.7, 2.1, Virginica, 125

7.2, 3.2, 6, 1.8, Virginica, 126

6.2, 2.8, 4.8, 1.8, Virginica, 127

6.1, 3, 4.9, 1.8, Virginica, 128

6.4, 2.8, 5.6, 2.1, Virginica, 129

7.2, 3, 5.8, 1.6, Virginica, 130

7.4, 2.8, 6.1, 1.9, Virginica, 131

Script syntax and chart functions - Qlik Sense, May 2024 1405

8 Script and chart functions

7.9, 3.8, 6.4, 2, Virginica, 132

6.4, 2.8, 5.6, 2.2, Virginica, 133

6.3, 2.8, 5.1, 1.5, Virginica, 134

6.1, 2.6, 5.6, 1.4, Virginica, 135

7.7, 3, 6.1, 2.3, Virginica, 136

6.3, 3.4, 5.6, 2.4, Virginica, 137

6.4, 3.1, 5.5, 1.8, Virginica, 138

6, 3, 4.8, 1.8, Virginica, 139

6.9, 3.1, 5.4, 2.1, Virginica, 140

6.7, 3.1, 5.6, 2.4, Virginica, 141

6.9, 3.1, 5.1, 2.3, Virginica, 142

5.8, 2.7, 5.1, 1.9, Virginica, 143

6.8, 3.2, 5.9, 2.3, Virginica, 144

6.7, 3.3, 5.7, 2.5, Virginica, 145

6.7, 3, 5.2, 2.3, Virginica, 146

6.3, 2.5, 5, 1.9, Virginica, 147

6.5, 3, 5.2, 2, Virginica, 148

6.2, 3.4, 5.4, 2.3, Virginica, 149

5.9, 3, 5.1, 1.8, Virginica, 150

];

KMeansND - chart function
KMeansND() evaluates the rows of the chart by applying k-means clustering, and for each chart
row displays the cluster id of the cluster this data point has been assigned to. The columns that are
used by the clustering algorithm are determined by the parameters coordinate_1, and coordinate_2,
etc., up to n columns. These are all aggregations. The number of clusters that are created is
determined by the num_clusters parameter.

KMeansND returns one value per data point. The returned value is a dual and is the integer value
corresponding to the cluster each data point has been assigned to.

Syntax:
KMeansND(num_clusters, num_iter, coordinate_1, coordinate_2 [,coordinate_3 [,

...]])

Return data type: dual

Arguments:

Argument Description

num_clusters Integer that specifies the number of clusters.

num_iter The number of iterations of clustering with reinitialized cluster centers.

coordinate_1 The aggregation that calculates the first coordinate, usually the x-axis (of a
scatter chart that can be made from the chart). The additional parameters
calculate the second, third, and fourth coordinates, etc.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1406

8 Script and chart functions

Example: Chart expression
In this example, we create a scatter plot chart using the Iris dataset, and then use KMeans to color
the data by expression.

We also create a variable for the num_clusters argument, and then use a variable input box to
change the number of clusters.

Additionally, we create a variable for the num_iter argument, and then use a second variable input
box to change the number of iterations.

The Iris data set is publicly available in a variety of formats. We have provided the data as an inline
table to load using the data load editor in Qlik Sense. Note that we added an Id column to the data
table for this example.

After loading the data in Qlik Sense, we do the following:

1. Drag a Scatter plot chart onto a new sheet. Name the chart Petal (color by expression).
2. Create a variable to specify the number of clusters. For the variable Name, enter

KmeansPetalClusters. For the variable Definition, enter =2.
3. Create a variable to specify the number of iterations. For the variable Name, enter

KmeansNumberIterations. For the variable Definition, enter =1.
4. Configure Data for the chart:

i. Under Dimensions, choose id for the field for Bubble. Enter Cluster Id for the Label.
ii. Under Measures, choose Sum([petal.length]) for the expression for X-axis.
iii. Under Measures, choose Sum([petal.width]) for the expression for Y-axis.

Script syntax and chart functions - Qlik Sense, May 2024 1407

8 Script and chart functions

Data settings for Petal (color by expression) chart

The data points are plotted on the chart.

Script syntax and chart functions - Qlik Sense, May 2024 1408

8 Script and chart functions

Data points on Petal (color by expression) chart

5. Configure Appearance for the chart:
i. Under Colors and legend, choose Custom for Colors.
ii. Choose to color the chart By expression.
iii. Enter the following for Expression: kmeansnd

($(KmeansPetalClusters),$(KmeansNumberIterations), Sum([petal.length]), Sum
([petal.width]),Sum([sepal.length]), Sum([sepal.width]))
Note that KmeansPetalClusters is the variable that we set to 2.
KmeansNumberIterations is the variable that we set to 1.
Alternatively, enter the following: kmeansnd(2, 2, Sum([petal.length]), Sum
([petal.width]),Sum([sepal.length]), Sum([sepal.width]))

iv. Deselect the check box for The expression is a color code.

Script syntax and chart functions - Qlik Sense, May 2024 1409

8 Script and chart functions

v. Enter the following for Label: Cluster Id

Script syntax and chart functions - Qlik Sense, May 2024 1410

8 Script and chart functions

Appearance settings for Petal (color by expression) chart

Script syntax and chart functions - Qlik Sense, May 2024 1411

8 Script and chart functions

Script syntax and chart functions - Qlik Sense, May 2024 1412

8 Script and chart functions

The two clusters on the chart are colored by the KMeans expression.
Clusters colored by expression on Petal (color by expression) chart

6. Add a Variable input box for the number of clusters.
i. Under Custom objects in the Assets panel, choose Qlik Dashboard bundle. If we did

not have access to the dashboard bundle, we could still change the number of clusters
using the variable that we created, or directly as an integer in the expression.

ii. Drag a Variable input box onto the sheet.
iii. Under Appearance, click General.
iv. Enter the following for Title: Clusters
v. Click Variable.
vi. Choose the following variable for Name: KmeansPetalClusters.
vii. Choose Slider for Show as.

Script syntax and chart functions - Qlik Sense, May 2024 1413

8 Script and chart functions

viii. Choose Values, and configure the settings as required,

Script syntax and chart functions - Qlik Sense, May 2024 1414

8 Script and chart functions

Appearance for Clusters variable input box

Script syntax and chart functions - Qlik Sense, May 2024 1415

8 Script and chart functions

Script syntax and chart functions - Qlik Sense, May 2024 1416

8 Script and chart functions

7. Add a Variable input box for the number of iterations.
i. Drag a Variable input box onto the sheet.
ii. Under Appearance, choose General.
iii. Enter the following for Title: Iterations
iv. Under Appearance, choose Variable.
v. Choose the following variable under Name: KmeansNumberIterations.
vi. Configure the additional settings as required,

We can now change the number of clusters and iterations using the sliders in the variable
input boxes.

Clusters colored by expression on Petal (color by expression) chart

Auto-clustering

KMeans functions support auto-clustering using a method called depth difference (DeD). When a
user sets 0 for the number of clusters, an optimal number of clusters for that dataset is determined.
Note that while an integer for the number of clusters (k) is not explicitly returned, it is calculated
within the KMeans algorithm. For example, if 0 is specified in the function for the value of
KmeansPetalClusters or set through a variable input box, cluster assignments are automatically

Script syntax and chart functions - Qlik Sense, May 2024 1417

8 Script and chart functions

calculated for the dataset based on an optimal number of clusters. Given the Iris dataset, if 0 is
selected for the number of clusters, the algorithm will determine (auto-cluster) an optimal number
of clusters (3) for this dataset.

KMeans depth difference method determines optimal number of clusters when (k) is set to 0.

Iris data set: Inline load for data load editor in Qlik Sense
IrisData:

Load * Inline [

sepal.length, sepal.width, petal.length, petal.width, variety, id

5.1, 3.5, 1.4, 0.2, Setosa, 1

4.9, 3, 1.4, 0.2, Setosa, 2

4.7, 3.2, 1.3, 0.2, Setosa, 3

4.6, 3.1, 1.5, 0.2, Setosa, 4

5, 3.6, 1.4, 0.2, Setosa, 5

5.4, 3.9, 1.7, 0.4, Setosa, 6

4.6, 3.4, 1.4, 0.3, Setosa, 7

5, 3.4, 1.5, 0.2, Setosa, 8

4.4, 2.9, 1.4, 0.2, Setosa, 9

4.9, 3.1, 1.5, 0.1, Setosa, 10

5.4, 3.7, 1.5, 0.2, Setosa, 11

4.8, 3.4, 1.6, 0.2, Setosa, 12

4.8, 3, 1.4, 0.1, Setosa, 13

4.3, 3, 1.1, 0.1, Setosa, 14

5.8, 4, 1.2, 0.2, Setosa, 15

5.7, 4.4, 1.5, 0.4, Setosa, 16

Script syntax and chart functions - Qlik Sense, May 2024 1418

8 Script and chart functions

5.4, 3.9, 1.3, 0.4, Setosa, 17

5.1, 3.5, 1.4, 0.3, Setosa, 18

5.7, 3.8, 1.7, 0.3, Setosa, 19

5.1, 3.8, 1.5, 0.3, Setosa, 20

5.4, 3.4, 1.7, 0.2, Setosa, 21

5.1, 3.7, 1.5, 0.4, Setosa, 22

4.6, 3.6, 1, 0.2, Setosa, 23

5.1, 3.3, 1.7, 0.5, Setosa, 24

4.8, 3.4, 1.9, 0.2, Setosa, 25

5, 3, 1.6, 0.2, Setosa, 26

5, 3.4, 1.6, 0.4, Setosa, 27

5.2, 3.5, 1.5, 0.2, Setosa, 28

5.2, 3.4, 1.4, 0.2, Setosa, 29

4.7, 3.2, 1.6, 0.2, Setosa, 30

4.8, 3.1, 1.6, 0.2, Setosa, 31

5.4, 3.4, 1.5, 0.4, Setosa, 32

5.2, 4.1, 1.5, 0.1, Setosa, 33

5.5, 4.2, 1.4, 0.2, Setosa, 34

4.9, 3.1, 1.5, 0.1, Setosa, 35

5, 3.2, 1.2, 0.2, Setosa, 36

5.5, 3.5, 1.3, 0.2, Setosa, 37

4.9, 3.1, 1.5, 0.1, Setosa, 38

4.4, 3, 1.3, 0.2, Setosa, 39

5.1, 3.4, 1.5, 0.2, Setosa, 40

5, 3.5, 1.3, 0.3, Setosa, 41

4.5, 2.3, 1.3, 0.3, Setosa, 42

4.4, 3.2, 1.3, 0.2, Setosa, 43

5, 3.5, 1.6, 0.6, Setosa, 44

5.1, 3.8, 1.9, 0.4, Setosa, 45

4.8, 3, 1.4, 0.3, Setosa, 46

5.1, 3.8, 1.6, 0.2, Setosa, 47

4.6, 3.2, 1.4, 0.2, Setosa, 48

5.3, 3.7, 1.5, 0.2, Setosa, 49

5, 3.3, 1.4, 0.2, Setosa, 50

7, 3.2, 4.7, 1.4, Versicolor, 51

6.4, 3.2, 4.5, 1.5, Versicolor, 52

6.9, 3.1, 4.9, 1.5, Versicolor, 53

5.5, 2.3, 4, 1.3, Versicolor, 54

6.5, 2.8, 4.6, 1.5, Versicolor, 55

5.7, 2.8, 4.5, 1.3, Versicolor, 56

6.3, 3.3, 4.7, 1.6, Versicolor, 57

4.9, 2.4, 3.3, 1, Versicolor, 58

6.6, 2.9, 4.6, 1.3, Versicolor, 59

5.2, 2.7, 3.9, 1.4, Versicolor, 60

5, 2, 3.5, 1, Versicolor, 61

5.9, 3, 4.2, 1.5, Versicolor, 62

6, 2.2, 4, 1, Versicolor, 63

6.1, 2.9, 4.7, 1.4, Versicolor, 64

5.6, 2.9, 3.6, 1.3, Versicolor, 65

6.7, 3.1, 4.4, 1.4, Versicolor, 66

5.6, 3, 4.5, 1.5, Versicolor, 67

5.8, 2.7, 4.1, 1, Versicolor, 68

6.2, 2.2, 4.5, 1.5, Versicolor, 69

5.6, 2.5, 3.9, 1.1, Versicolor, 70

5.9, 3.2, 4.8, 1.8, Versicolor, 71

Script syntax and chart functions - Qlik Sense, May 2024 1419

8 Script and chart functions

6.1, 2.8, 4, 1.3, Versicolor, 72

6.3, 2.5, 4.9, 1.5, Versicolor, 73

6.1, 2.8, 4.7, 1.2, Versicolor, 74

6.4, 2.9, 4.3, 1.3, Versicolor, 75

6.6, 3, 4.4, 1.4, Versicolor, 76

6.8, 2.8, 4.8, 1.4, Versicolor, 77

6.7, 3, 5, 1.7, Versicolor, 78

6, 2.9, 4.5, 1.5, Versicolor, 79

5.7, 2.6, 3.5, 1, Versicolor, 80

5.5, 2.4, 3.8, 1.1, Versicolor, 81

5.5, 2.4, 3.7, 1, Versicolor, 82

5.8, 2.7, 3.9, 1.2, Versicolor, 83

6, 2.7, 5.1, 1.6, Versicolor, 84

5.4, 3, 4.5, 1.5, Versicolor, 85

6, 3.4, 4.5, 1.6, Versicolor, 86

6.7, 3.1, 4.7, 1.5, Versicolor, 87

6.3, 2.3, 4.4, 1.3, Versicolor, 88

5.6, 3, 4.1, 1.3, Versicolor, 89

5.5, 2.5, 4, 1.3, Versicolor, 90

5.5, 2.6, 4.4, 1.2, Versicolor, 91

6.1, 3, 4.6, 1.4, Versicolor, 92

5.8, 2.6, 4, 1.2, Versicolor, 93

5, 2.3, 3.3, 1, Versicolor, 94

5.6, 2.7, 4.2, 1.3, Versicolor, 95

5.7, 3, 4.2, 1.2, Versicolor, 96

5.7, 2.9, 4.2, 1.3, Versicolor, 97

6.2, 2.9, 4.3, 1.3, Versicolor, 98

5.1, 2.5, 3, 1.1, Versicolor, 99

5.7, 2.8, 4.1, 1.3, Versicolor, 100

6.3, 3.3, 6, 2.5, Virginica, 101

5.8, 2.7, 5.1, 1.9, Virginica, 102

7.1, 3, 5.9, 2.1, Virginica, 103

6.3, 2.9, 5.6, 1.8, Virginica, 104

6.5, 3, 5.8, 2.2, Virginica, 105

7.6, 3, 6.6, 2.1, Virginica, 106

4.9, 2.5, 4.5, 1.7, Virginica, 107

7.3, 2.9, 6.3, 1.8, Virginica, 108

6.7, 2.5, 5.8, 1.8, Virginica, 109

7.2, 3.6, 6.1, 2.5, Virginica, 110

6.5, 3.2, 5.1, 2, Virginica, 111

6.4, 2.7, 5.3, 1.9, Virginica, 112

6.8, 3, 5.5, 2.1, Virginica, 113

5.7, 2.5, 5, 2, Virginica, 114

5.8, 2.8, 5.1, 2.4, Virginica, 115

6.4, 3.2, 5.3, 2.3, Virginica, 116

6.5, 3, 5.5, 1.8, Virginica, 117

7.7, 3.8, 6.7, 2.2, Virginica, 118

7.7, 2.6, 6.9, 2.3, Virginica, 119

6, 2.2, 5, 1.5, Virginica, 120

6.9, 3.2, 5.7, 2.3, Virginica, 121

5.6, 2.8, 4.9, 2, Virginica, 122

7.7, 2.8, 6.7, 2, Virginica, 123

6.3, 2.7, 4.9, 1.8, Virginica, 124

6.7, 3.3, 5.7, 2.1, Virginica, 125

7.2, 3.2, 6, 1.8, Virginica, 126

Script syntax and chart functions - Qlik Sense, May 2024 1420

8 Script and chart functions

6.2, 2.8, 4.8, 1.8, Virginica, 127

6.1, 3, 4.9, 1.8, Virginica, 128

6.4, 2.8, 5.6, 2.1, Virginica, 129

7.2, 3, 5.8, 1.6, Virginica, 130

7.4, 2.8, 6.1, 1.9, Virginica, 131

7.9, 3.8, 6.4, 2, Virginica, 132

6.4, 2.8, 5.6, 2.2, Virginica, 133

6.3, 2.8, 5.1, 1.5, Virginica, 134

6.1, 2.6, 5.6, 1.4, Virginica, 135

7.7, 3, 6.1, 2.3, Virginica, 136

6.3, 3.4, 5.6, 2.4, Virginica, 137

6.4, 3.1, 5.5, 1.8, Virginica, 138

6, 3, 4.8, 1.8, Virginica, 139

6.9, 3.1, 5.4, 2.1, Virginica, 140

6.7, 3.1, 5.6, 2.4, Virginica, 141

6.9, 3.1, 5.1, 2.3, Virginica, 142

5.8, 2.7, 5.1, 1.9, Virginica, 143

6.8, 3.2, 5.9, 2.3, Virginica, 144

6.7, 3.3, 5.7, 2.5, Virginica, 145

6.7, 3, 5.2, 2.3, Virginica, 146

6.3, 2.5, 5, 1.9, Virginica, 147

6.5, 3, 5.2, 2, Virginica, 148

6.2, 3.4, 5.4, 2.3, Virginica, 149

5.9, 3, 5.1, 1.8, Virginica, 150

];

KMeansCentroid2D - chart function
KMeansCentroid2D() evaluates the rows of the chart by applying k-means clustering, and for each
chart row displays the desired coordinate of the cluster this data point has been assigned to. The
columns that are used by the clustering algorithm are determined by the parameters coordinate_1,
and coordinate_2, respectively. These are both aggregations. The number of clusters that are
created is determined by the num_clusters parameter. Data can be optionally normalized by the
norm parameter.

KMeansCentroid2D returns one value per data point. The returned value is a dual and is one of the
coordinates of the position corresponding to the cluster center the data point has been assigned to.

Syntax:
KMeansCentroid2D(num_clusters, coordinate_no, coordinate_1, coordinate_2 [,

norm])

Return data type: dual

Arguments:

Argument Description

num_clusters Integer that specifies the number of clusters.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1421

8 Script and chart functions

Argument Description

coordinate_no The desired coordinate number of the centroids (corresponding, for example,
to the x, y, or z axis).

coordinate_1 The aggregation that calculates the first coordinate, usually the x-axis of the
scatter chart that can be made from the chart. The additional parameter,
coordinate_2, calculates the second coordinate.

norm The optional normalization method applied to datasets before KMeans
clustering.

Possible values:

0 or ‘none’ for no normalization

1 or ‘zscore’ for z-score normalization

2 or ‘minmax’ for min-max normalization

If no parameter is supplied or if the supplied parameter is incorrect, no
normalization is applied.

Z-score normalizes data based on feature mean and standard deviation. Z-
score does not ensure each feature has the same scale but it is a better
approach than min-max when dealing with outliers.

Min-max normalization ensures that the features have the same scale by
taking the minimum and maximum values of each and recalculating each
datapoint.

Auto-clustering
KMeans functions support auto-clustering using a method called depth difference (DeD). When a
user sets 0 for the number of clusters, an optimal number of clusters for that dataset is determined.
Note that while an integer for the number of clusters (k) is not explicitly returned, it is calculated
within the KMeans algorithm. For example, if 0 is specified in the function for the value of
KmeansPetalClusters or set through a variable input box, cluster assignments are automatically
calculated for the dataset based on an optimal number of clusters.

KMeansCentroidND - chart function
KMeansCentroidND() evaluates the rows of the chart by applying k-means clustering, and for each
chart row displays the desired coordinate of the cluster this data point has been assigned to. The
columns that are used by the clustering algorithm are determined by the parameters coordinate_1,
coordinate_2, etc., up to n columns. These are all aggregations. The number of clusters that are
created is determined by the num_clusters parameter.

KMeansCentroidND returns one value per row. The returned value is a dual and is one of the
coordinates of the position corresponding to the cluster center the data point has been assigned to.

Script syntax and chart functions - Qlik Sense, May 2024 1422

8 Script and chart functions

Syntax:

KMeansCentroidND((num_clusters, num_iter, coordinate_no, coordinate_1,

coordinate_2 [,coordinate_3 [, ...]])

Return data type: dual

Arguments:

Argument Description

num_clusters Integer that specifies the number of clusters.

num_iter The number of iterations of clustering with reinitialized cluster centers.

coordinate_no The desired coordinate number of the centroids (corresponding, for example,
to the x, y, or z axis).

coordinate_1 The aggregation that calculates the first coordinate, usually the x-axis (of a
scatter chart that can be made from the chart). The additional parameters
calculate the second, third, and fourth coordinates, etc.

Arguments

Auto-clustering
KMeans functions support auto-clustering using a method called depth difference (DeD). When a
user sets 0 for the number of clusters, an optimal number of clusters for that dataset is determined.
Note that while an integer for the number of clusters (k) is not explicitly returned, it is calculated
within the KMeans algorithm. For example, if 0 is specified in the function for the value of
KmeansPetalClusters or set through a variable input box, cluster assignments are automatically
calculated for the dataset based on an optimal number of clusters.

STL_Trend - chart function
STL_Trend is a time series decomposition function. Along with STL_Seasonal and STL_Residual,
this function is used to decompose a time series into seasonal, trend, and residual components. In
the context of the STL algorithm, time series decomposition is used to identify both a recurring
seasonal pattern and a general trend, given an input metric and other parameters. The STL_Trend
function will identify a general trend, independent of seasonal patterns or cycles, from time series
data.

The three STL functions are related to the input metric through a simple sum:

STL_Trend + STL_Seasonal + STL_Residual = Input metric

STL (seasonal and trend decomposition using Loess) employs data smoothing techniques, and
through its input parameters, allows the user to adjust the periodicity of the calculations it performs.
This periodicity determines how the time dimension of the input metric (a measure) is segmented in
the analysis.

Script syntax and chart functions - Qlik Sense, May 2024 1423

8 Script and chart functions

At minimum, STL_Trend takes an input metric (target_measure) and an integer value for its period_

int, returning a floating-point value. The input metric will be in the form of an aggregation that
varies along the time dimension. Optionally, you can include values for the seasonal_smoother and
trend_smoother to adjust the smoothing algorithm.

You can work with this function by entering it directly into the expression editor for a chart.

Syntax:
STL_Trend(target_measure, period_int [,seasonal_smoother [,trend_smoother]])

Return data type: dual

Argument Description

target_
measure

The measure to decompose into Seasonal and Trend components. This should be
a measure such as Sum(Sales) or Sum(Passengers) that varies along the time
dimension.

This must not be a constant value.

period_int The periodicity of the dataset. This parameter is an integer value representing the
number of discrete steps that make up one period, or seasonal cycle, of the
signal.

For instance, if the time series is segmented into one section for each quarter of
the year, you must set the period_int to a value of 4 to define the periodicity as
Year.

seasonal_
smoother

Length of the seasonal smoother. This must be an odd integer. The seasonal
smoother uses data for a particular phase in the seasonal variation, over a
number of periods. One discrete step of the time dimension is used from each
period. The seasonal smoother indicates the number of periods used for
smoothing.

For example, if the time dimension is segmented by month and the period is Year
(12), the seasonal component will be computed so that each particular month of
each year is calculated from data for the same month, both in that year and in
adjacent years. The seasonal_smoother value is the number of years used for
smoothing.

trend_
smoother

Length of the trend smoother. This must be an odd integer. The trend smoother
uses the same time scale as the period_int parameter, and its value is the number
of granules used for smoothing.

For example, if a time series is segmented by month, the trend smoother will be
the number of months used for smoothing.

Arguments

The STL_Trend chart function is often used in combination with the following functions:

Script syntax and chart functions - Qlik Sense, May 2024 1424

8 Script and chart functions

Function Interaction

STL_Seasonal - chart function (page
1425)

This is the
function used to
compute the
seasonal
component of a
time series.

STL_Residual - chart function (page 1427) When breaking
down an input
metric into
seasonal and
trend
component, part
of the measures
variation will not
fit within either of
the two main
components. The
STL_Residual
function
computes this
portion of the
decomposition.

Related functions

For a tutorial with a full example showing how to use this function, see Tutorial - Time series
decomposition in Qlik Sense (page 1429).

STL_Seasonal - chart function
STL_Seasonal is a time series decomposition function. Along with STL_Trend and
STL_Residual, this function is used to decompose a time series into seasonal, trend,
and residual components. In the context of the STL algorithm, time series
decomposition is used to identify both a recurring seasonal pattern and a general
trend, given an input metric and other parameters. The STL_Seasonal function can
identify a seasonal pattern within a time series, separating this from the general trend
displayed by the data.

The three STL functions are related to the input metric through a simple sum:

STL_Trend + STL_Seasonal + STL_Residual = Input metric

Script syntax and chart functions - Qlik Sense, May 2024 1425

8 Script and chart functions

STL (seasonal and trend decomposition using Loess) employs data smoothing techniques, and
through its input parameters, allows the user to adjust the periodicity of the calculations it performs.
This periodicity determines how the time dimension of the input metric (a measure) is segmented in
the analysis.

At minimum, STL_Seasonal takes an input metric (target_measure) and an integer value for its
period_int, returning a floating-point value. The input metric will be in the form of an aggregation
that varies along the time dimension. Optionally, you can include values for the seasonal_smoother

and trend_smoother to adjust the smoothing algorithm.

You can work with this function by entering it directly into the expression editor for a chart.

Syntax:
STL_Seasonal(target_measure, period_int [,seasonal_smoother [,trend_

smoother]])

Return data type: dual

Argument Description

target_
measure

The measure to decompose into Seasonal and Trend components. This should be
a measure such as Sum(Sales) or Sum(Passengers) that varies along the time
dimension.

This must not be a constant value.

period_int The periodicity of the dataset. This parameter is an integer value representing the
number of discrete steps that make up one period, or seasonal cycle, of the
signal.

For instance, if the time series is segmented into one section for each quarter of
the year, you must set the period_int to a value of 4 to define the periodicity as
Year.

seasonal_
smoother

Length of the seasonal smoother. This must be an odd integer. The seasonal
smoother uses data for a particular phase in the seasonal variation, over a
number of periods. One discrete step of the time dimension is used from each
period. The seasonal smoother indicates the number of periods used for
smoothing.

For example, if the time dimension is segmented by month and the period is Year
(12), the seasonal component will be computed so that each particular month of
each year is calculated from data for the same month, both in that year and in
adjacent years. The seasonal_smoother value is the number of years used for
smoothing.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1426

8 Script and chart functions

Argument Description

trend_
smoother

Length of the trend smoother. This must be an odd integer. The trend smoother
uses the same time scale as the period_int parameter, and its value is the number
of granules used for smoothing.

For example, if a time series is segmented by month, the trend smoother will be
the number of months used for smoothing.

The STL_Seasonal chart function is often used in combination with the following functions:

Function Interaction

STL_Trend - chart function (page 1423) This is the
function used to
compute the
trend component
of a time series.

STL_Residual - chart function (page 1427) When breaking
down an input
metric into
seasonal and
trend
component, part
of the measures
variation will not
fit within either of
the two main
components. The
STL_Residual
function
computes this
portion of the
decomposition.

Related functions

For a tutorial with a full example showing how to use this function, see Tutorial - Time series
decomposition in Qlik Sense (page 1429).

STL_Residual - chart function
STL_Residual is a time series decomposition function. Along with STL_Seasonal and
STL_Trend, this function is used to decompose a time series into seasonal, trend, and
residual components. In the context of the STL algorithm, time series decomposition is
used to identify both a recurring seasonal pattern and a general trend, given an input
metric and other parameters. In performing this operation, part of the variation in the

Script syntax and chart functions - Qlik Sense, May 2024 1427

8 Script and chart functions

input metric will neither fit within the seasonal nor the trend component, and will be
defined as the residual component. The STL_Residual chart function captures this
portion of the calculation.

The three STL functions are related to the input metric through a simple sum:

STL_Trend + STL_Seasonal + STL_Residual = Input metric

STL (seasonal and trend decomposition using Loess) employs data smoothing techniques, and
through its input parameters, allows the user to adjust the periodicity of the calculations it performs.
This periodicity determines how the time dimension of the input metric (a measure) is segmented in
the analysis.

Since time series decomposition primarily looks for seasonality and general variations in data, the
information in the residual is considered the least significant of the three components. However, a
skewed or periodic residual component can help identify issues in the calculation, such as incorrect
periodicity settings.

At minimum, STL_Residual takes an input metric (target_measure) and an integer value for its
period_int, returning a floating-point value. The input metric will be in the form of an aggregation
that varies along the time dimension. Optionally, you can include values for the seasonal_smoother

and trend_smoother to adjust the smoothing algorithm.

You can work with this function by entering it directly into the expression editor for a chart.

Syntax:
STL_Residual(target_measure, period_int [,seasonal_smoother [,trend_

smoother]])

Return data type: dual

Argument Description

target_
measure

The measure to decompose into Seasonal and Trend components. This should be
a measure such as Sum(Sales) or Sum(Passengers) that varies along the time
dimension.

This must not be a constant value.

period_int The periodicity of the dataset. This parameter is an integer value representing the
number of discrete steps that make up one period, or seasonal cycle, of the
signal.

For instance, if the time series is segmented into one section for each quarter of
the year, you must set the period_int to a value of 4 to define the periodicity as
Year.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1428

8 Script and chart functions

Argument Description

seasonal_
smoother

Length of the seasonal smoother. This must be an odd integer. The seasonal
smoother uses data for a particular phase in the seasonal variation, over a
number of periods. One discrete step of the time dimension is used from each
period. The seasonal smoother indicates the number of periods used for
smoothing.

For example, if the time dimension is segmented by month and the period is Year
(12), the seasonal component will be computed so that each particular month of
each year is calculated from data for the same month, both in that year and in
adjacent years. The seasonal_smoother value is the number of years used for
smoothing.

trend_
smoother

Length of the trend smoother. This must be an odd integer. The trend smoother
uses the same time scale as the period_int parameter, and its value is the number
of granules used for smoothing.

For example, if a time series is segmented by month, the trend smoother will be
the number of months used for smoothing.

The STL_Residual chart function is often used in combination with the following functions:

Function Interaction

STL_Seasonal - chart function (page
1425)

This is the
function used to
compute the
seasonal
component of a
time series.

STL_Trend - chart function (page 1423) This is the
function used to
compute the
trend
component of a
time series.

Related functions

For a tutorial with a full example showing how to use this function, see Tutorial - Time series
decomposition in Qlik Sense (page 1429).

Tutorial - Time series decomposition in Qlik Sense
This tutorial demonstrates using three chart functions to decompose a time series
using the STL algorithm.

Script syntax and chart functions - Qlik Sense, May 2024 1429

8 Script and chart functions

This tutorial uses time series data for the number of passengers using an airline per month to
demonstrate the functionality of the STL algorithm. The STL_Trend, STL_Seasonal, and STL_
Residual chart functions will be used to create the visualizations. For more information about time
series decomposition in Qlik Sense, see Time series decomposition functions (page 1375).

Create an app
Start by creating a new app and importing the dataset into it.

Download this dataset:

Tutorial - Time series decomposition

This file contains data regarding an airline's number of passengers per month.

Do the following:

1. From the hub click Create new app.
2. Open the app and drop the Tutorial - Time series decomposition.csv file into it.

Prepare and load the data
In order for Qlik Sense to interpret the YearMonth field correctly, you might need to use Data
manager to recognize the field as a date field, not a field with string values. Typically this step is
handled automatically, but in this case the dates are presented in the slightly uncommon YYYY-MM
format.

1. In Data manager, select the table and click .

2. With the YearMonth field selected, click and set the Field type to Date.

3. Under Input format, enter YYYY-MM.
4. Under Display format, enter YYYY-MM and click OK.

The field should now show the calendar icon.
5. Click Load data.

Now you are ready to start using the STL functions to visually represent your data.

Create the visualizations
Next, you will create two line charts to demonstrate the functionality of the STL_Trend, STL_
Seasonal, and STL_Residual chart functions.

Open a new sheet and give it a title.

Add two line charts to the sheet. Resize and reposition the charts to match the following image.

Script syntax and chart functions - Qlik Sense, May 2024 1430

https://help.qlik.com/en-US/sense/tutorials/TimeSeriesDecompositionTutorial.zip

8 Script and chart functions

Qlik Sense grid outline of blank app sheet

First line chart: Trend and seasonal components

Do the following:

1. Add the title Seasonal and Trend to the first line chart.
2. Add YearMonth as a dimension and label it Date.
3. Add the following measure and label it Passengers per month:

=Sum(Passengers)
4. Under Data, expand the Passengers per month measure and click Add trend line.
5. Set the Type to Linear.

You will compare this trend line to the smoothed output of the trend component.
6. Add the following measure to plot the trend component and label it Trend:

=STL_Trend(SUM(Passengers), 12)
7. Next, add the following measure to plot the seasonal component and label it Seasonal:

=STL_Seasonal(SUM(Passengers), 12)
8. Under Appearance > Presentation, set Scroll bar to None.
9. Keep the default colors, or change them to fit your preferences.

Script syntax and chart functions - Qlik Sense, May 2024 1431

8 Script and chart functions

Second line chart: Residual component
Next, configure the second line chart. This visualization will display the residual component of the
time series.

Do the following:

1. Drag a line chart onto the sheet. Add the title Residual.
2. Add Date as a dimension.
3. Add the following measure and label it Residual:

=STL_Residual(SUM(Passengers), 12)
4. Under Appearance > Presentation, set Scroll bar to None.

Your sheet should now look like the one below.

Qlik Sense sheet for airline passenger analysis

Interpreting and explaining the data
With the STL chart functions, we can gain a number of insights from our time series data.

Trend component
The statistical information in the trend component is deseasonalized. This makes it easier to see
general, non-repeating fluctuations over time. Compared to the straight, linear trend line for
Passengers per month, the STL trend component does capture changing trends. It displays some
clear deviations while still presenting the information in a readable fashion. The smoothing
behaviors in the STL algorithm helped to capture this.

The drops in number of airline passengers that are visible in the STL trend graph can be explained
as part of the economic impact of recessions that occurred during the 1950s.

Script syntax and chart functions - Qlik Sense, May 2024 1432

8 Script and chart functions

Seasonal component
The detrended seasonal component isolated recurring fluctuations throughout the time series, and
removed general trend information from that part of the analysis. We started with a dataset
consisting of year-month aggregations. With this data, it is implicit that we are segmenting the data
into one-month granules. By defining a period value of 12, we set the chart to model seasonal
patterns over the course of one-year (twelve-month) cycles.

In the data, there is a repeated seasonal pattern of surges in airline passengers in the summer
months, followed by declines for the winter months. This is aligned with the idea that summer is
typically a popular time to take vacations and travel. We also see that over the course of the time
series, these seasonal cycles increase drastically in amplitude.

Residual component
The chart for the residual component shows all the information that was not captured in the trend
and seasonal decomposition. The residual component includes statistical noise, but it can also
indicate an incorrect setting of the STL trend and seasonal function arguments. Generally, if there
are periodic oscillations in the residual component of the signal, or the information displayed is
clearly not random, it is usually a sign that there is information in the time series not currently
captured in the seasonal or trend components. In this case, you need to revisit your definitions of
each function argument and possibly change the periodicity.

Smoother values
Since we did not specify any values for the trend and seasonal smoothers, the function will use the
default values for these parameters. In Qlik Sense, the default smoother values in the STL algorithm
produce effective results. As a result, in most cases, these arguments can be left out of the
expressions.

Setting the seasonal or trend smoother arguments as 0 in either of the
three STL functions makes the algorithim use default values, rather than values of 0.

The trend smoother value uses the dimension that is specified in the chart. Since the YearMonth
field presents data by months, the trend smoother value will be the number of months. The
seasonal smoother will reflect the periodicity defined. In this case, since we defined one period as
lasting twelve months (one year), the seasonal smoother value is the number of years. This may
sound confusing, but it really means that to find the seasonality, we need to look across a number
of seasons. This number is the seasonal smoother.

Other useful information
Given that the seasonal cycles increase in amplitude over time, a more advanced analytics
approach could make use of logarithmic functions to create a multiplicative decomposition. In
practice, a simple measure of relative amplitude can be created in Qlik Sense by dividing the
seasonal by the trend component. When this is done, we notice that over time, the summer peaks
of each cycle grow larger in relative amplitude. The amplitude of the winter low points, however, do
not increase over time.

Script syntax and chart functions - Qlik Sense, May 2024 1433

8 Script and chart functions

8.23 Statistical distribution functions
Statistical distribution functions return the probabilities of occurrence of different
possible outcomes for a given input variable. You can use these functions to calculate
the potential values of your data points.

The three groups of statistical distribution functions described below are all implemented in Qlik
Sense using the Cephes function library. For references and details on algorithms used, accuracy,
and so on, see:≤ Cephes library. The Cephes function library is used by permission.

l The probability functions calculate the probability at the point in the distribution given by the
supplied value.

l The Frequency functions are used for discrete distributions.
l The Density functions are used for continuous functions.

l The Dist functions calculate the accumulated probability of the distribution at the point in the
distribution given by the supplied value.

l The Inv functions calculate the inverse value, given the accumulated probability of the
distribution.

All functions can be used in both the data load script and in chart expressions.

Statistical distribution functions overview
Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

BetaDensity
BetaDensity() returns the probability of the Beta distribution.

BetaDensity (value, alpha, beta)

BetaDist
BetaDist() returns the accumulated probability of the Beta distribution.

BetaDist (value, alpha, beta)

BetaInv
BetaINV() returns the inverse of the accumulated probability of the Beta distribution.

BetaInv (prob, alpha, beta)

BinomDist
BinomDist() returns the accumulated probability of the Binomial distribution.

BinomDist (value, trials, trial_probability)

BinomFrequency
BinomFrequency() returns the Binomial probability distribution.

Script syntax and chart functions - Qlik Sense, May 2024 1434

http://www.netlib.org/cephes/

8 Script and chart functions

BinomFrequency (value, trials, trial_probability)

BinomInv
BinomInv() returns the inverse of the accumulated probability of the Binomial distribution.

BinomInv (prob, trials, trial_probability)

ChiDensity
ChiDensity() returns the one-tailed probability of the chi2 distribution. The chi2 density function is
associated with a chi2 test.

ChiDensity (value, degrees_freedom)

ChiDist
ChiDist() returns the one-tailed probability of the chi2 distribution. The chi2 distribution is
associated with a chi2 test.

ChiDist (value, degrees_freedom)

ChiInv
ChiInv() returns the inverse of the one-tailed probability of the chi2 distribution.

ChiInv (prob, degrees_freedom)

FDensity
FDensity() returns the probability of the F distribution.

FDensity (value, degrees_freedom1, degrees_freedom2)

FDist
FDist() returns the accumulated probability of the F distribution.

FDist (value, degrees_freedom1, degrees_freedom2)

FInv
FInv() returns the inverse of the accumulated probability of the F distribution.

FInv (prob, degrees_freedom1, degrees_freedom2)

GammaDensity
GammaDensity() returns the probability of the Gamma distribution.

GammaDensity (value, k, θ)

GammaDist
GammaDist() returns the accumulated probability of the Gamma distribution.

GammaDist (value, k, θ)

GammaInv
GammaInv() returns the inverse of the accumulated probability of the Gamma distribution.

GammaInv (prob, k, θ)

Script syntax and chart functions - Qlik Sense, May 2024 1435

8 Script and chart functions

NormDist
NormDist() returns the cumulative normal distribution for the specified mean and standard
deviation. If mean = 0 and standard_dev = 1, the function returns the standard normal distribution.

NormDist (value, mean, standard_dev)

NormInv
NormInv() returns the inverse of the normal cumulative distribution for the specified mean and
standard deviation.

NormInv (prob, mean, standard_dev)

PoissonDist
PoissonDist() returns the accumulated probability of the Poisson distribution.

PoissonDist (value, mean)

PoissonFrequency
PoissonFrequency() returns the Poisson probability distribution.

PoissonFrequency (value, mean)

PoissonInv
PoissonInv() returns the inverse of the accumulated probability of the Poisson distribution.

PoissonInv (prob, mean)

TDensity
TDensity() returns the value for the student's t density function where a numeric value is a
calculated value of t for which the probability is to be computed.

TDensity (value, degrees_freedom, tails)

TDist
TDist() returns the probability for the student's t distribution where a numeric value is a calculated
value of t for which the probability is to be computed.

TDist (value, degrees_freedom, tails)

TInv
TInv() returns the t value of the student's t distribution as a function of the probability and the
degrees of freedom.

TInv (prob, degrees_freedom)

See also:
p Statistical aggregation functions (page 400)

Script syntax and chart functions - Qlik Sense, May 2024 1436

8 Script and chart functions

BetaDensity
BetaDensity() returns the probability of the Beta distribution.

Syntax:
BetaDensity(value, alpha, beta)

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must be
between 0 and 1.

alpha A positive number defining the first shape parameter. It is the exponent of the
random variable

beta A positive number defining the second shape parameter. It states the number of
denominator degrees of freedom.

Arguments

BetaDist
BetaDist() returns the accumulated probability of the Beta distribution.

Syntax:
BetaDist(value, alpha, beta)

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must be
between 0 and 1.

alpha A positive number defining the first shape parameter. It is the exponent of the
random variable

beta A positive number defining the second shape parameter. It is the exponent that
controls the shape of the distribution.

Arguments

This function is related to the BetaInv function in the following way:
If prob = BetaDist(value, alpha, beta), then BetaInv(prob, alpha, beta) = value

BetaInv
BetaINV() returns the inverse of the accumulated probability of the Beta distribution.

Script syntax and chart functions - Qlik Sense, May 2024 1437

8 Script and chart functions

Syntax:
BetaInv(prob, alpha, beta)

Return data type: number

Argument Description

prob A probability associated with the Beta-probability distribution. It must be a
number between 0 and 1.

alpha A positive number defining the first shape parameter. It is the exponent of the
random variable

beta A positive number defining the second shape parameter. It is the exponent that
controls the shape of the distribution.

Arguments

This function is related to the BetaDist function in the following way:
If prob = BetaDist(value, alpha, beta), then BetaInv(prob, alpha, beta) = value

BinomDist
BinomDist() returns the accumulated probability of the Binomial distribution.

Syntax:
BinomDist(value, trials, trial_probability)

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must be an
integer not smaller than zero and not greater than the number of trials.

trials A positive integer that states the number of trials.

trial_

probability
The success probability for each trial. It is always a number between 0 and 1.

Arguments

This function is related to the BinomInv function in the following way:
If prob = BinomDIST(value, trials, trial_probability), then BinomInv(prob, trials, trial_

probability) = value

BinomFrequency
BinomFrequency() returns the Binomial probability distribution.

Syntax:
BinomFrequency(value, trials, trial_probability)

Script syntax and chart functions - Qlik Sense, May 2024 1438

8 Script and chart functions

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must be an
integer not smaller than zero and not greater than the number of trials.

trials A positive integer that states the number of trials

trial_

probability
The success probability for each trial. It is always a number between 0 and 1.

Arguments

BinomInv
BinomInv() returns the inverse of the accumulated probability of the Binomial
distribution.

Syntax:
BinomInv(prob, trials, trial_probability)

Return data type: number

Argument Description

prob A probability associated with the Binomial-probability distribution. It must be a
number between 0 and 1.

trials A positive integer that states the number of trials.

trial_

probability
The success probability for each trial. It is always a number between 0 and 1.

Arguments

This function is related to the BinomDist function in the following way:
If prob = BinomDist(value, trials, trial_probability), then BinomInv(prob, trials, trial_

probability) = value

ChiDensity
ChiDensity() returns the one-tailed probability of the chi2 distribution. The chi2 density
function is associated with a chi2 test.

Syntax:
ChiDensity(value, degrees_freedom)

Script syntax and chart functions - Qlik Sense, May 2024 1439

8 Script and chart functions

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must not be
negative.

degrees_

freedom
A positive integer stating the number of numerator degrees of freedom.

Arguments

ChiDist
ChiDist() returns the one-tailed probability of the chi2 distribution. The chi2 distribution
is associated with a chi2 test.

Syntax:
CHIDIST(value, degrees_freedom)

Return data type: number

Arguments:

Argument Description

value The value at which you want to evaluate the distribution. The value must not
be negative.

degrees_
freedom

A positive integer stating the number of degrees of freedom.

Arguments

This function is related to the ChiInv function in the following way:
If prob = CHIDIST(value,df), then CHIINV(prob, df) = value

Limitations:

All arguments must be numeric, else NULL will be returned.

Examples and results:

Example Result

CHIDIST(8, 15) Returns 0.9238

ChiInv
ChiInv() returns the inverse of the one-tailed probability of the chi2 distribution.

Syntax:
CHIINV(prob, degrees_freedom)

Script syntax and chart functions - Qlik Sense, May 2024 1440

8 Script and chart functions

Return data type: number

Arguments:

Argument Description

prob A probability associated with the chi2 distribution. It must be a number
between 0 and 1.

degrees_
freedom

An integer stating the number of degrees of freedom.

Arguments

This function is related to the ChiDist function in the following way:
If prob = CHIDIST(value,df), then CHIINV(prob, df) = value

Limitations:

All arguments must be numeric, else NULL will be returned.

Examples and results:

Example Result

CHIINV(0.9237827, 15) Returns 8.0000

FDensity
FDensity() returns the probability of the F distribution.

Syntax:
FDensity(value, degrees_freedom1, degrees_freedom2)

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must not be
negative.

degrees_

freedom1
A positive integer stating the number of numerator degrees of freedom.

degrees_

freedom2
A positive integer stating the number of denominator degrees of freedom.

Arguments

FDist
FDist() returns the accumulated probability of the F distribution.

Script syntax and chart functions - Qlik Sense, May 2024 1441

8 Script and chart functions

Syntax:
FDist(value, degrees_freedom1, degrees_freedom2)

Return data type: number

Arguments:

Argument Description

value The value at which you want to evaluate the distribution. The value must not
be negative.

degrees_
freedom1

A positive integer stating the number of numerator degrees of freedom.

degrees_
freedom2

A positive integer stating the number of denominator degrees of freedom.

Arguments

This function is related to the FInv function in the following way:
If prob = FDIST(value, df1, df2), then FINV(prob, df1, df2) = value

Limitations:

All arguments must be numeric, else NULL will be returned.

Examples and results:

Example Result

FDIST(15, 8, 6) Returns 0.0019

FInv
FInv() returns the inverse of the accumulated probability of the F distribution.

Syntax:
FInv(prob, degrees_freedom1, degrees_freedom2)

Return data type: number

Arguments:

Argument Description

prob A probability associated with the F-probability distribution and must be a
number between 0 and 1.

degrees_
freedom

An integer stating the number of degrees of freedom.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1442

8 Script and chart functions

This function is related to the FDist function in the following way:
If prob = FDIST(value, df1, df2), then FINV(prob, df1, df2) = value

Limitations:

All arguments must be numeric, else NULL will be returned.

Examples and results:

Example Result

FINV(0.0019369, 8, 6) Returns 15.0000

GammaDensity
GammaDensity() returns the probability of the Gamma distribution.

Syntax:
GammaDensity(value, k, θ)

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must not be
negative.

k A positive number defining the shape parameter.

θ A positive number defining the scale parameter.

Arguments

GammaDist
GammaDist() returns the accumulated probability of the Gamma distribution.

Syntax:
GammaDist(value, k, θ)

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must not be
negative.

k A positive number defining the shape parameter.

θ A positive number defining the scale parameter.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1443

8 Script and chart functions

This function is related to the GammaINV function in the following way:
If prob = GammaDist(value, k, θ), then GammaInv(prob, k, θ) = value

GammaInv
GammaInv() returns the inverse of the accumulated probability of the Gamma distribution.

Syntax:
GammaInv(prob, k, θ)

Return data type: number

Argument Description

prob A probability associated with the Gamma-probability distribution. It must be a
number between 0 and 1.

k A positive number defining the shape parameter.

θ A positive number defining the scale parameter.

Arguments

This function is related to the GammaDist function in the following way:
If prob = GammaDist(value, k, θ), then GammaInv(prob, k, θ) = value

NormDist
NormDist() returns the cumulative normal distribution for the specified mean and
standard deviation. If mean = 0 and standard_dev = 1, the function returns the standard
normal distribution.

Syntax:
NORMDIST(value, [mean], [standard_dev], [cumulative])

Return data type: number

Arguments:

Argument Description

value The value at which you want to evaluate the distribution.

mean Optional value stating the arithmetic mean for the distribution.

If you do not state this argument, the default value is 0.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1444

8 Script and chart functions

Argument Description

standard_
dev

Optional positive value stating the standard deviation of the distribution.

If you do not state this argument, the default value is 1.

cumulative You can optionally select to use a standard normal distribution or a cumulative
distribution.

0 = standard normal distribution

1 = cumulative distribution (default)

This function is related to the NormInv function in the following way:
If prob = NORMDIST(value, m, sd), then NORMINV(prob, m, sd) = value

Limitations:

All arguments must be numeric, else NULL will be returned.

Examples and results:

Example Result

NORMDIST(0.5, 0, 1) Returns 0.6915

NormInv
NormInv() returns the inverse of the normal cumulative distribution for the specified
mean and standard deviation.

Syntax:
NORMINV(prob, mean, standard_dev)

Return data type: number

Arguments:

Argument Description

prob A probability associated with the normal distribution. It must be a number
between 0 and 1.

mean A value stating the arithmetic mean for the distribution.

standard_
dev

A positive value stating the standard deviation of the distribution.

Arguments

This function is related to the NormDist function in the following way:
If prob = NORMDIST(value, m, sd), then NORMINV(prob, m, sd) = value

Script syntax and chart functions - Qlik Sense, May 2024 1445

8 Script and chart functions

Limitations:

All arguments must be numeric, else NULL will be returned.

Examples and results:

Example Result

NORMINV(0.6914625, 0, 1) Returns 0.5000

PoissonDist
PoissonDist() returns the accumulated probability of the Poisson distribution.

Syntax:
PoissonDist(value, mean)

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must not be
negative.

mean A positive number defining the average outcome.

Arguments

This function is related to the PoissonInv function in the following way:
If prob = PoissonDist(value, mean), then PoissonInv(prob, mean) = value

PoissonFrequency
PoissonFrequency() returns the Poisson probability distribution.

Syntax:
PoissonFrequency(value, mean)

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must not be
negative.

mean A positive number defining the average outcome.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1446

8 Script and chart functions

PoissonInv
PoissonInv() returns the inverse of the accumulated probability of the Poisson
distribution.

Syntax:
PoissonInv(prob, mean)

Return data type: number

Argument Description

prob A probability associated with the Poisson-probability distribution. It must be a
number between 0 and 1.

mean A positive number defining the average outcome.

Arguments

This function is related to the PoissonDIST function in the following way:
If prob = PoissonDist(value, mean), then PoissonInv(prob, mean) = value

TDensity
TDensity() returns the value for the student's t density function where a numeric value is
a calculated value of t for which the probability is to be computed.

Syntax:
TDensity(value, degrees_freedom)

Return data type: number

Argument Description

value The value at which you want to evaluate the distribution. The value must not be
negative.

degrees_

freedom
A positive integer stating the number of degrees of freedom.

Arguments

TDist
TDist() returns the probability for the student's t distribution where a numeric value is a
calculated value of t for which the probability is to be computed.

Syntax:
TDist(value, degrees_freedom, tails)

Script syntax and chart functions - Qlik Sense, May 2024 1447

8 Script and chart functions

Return data type: number

Arguments:

Argument Description

value The value at which you want to evaluate the distribution. The value must not
be negative.

degrees_
freedom

A positive integer stating the number of degrees of freedom.

tails Must be either 1 (one-tailed distribution) or 2 (two-tailed distribution).

Arguments

This function is related to the TInv function in the following way:
If prob = TDIST(value, df ,2), then TINV(prob, df) = value

Limitations:

All arguments must be numeric, else NULL will be returned.

Examples and results:

Example Result

TDIST(1, 30, 2) Returns 0.3253

TInv
TInv() returns the t value of the student's t distribution as a function of the probability
and the degrees of freedom.

Syntax:
TINV(prob, degrees_freedom)

Return data type: number

Arguments:

Argument Description

prob A two-tailed probability associated with the t-distribution. It must be a number
between 0 and 1.

degrees_
freedom

An integer stating the number of degrees of freedom.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1448

8 Script and chart functions

Limitations:

All arguments must be numeric, else NULL will be returned.

This function is related to the TDist function in the following way:
If prob = TDIST(value, df ,2), then TINV(prob, df) = value.

Examples and results:

Example Result

TINV(0.3253086, 30) Returns 1.0000

8.24 String functions
This section describes functions for handling and manipulating strings.

All functions can be used in both the data load script and in chart expressions, except for Evaluate
which can only be used in the data load script.

String functions overview
Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

Capitalize
Capitalize() returns the string with all words in initial uppercase letters.

Capitalize (text)

Chr
Chr() returns the Unicode character corresponding to the input integer.

Chr (int)

Evaluate
Evaluate() finds if the input text string can be evaluated as a valid Qlik Sense expression, and if so,
returns the value of the expression as a string. If the input string is not a valid expression, NULL is
returned.

Evaluate (expression_text)

FindOneOf
FindOneOf() searches a string to find the position of the occurrence of any character from a set of
provided characters. The position of the first occurrence of any character from the search set is
returned unless a third argument (with a value greater than 1) is supplied. If no match is found, 0 is
returned.

FindOneOf (text, char_set[, count])

Script syntax and chart functions - Qlik Sense, May 2024 1449

8 Script and chart functions

Hash128
Hash128() returns a 128-bit hash of the combined input expression values. The result is a 22-
character string.

Hash128 (expr{, expression})

Hash160
Hash160() returns a 160-bit hash of the combined input expression values. The result is a 27-
character string.

Hash160 (expr{, expression})

Hash256
Hash256() returns a 256-bit hash of the combined input expression values. The result is a 43-
character string.

Hash256 (expr{, expression})

Index
Index() searches a string to find the starting position of the nth occurrence of a provided substring.
An optional third argument provides the value of n, which is 1 if omitted. A negative value searches
from the end of the string. The positions in the string are numbered from 1 and up.

Index (text, substring[, count])

IsJson
IsJson() tests whether a specified string contains valid JSON (JavaScript Object Notation) data.
You can also validate a specific JSON data type.

IsJson (json [, type])

JsonGet
JsonGet() returns the path of a JSON (JavaScript Object Notation) data string. The data must be
valid JSON but can contain extra spaces or newlines.

JsonGet (json, path)

JsonSet
JsonSet() modifies a string containing JSON (JavaScript Object Notation) data. It can set or insert a
JSON value with the new location specified by the path. The data must be valid JSON but can
contain extra spaces or newlines.

JsonSet(json, path, value)

KeepChar
KeepChar() returns a string consisting of the first string ,'text', less any of the characters NOT
contained in the second string, "keep_chars".

KeepChar (text, keep_chars)

Script syntax and chart functions - Qlik Sense, May 2024 1450

8 Script and chart functions

Left
Left() returns a string consisting of the first (leftmost) characters of the input string, where the
number of characters is determined by the second argument.

Left (text, count)

Len
Len() returns the length of the input string.

Len (text)

LevenshteinDist
LevenshteinDist() returns the Levenshtein distance between two strings. It is defined as the
minimum number of single-character edits (insertions, deletions, or substitutions) required to
change one string into the other. The function is useful for fuzzy string comparisons.

LevenshteinDist (text1, text2)

Lower
Lower() converts all the characters in the input string to lower case.

Lower (text)

LTrim
LTrim() returns the input string trimmed of any leading spaces.

LTrim (text)

Mid
Mid() returns the part of the input string starting at the position of the character defined by the
second argument, 'start', and returning the number of characters defined by the third argument,
'count'. If 'count' is omitted, the rest of the input string is returned. The first character in the input
string is numbered 1.

Mid (text, start[, count])

Ord
Ord() returns the Unicode code point number of the first character of the input string.

Ord (text)

PurgeChar
PurgeChar() returns a string consisting of the characters contained in the input string ('text'),
excluding any that appear in the second argument ('remove_chars').

PurgeChar (text, remove_chars)

Repeat
Repeat() forms a string consisting of the input string repeated the number of times defined by the
second argument.

Repeat (text[, repeat_count])

Script syntax and chart functions - Qlik Sense, May 2024 1451

8 Script and chart functions

Replace
Replace() returns a string after replacing all occurrences of a given substring within the input string
with another substring. The function is non-recursive and works from left to right.

Replace (text, from_str, to_str)

Right
Right() returns a string consisting of the last (rightmost) characters of the input string, where the
number of characters is determined by the second argument.

Right (text, count)

RTrim
RTrim() returns the input string trimmed of any trailing spaces.

RTrim (text)

SubField
SubField() is used to extract substring components from a parent string field, where the original
record fields consist of two or more parts separated by a delimiter.

SubField (text, delimiter[, field_no])

SubStringCount
SubStringCount() returns the number of occurrences of the specified substring in the input string
text. If there is no match, 0 is returned.

SubStringCount (text, substring)

TextBetween
TextBetween() returns the text in the input string that occurs between the characters specified as
delimiters.

TextBetween (text, delimiter1, delimiter2[, n])

Trim
Trim() returns the input string trimmed of any leading and trailing spaces.

Trim (text)

Upper
Upper() converts all the characters in the input string to upper case for all text characters in the
expression. Numbers and symbols are ignored.

Upper (text)

Capitalize
Capitalize() returns the string with all words in initial uppercase letters.

Syntax:
Capitalize(text)

Script syntax and chart functions - Qlik Sense, May 2024 1452

8 Script and chart functions

Return data type: string

Example: Chart expressions

Example Result

Capitalize ('star trek') Returns 'Star Trek'

Capitalize ('AA bb cC Dd') Returns 'Aa Bb Cc Dd'

Example: Load script
Load

String,

Capitalize(String)

Inline

[String

rHode iSland

washingTon d.C.

new york];

Result

String Capitalize(String)

rHode iSland Rhode Island

washingTon d.C. Washington D.C.

new york New York

Chr
Chr() returns the Unicode character corresponding to the input integer.

Syntax:
Chr(int)

Return data type: string

Examples and results:

Example Result

Chr(65) Returns the string 'A'

Chr(163) Returns the string '£'

Chr(35) Returns the string '#'

Script syntax and chart functions - Qlik Sense, May 2024 1453

8 Script and chart functions

Evaluate
Evaluate() finds if the input text string can be evaluated as a valid Qlik Sense
expression, and if so, returns the value of the expression as a string. If the input string
is not a valid expression, NULL is returned.

Syntax:
Evaluate(expression_text)

Return data type: dual

This string function cannot be used in chart expressions.

Examples and results:

Function example Result

Evaluate (5 * 8) Returns '40'

Load script example

Load

Evaluate(String) as Evaluated,

String

Inline

[String

4

5+3

0123456789012345678

Today()

];

Result

String Evaluated

4 4

5+3 8

0123456789012345678 0123456789012345678

Today() 2022-02-02

FindOneOf
FindOneOf() searches a string to find the position of the occurrence of any character
from a set of provided characters. The position of the first occurrence of any character
from the search set is returned unless a third argument (with a value greater than 1) is

Script syntax and chart functions - Qlik Sense, May 2024 1454

8 Script and chart functions

supplied. If no match is found, 0 is returned.

Syntax:
FindOneOf(text, char_set[, count])

Return data type: integer

Arguments:

Argument Description

text The original string.

char_set A set of characters to search for in text.

count Defines which occurrence of any of the character to search for. For example, a
value of 2 searches for the second occurrence.

Arguments

Example: Chart expressions

Example Result

FindOneOf('my example

text string', 'et%s')
Returns '4' because ‘e’ is the fourth character in the example string.

FindOneOf('my example

text string', 'et%s',

3)

Returns '12' because the search is for any of the characters e, t, % or
s, and "t" is the third occurrence in position 12 of the example string.

FindOneOf('my example

text string', '¤%&')
Returns '0' because none of the characters ¤, %, or & exist in the
example string.

Example: Load script
Load *

Inline

[SearchFor, Occurrence

et%s,1

et%s,3

¤%&,1]

Result

SearchFor Occurrence
FindOneOf('my example text string',
SearchFor, Occurrence)

et%s 1 4

et%s 3 12

¤%& 1 0

Script syntax and chart functions - Qlik Sense, May 2024 1455

8 Script and chart functions

Hash128
Hash128() returns a 128-bit hash of the combined input expression values. The result
is a 22-character string.

Syntax:
Hash128(expr{, expression})

Return data type: string

Example: Chart expressions

Example Result

Hash128 ('abc', 'xyz', '123') Returns 'MA&5]6+3=:>:>G%S<U*S2+'.

Hash128 (Region, Year, Month)

Note: Region, Year, and Month are table fields.

Returns 'G7*=6GKPJ(Z+)^KM?<$'A+'.

Example: Load script
Hash_128:

Load *,

Hash128(Region, Year, Month) as Hash128;

Load * inline [

Region, Year, Month

abc, xyz, 123

EU, 2022, 01

UK, 2022, 02

US, 2022, 02];

Result

Region Year Month Hash128

abc xyz 123 MA&5]6+3=:>;>G%S<U*S2+

EU 2022 01 B40^K&[T@!;VB'XR]<5=/$

UK 2022 02 O5T;+1?[B&"F&1//MA[MN!

US 2022 02 C6@#]4#_G-(]J7EQY#KRW0

Hash160
Hash160() returns a 160-bit hash of the combined input expression values. The result
is a 27-character string.

Syntax:
Hash160(expr{, expression})

Script syntax and chart functions - Qlik Sense, May 2024 1456

8 Script and chart functions

Return data type: string

Example: Chart expressions

Example Result

Hash160 ('abc', 'xyz', '123') Returns
'MA&5]6+3=:>;>G%S<U*S2I:`=X*'.

Hash160 (Region, Year, Month)

Note: Region, Year, and Month are table fields.

Returns 'G7*=6GKPJ
(Z+)^KM?<$'AI.)?U$'.

Example: Load script
Hash_160:

Load *,

Hash160(Region, Year, Month) as Hash160;

Load * inline [

Region, Year, Month

abc, xyz, 123

EU, 2022, 01

UK, 2022, 02

US, 2022, 02];

Result

Region Year Month Hash160

abc xyz 123 MA&5]6+3=:>;>G%S<U*S2I:`=X*

EU 2022 01 B40^K&[T@!;VB'XR]<5=//_F853

UK 2022 02 O5T;+1?[B&"F&1//MA[MN!T"FWZ

US 2022 02 C6@#]4#_G-(]J7EQY#KRW`@KF+W

Hash256
Hash256() returns a 256-bit hash of the combined input expression values. The result
is a 43-character string.

Syntax:
Hash256(expr{, expression})

Script syntax and chart functions - Qlik Sense, May 2024 1457

8 Script and chart functions

Return data type: string

Example: Chart expressions

Example Result

Hash256 ('abc', 'xyz', '123') Returns
'MA&5]6+3=:>;>G%S<U*S2I:`=X*A.IO*8N\%Y7Q;YEJ'.

Hash256 (Region, Year, Month)

Note: Region, Year, and Month are
table fields.

Returns 'G7*=6GKPJ(Z+)^KM?<$'AI.)?U$#X2RB
[:0ZP=+Z`F:'.

Example: Load script
Hash_256:

Load *,

Hash256(Region, Year, Month) as Hash256;

Load * inline [

Region, Year, Month

abc, xyz, 123

EU, 2022, 01

UK, 2022, 02

US, 2022, 02];

Result

Region Year Month Hash256

abc xyz 123 MA&5]6+3=:>;>G%S<U*S2I:`=X*A.IO*8N\%Y7Q;YEJ

EU 2022 01 B40^K&[T@!;VB'XR]<5=//_F853?BE6'G&,YH*T'MF)

UK 2022 02 O5T;+1?[B&"F&1//MA[MN!T"FWZT=4\#V`M%6_\0C>4

US 2022 02 C6@#]4#_G-(]J7EQY#KRW`@KF+W-0]`[Z8R+#'")=+0

Index
Index() searches a string to find the starting position of the nth occurrence of a
provided substring. An optional third argument provides the value of n, which is 1 if
omitted. A negative value searches from the end of the string. The positions in the
string are numbered from 1 and up.

Syntax:
Index(text, substring[, count])

Script syntax and chart functions - Qlik Sense, May 2024 1458

8 Script and chart functions

Return data type: integer

Arguments:

Argument Description

text The original string.

substring A string of characters to search for in text.

If the substring does not exist in the text, Index returns 0.

count Defines which occurrence of substring to search for. For example, a value of 2
searches for the second occurrence.

Arguments

Examples and results:

Example Result

Index('abcdefg', 'cd') Returns 3

Index('abcdabcd', 'b', 2) Returns 6 (the second occurrence of 'b')

Index('abcdabcd', 'b',-2) Returns 2 (the second occurrence of 'b'
starting from the end)

Left(Date, Index(Date,'-') -1) where Date =
1997-07-14

Returns 1997

Mid(Date, Index(Date, '-', 2) -2, 2) where
Date = 1997-07-14

Returns 07

Index('abc', 'x') Returns 0 ('x' does not exist in the string
'abc')

Index('abc', 'a', 2) Returns 0 (there is no 2nd occurrence of 'a')

Example: Script

T1:

Load

*,

index(String, 'cd') as Index_CD, // returns 3 in Index_CD

index(String, 'b') as Index_B, // returns 2 in Index_B

index(String, 'b', -1) as Index_B2; // returns 2 or 6 in Index_B2

Load * inline [

String

abcdefg

abcdabcd];

Script syntax and chart functions - Qlik Sense, May 2024 1459

8 Script and chart functions

IsJson
IsJson() tests whether a specified string contains valid JSON (JavaScript Object
Notation) data. You can also validate a specific JSON data type.

Syntax:
value IsJson(json [, type])

Return data type: dual

Argument Description

json String to test. It can contain extra spaces or newlines.

type Optional argument that specifies the JSON data type to test for.

l 'value' (default)
l 'object'
l 'array'
l 'string'
l 'number'
l 'Boolean'
l 'null'

Arguments

Example: Valid JSON and type

Example Result

IsJson('null') Returns -1 (true)

IsJson('"abc"', 'value') Returns -1 (true)

IsJson('"abc"', 'string') Returns -1 (true)

IsJson(123, 'number') Returns -1 (true)

Example: Invalid JSON or type

Example Result Description

IsJson('text') Returns 0 (false) 'text' is not a valid JSON value

IsJson('"text"', 'number') Returns 0 (false) '"text"' is not a valid JSON number

IsJson('"text"', 'text') Returns 0 (false) 'text' is not a valid JSON type

Script syntax and chart functions - Qlik Sense, May 2024 1460

8 Script and chart functions

JsonGet
JsonGet() returns the path of a JSON (JavaScript Object Notation) data string. The
data must be valid JSON but can contain extra spaces or newlines.

Syntax:
value JsonGet(json, path)

Return data type: dual

Argument Description

json String containing JSON data.

path The path must be specified according to≤ RFC 6901. This will allow lookup of
properties inside JSON data without using complex substring or index functions.

Arguments

Example: Valid JSON and path

Example Result

JsonGet('{"a":{"foo":"bar"},"b":

[123,"abc","ABC"]}', '')
Returns '{"a":{"foo":"bar"},"b":
[123,"abc","ABC"]}'

JsonGet('{"a":{"foo":"bar"},"b":

[123,"abc","ABC"]}', '/a')
Returns '{"foo":"bar"}'

JsonGet('{"a":{"foo":"bar"},"b":

[123,"abc","ABC"]}', '/a/foo')
Returns '"bar"'

JsonGet('{"a":{"foo":"bar"},"b":

[123,"abc","ABC"]}', '/b')
Returns '[123,"abc","ABC"]'

JsonGet('{"a":{"foo":"bar"},"b":

[123,"abc","ABC"]}', '/b/0')
Returns '123'

JsonGet('{"a":{"foo":"bar"},"b":

[123,"abc","ABC"]}', '/b/1')
Returns '"abc"'

JsonGet('{"a":{"foo":"bar"},"b":

[123,"abc","ABC"]}', '/b/2')
Returns '"ABC"'

Example: Invalid JSON or path

Example Result Description

JsonGet('

{"a":"b"}','/b')
Returns
null

The path does not point to a valid part of the JSON data.

JsonGet('{"a"}','/a') Returns
null

The JSON data is not valid JSON (member "a" does not
have a value).

Script syntax and chart functions - Qlik Sense, May 2024 1461

https://datatracker.ietf.org/doc/html/rfc6901

8 Script and chart functions

JsonSet
JsonSet() modifies a string containing JSON (JavaScript Object Notation) data. It can
set or insert a JSON value with the new location specified by the path. The data must
be valid JSON but can contain extra spaces or newlines.

Syntax:
value JsonSet(json, path, value)

Return data type: dual

Argument Description

json String containing JSON data.

path The path must be specified according to≤ RFC 6901. This allows buildup of
properties inside JSON data without using complex substring or index functions
and concatenation.

value The new string value in JSON format.

Arguments

Example: Valid JSON, path, and value

Example Result

JsonSet('{}','/a','"b"') Returns '{"a":"b"}'

JsonSet('[]','/0','"x"') Returns '["x"]'

JsonSet('"abc"','','123') Returns 123

Example: Invalid JSON, path, or value

Example Result Description

JsonSet('"abc"','/x','123') Returns
null

The path does not point to a valid part of the JSON
data.

JsonSet('{"a":

{"b":"c"}}','a/b','"x"')
Returns
null

The path is invalid.

JsonSet('

{"a":"b"}','/a','abc')
Returns
null

The value is not valid JSON. A string must be
enclosed in quotes.

KeepChar
KeepChar() returns a string consisting of the first string ,'text', less any of the
characters NOT contained in the second string, "keep_chars".

Script syntax and chart functions - Qlik Sense, May 2024 1462

https://datatracker.ietf.org/doc/html/rfc6901

8 Script and chart functions

Syntax:
KeepChar(text, keep_chars)

Return data type: string

Arguments:

Argument Description

text The original string.

keep_chars A string containing the characters in text to be kept.

Arguments

Example: Chart expressions

Example Result

KeepChar ('a1b2c3','123') Returns '123'.

KeepChar ('a1b2c3','1234') Returns '123'.

KeepChar ('a1b22c3','1234') Returns '1223'.

KeepChar ('a1b2c3','312') Returns '123'.

Example: Load script
T1:

Load

*,

keepchar(String1, String2) as KeepChar;

Load * inline [

String1, String2

'a1b2c3', '123'

];

Results

String1 String2 KeepChar

a1b2c3 123 123

Qlik Sense table showing the output from using the KeepChar function in the load script.

See also:
p PurgeChar (page 1471)

Script syntax and chart functions - Qlik Sense, May 2024 1463

8 Script and chart functions

Left
Left() returns a string consisting of the first (leftmost) characters of the input string,
where the number of characters is determined by the second argument.

Syntax:
Left(text, count)

Return data type: string

Arguments:

Argument Description

text The original string.

count Defines the number of characters to included from the left-hand part of the string
text.

Example: Chart expression

Example Result

Left('abcdef', 3) Returns 'abc'

Example: Load script
T1:

Load

*,

left(Text,Start) as Left;

Load * inline [

Text, Start

'abcdef', 3

'2021-07-14', 4

'2021-07-14', 2

];

Result

Text Start Left

abcdef 3 abc

2021-07-14 4 2021

2021-07-14 2 20

Qlik Sense table showing the output from using the Left function in the load script.

p See also Index (page 1458), which allows more complex string analysis.

Len
Len() returns the length of the input string.

Script syntax and chart functions - Qlik Sense, May 2024 1464

8 Script and chart functions

Syntax:
Len(text)

Return data type: integer

Example: Chart expression

Example Result

Len('Peter') Returns '5'

Example: Load script
T1:

Load String, First&Second as NewString;

Load *, mid(String,len(First)+1) as Second;

Load *, upper(left(String,1)) as First;

Load * inline [

String

this is a sample text string

capitalize first letter only];

Result

String NewString

this is a sample text string This is a sample text string

capitalize first letter only Capitalize first letter only

LevenshteinDist
LevenshteinDist() returns the Levenshtein distance between two strings. It is defined
as the minimum number of single-character edits (insertions, deletions, or
substitutions) required to change one string into the other. The function is useful for
fuzzy string comparisons.

Syntax:
LevenshteinDist(text1, text2)

Return data type: integer

Example: Chart expression

Example Result

LevenshteinDist('Kitten','Sitting') Returns '3'

Script syntax and chart functions - Qlik Sense, May 2024 1465

8 Script and chart functions

Example: Load script

Load script

T1:

Load *, recno() as ID;

Load 'Silver' as String_1,* inline [

String_2

Sliver

SSiver

SSiveer];

T1:

Load *, recno()+3 as ID;

Load 'Gold' as String_1,* inline [

String_2

Bold

Bool

Bond];

T1:

Load *, recno()+6 as ID;

Load 'Ove' as String_1,* inline [

String_2

Ove

Uve

Üve];

T1:

Load *, recno()+9 as ID;

Load 'ABC' as String_1,* inline [

String_2

DEFG

abc

ビビビ];

set nullinterpret = '<NULL>';

T1:

Load *, recno()+12 as ID;

Load 'X' as String_1,* inline [

String_2

''

<NULL>

1];

R1:

Load

ID,

String_1,

String_2,

LevenshteinDist(String_1, String_2) as LevenshteinDistance

resident T1;

Drop table T1;

Script syntax and chart functions - Qlik Sense, May 2024 1466

8 Script and chart functions

Result

ID String_1 String_2 LevenshteinDistance

1 Silver Sliver 2

2 Silver SSiver 2

3 Silver SSiveer 3

4 Gold Bold 1

5 Gold Bool 3

6 Gold Bond 2

7 Ove Ove 0

8 Ove Uve 1

9 Ove Üve 1

10 ABC DEFG 4

11 ABC abc 3

12 ABC ビビビ 3

13 X 1

14 X - 1

15 X 1 1

Lower
Lower() converts all the characters in the input string to lower case.

Syntax:
Lower(text)

Return data type: string

Example: Chart expression

Example Result

Lower('abcD') Returns 'abcd'

Example: Load script
Load

String,

Lower(String)

Inline

[String

rHode iSland

Script syntax and chart functions - Qlik Sense, May 2024 1467

8 Script and chart functions

washingTon d.C.

new york];

Result

String Lower(String)

rHode iSland rhode island

washingTon d.C. washington d.c.

new york new york

LTrim
LTrim() returns the input string trimmed of any leading spaces.

Syntax:
LTrim(text)

Return data type: string

Example: Chart expressions

Example Result

LTrim(' abc') Returns 'abc'

LTrim('abc ') Returns 'abc '

Example: Load script
Set verbatim=1;

T1:

Load *,

len(LtrimString) as LtrimStringLength;

Load *,

ltrim(String) as LtrimString;

Load *,

len(String) as StringLength;

Load * Inline [

String

' abc '

' def '];

The "Set verbatim=1" statement is included in the example to ensure that the spaces are
not automatically trimmed before the demonstration of the ltrim function. See Verbatim
(page 209) for more information.

Script syntax and chart functions - Qlik Sense, May 2024 1468

8 Script and chart functions

Result

String StringLength LtrimStringLength

def 6 5

abc 10 7

See also:
p RTrim (page 1474)

Mid
Mid() returns the part of the input string starting at the position of the character
defined by the second argument, 'start', and returning the number of characters
defined by the third argument, 'count'. If 'count' is omitted, the rest of the input string is
returned. The first character in the input string is numbered 1.

Syntax:
Mid(text, start[, count])

Return data type: string

Arguments:

Argument Description

text The original string.

start Integer defining the position of the first character in text to include.

count Defines the string length of the output string. If omitted, all characters from the
position defined by start are included.

Arguments

Example: Chart expressions

Example Result

Mid('abcdef',3) Returns 'cdef'

Mid('abcdef',3, 2) Returns 'cd'

Example: Load script
T1:

Load *,

mid(Text,Start) as Mid1,

mid(Text,Start,Count) as Mid2;

Load * inline [

Script syntax and chart functions - Qlik Sense, May 2024 1469

8 Script and chart functions

Text, Start, Count

'abcdef', 3, 2

'abcdef', 2, 3

'210714', 3, 2

'210714', 2, 3

];

Result

Text Start Mid1 Count Mid2

abcdef 2 bcdef 3 bcd

abcdef 3 cdef 2 cd

210714 2 10714 3 107

210714 3 0714 2 07

Qlik Sense table showing the output from using the Mid function in the load script.

See also:
p Index (page 1458)

Ord
Ord() returns the Unicode code point number of the first character of the input string.

Syntax:
Ord(text)

Return data type: integer

Examples and results:

Example: Chart expression

Example Result

Ord('A') Returns the integer 65.

Ord('Ab') Returns the integer 65.

Example: Load script

//Guqin (Chinese: 古琴) – 7-stringed zithers

T2:

Load *,

ord(Chinese) as OrdUnicode,

ord(Western) as OrdASCII;

Load * inline [

Chinese, Western

Script syntax and chart functions - Qlik Sense, May 2024 1470

8 Script and chart functions

古琴, Guqin];

Result:

Chinese Western OrdASCII OrdUnicode

古琴 Guqin 71 21476

PurgeChar
PurgeChar() returns a string consisting of the characters contained in the input string
('text'), excluding any that appear in the second argument ('remove_chars').

Syntax:
PurgeChar(text, remove_chars)

Return data type: string

Arguments:

Argument Description

text The original string.

remove_chars A string containing the characters in text to be removed.

Arguments

Return data type: string

Example: Chart expressions

Example Result

PurgeChar ('a1b2c3','123') Returns 'abc'.

PurgeChar ('a1b2c3','312') Returns 'abc'.

Example: Load script
T1:

Load

*,

purgechar(String1, String2) as PurgeChar;

Load * inline [

String1, String2

'a1b2c3', '123'

];

Script syntax and chart functions - Qlik Sense, May 2024 1471

8 Script and chart functions

Results

String1 String2 PurgeChar

a1b2c3 123 abc

Qlik Sense table showing the output from using the PurgeChar function in the load script.

See also:
p KeepChar (page 1462)

Repeat
Repeat() forms a string consisting of the input string repeated the number of times
defined by the second argument.

Syntax:
Repeat(text[, repeat_count])

Return data type: string

Arguments:

Argument Description

text The original string.

repeat_
count

Defines the number of times the characters in the string text are to be repeated in
the output string.

Arguments

Example: Chart expression

Example Result

Repeat(' * ', rating) when rating = 4 Returns '****'

Example: Load script
T1:

Load *,

repeat(String,2) as Repeat;

Load * inline [

String

hello world!

hOw aRe you?];

Script syntax and chart functions - Qlik Sense, May 2024 1472

8 Script and chart functions

Result

String Repeat

hello world! hello world!hello world!

hOw aRe you? hOw aRe you?hOw aRe you?

Replace
Replace() returns a string after replacing all occurrences of a given substring within
the input string with another substring. The function is non-recursive and works from
left to right.

Syntax:
Replace(text, from_str, to_str)

Return data type: string

Arguments:

Argument Description

text The original string.

from_str A string that may occur one or more times within the input string text.

to_str The string that will replace all occurrences of from_str within the string text.

Arguments

Examples and results:

Example Result

Replace('abccde','cc','xyz') Returns 'abxyzde'

See also:

Right
Right() returns a string consisting of the last (rightmost) characters of the input string,
where the number of characters is determined by the second argument.

Syntax:
Right(text, count)

Script syntax and chart functions - Qlik Sense, May 2024 1473

8 Script and chart functions

Return data type: string

Arguments:

Argument Description

text The original string.

count Defines the number of characters to be included from the rightmost part of the
string text.

Arguments

Example: Chart expression

Example Result

Right('abcdef', 3) Returns 'def'

Example: Load script
T1:

Load

*,

right(Text,Start) as Right;

Load * inline [

Text, Start

'abcdef', 3

'2021-07-14', 4

'2021-07-14', 2

];

Result

Text Start Right

abcdef 3 def

2021-07-14 4 7-14

2021-07-14 2 14

Qlik Sense table showing the output from using the Right function in the load script.

RTrim
RTrim() returns the input string trimmed of any trailing spaces.

Syntax:
RTrim(text)

Script syntax and chart functions - Qlik Sense, May 2024 1474

8 Script and chart functions

Return data type: string

Example: Chart expressions

Example Result

RTrim(' abc') Returns ' abc'

RTrim('abc ') Returns 'abc'

Example: Load script
Set verbatim=1;

T1:

Load *, len(RtrimString) as RtrimStringLength;

Load *, rtrim(String) as RtrimString;

Load *, len(String) as StringLength;

Load * Inline [

String

' abc '

' def '];

The "Set verbatim=1" statement is included in the example to ensure that the spaces are
not automatically trimmed before the demonstration of the rtrim function. See Verbatim
(page 209) for more information.

Result

String StringLength RtrimStringLength

def 6 4

abc 10 6

See also:
p LTrim (page 1468)

SubField

SubField() is used to extract substring components from a parent string field, where
the original record fields consist of two or more parts separated by a delimiter.

Script syntax and chart functions - Qlik Sense, May 2024 1475

8 Script and chart functions

The Subfield() function can be used, for example, to extract first name and surname from a list of
records consisting of full names, the component parts of a path name, or for extracting data from
comma-separated tables.

If you use the Subfield() function in a LOAD statement with the optional field_no parameter left out,
one full record will be generated for each substring. If several fields are loaded using Subfield() the
Cartesian products of all combinations are created.

Syntax:
SubField(text, delimiter[, field_no])

Return data type: string

Arguments:

Argument Description

text The original string. This can be a hard-coded text, a variable, a dollar-sign
expansion, or another expression.

delimiter A character within the input text that divides the string into component parts.

field_no The optional third argument is an integer that specifies which of the substrings of
the parent string text is to be returned. Use the value 1 to return the first
substring, 2 to return the second substring, and so on.

l If field_no is a positive value, substrings are extracted from left to right.
l If field_no is a negative value, substrings are extracted from right to left.

Arguments

SubField() can be used instead of using complex combinations of functions such as Len
(), Right(), Left(), Mid(), and other string functions.

Examples: Script and chart expressions using SubField
Examples - script and chart expressions

Basic examples

Example Result

SubField(S, ';' ,2) Returns 'cde' if S is 'abc;cde;efg'.

SubField(S, ';' ,1) Returns an empty string if S is an empty string.

SubField(S, ';' ,1) Returns an empty string if S is ';'.

Script syntax and chart functions - Qlik Sense, May 2024 1476

8 Script and chart functions

Example Result

Suppose you have a variable that
holds a path name vMyPath,

Set vMyPath=\Users\ext_

jrb\Documents\Qlik\Sense\Apps;.

In a text & image chart, you can add a measure such as:
SubField(vMyPath, '\',-3), which results in 'Qlik', because it is
the substring third from the right-hand end of the variable
vMyPath.

Script example 1

Load script
Load the following script expressions and data in the data load editor.

FullName:

LOAD * inline [

Name

'Dave Owen'

'Joe Tem'

];

SepNames:

Load Name,

SubField(Name, ' ',1) as FirstName,

SubField(Name, ' ',-1) as Surname

Resident FullName;

Drop Table FullName;

Create a visualization
Create a table visualization in a Qlik Sense sheet with Name, FirstName, and SurName as
dimensions.

Result

Name FirstName SurName

Dave Owen Dave Owen

Joe Tem Joe Tem

Explanation
The SubField() function extracts the first substring of Name by setting the field_no argument to 1.
Since the value of field_no is positive, a left to right order is followed for extracting the subtring. A
second function call extracts the second substring by setting the field_no argument to -1, which
extracts the substring following a right to left order.

Script syntax and chart functions - Qlik Sense, May 2024 1477

8 Script and chart functions

Script example 2

Load script
Load the following script expressions and data in the data load editor.

LOAD DISTINCT

Instrument,

SubField(Player,',') as Player,

SubField(Project,',') as Project;

Load * inline [

Instrument|Player|Project

Guitar|Neil,Mike|Music,Video

Guitar|Neil|Music,OST

Synth|Neil,Jen|Music,Video,OST

Synth|Jo|Music

Guitar|Neil,Mike|Music,OST

] (delimiter is '|');

Create a visualization
Create a table visualization in a Qlik Sense sheet with Instrument, Player, and Project as
dimensions.

Result

Instrument Player Project

Guitar Mike Music

Guitar Mike Video

Guitar Mike OST

Guitar Neil Music

Guitar Neil Video

Guitar Neil OST

Synth Jen Music

Synth Jen Video

Synth Jen OST

Synth Jo Music

Synth Neil Music

Synth Neil Video

Synth Neil OST

Script syntax and chart functions - Qlik Sense, May 2024 1478

8 Script and chart functions

Explanation
This example shows how using multiple instances of the Subfield() function, each with the field_no
parameter left out, from within the same LOAD statement creates Cartesian products of all
combinations. The DISTINCT option is used to avoid creating duplicate records.

SubStringCount
SubStringCount() returns the number of occurrences of the specified substring in the input string
text. If there is no match, 0 is returned.

Syntax:
SubStringCount(text, sub_string)

Return data type: integer

Arguments:

Argument Description

text The original string.

sub_string A string which may occur one or more times within the input string text.

Example: Chart expressions

Example Result

SubStringCount ('abcdefgcdxyz', 'cd') Returns '2'

SubStringCount ('abcdefgcdxyz', 'dc') Returns '0'

Example: Load script
T1:

Load *,

substringcount(upper(Strings),'AB') as SubStringCount_AB;

Load * inline [

Strings

ABC:DEF:GHI:AB:CD:EF:GH

aB/cd/ef/gh/Abc/abandoned];

Result

Strings SubStringCount_AB

aB/cd/ef/gh/Abc/abandoned 3

ABC:DEF:GHI:AB:CD:EF:GH 2

Script syntax and chart functions - Qlik Sense, May 2024 1479

8 Script and chart functions

TextBetween
TextBetween() returns the text in the input string that occurs between the characters specified as
delimiters.

Syntax:
TextBetween(text, delimiter1, delimiter2[, n])

Return data type: string

Arguments:

Argument Description

text The original string.

delimiter1 Specifies the first delimiting character (or string) to search for in text.

delimiter2 Specifies the second delimiting character (or string) to search for in text.

n Defines which occurrence of the delimiter pair to search between. For example, a
value of 2 returns the characters between the second occurrence of delimiter1
and the second occurrence of delimiter2.

Example: Chart expressions

Example Result

TextBetween('<abc>', '<',

'>')
Returns 'abc'

TextBetween('<abc><de>', '<',

'>',2)
Returns 'de'

TextBetween('abc', '<', '>')

TextBetween('<a<b', '<', '>')
Both examples return NULL.

If any of the delimiter is not found in the string, NULL is
returned.

TextBetween('<>', '<', '>') Returns a zero-length string.

TextBetween('<abc>', '<',

'>', 2)
Returns NULL, as n is greater than the number of occurrences
of the delimiters.

Example: Load script
Load *,

textbetween(Text,'<','>') as TextBetween,

textbetween(Text,'<','>',2) as SecondTextBetween;

Load * inline [

Text

<abc><de>

<def><ghi><jkl>];

Script syntax and chart functions - Qlik Sense, May 2024 1480

8 Script and chart functions

Result

Text TextBetween SecondTextBetween

<abc><de> abc de

<def><ghi><jkl> def ghi

Trim
Trim() returns the input string trimmed of any leading and trailing spaces.

Syntax:
Trim(text)

Return data type: string

Examples and results:

Example: Chart expression

Example Result

Trim(' abc') Returns 'abc'

Trim('abc ') Returns 'abc'

Trim(' abc ') Returns 'abc'

Example: Load script

Set verbatim=1;

T1:

Load *, len(TrimString) as TrimStringLength;

Load *, trim(String) as TrimString;

Load *, len(String) as StringLength;

Load * inline [

String

' abc '

' def '](delimiter is '\t');

The "Set verbatim=1" statement is included in the example to ensure that the spaces are
not automatically trimmed before the demonstration of the trim function. See Verbatim
(page 209) for more information.

Result:

Script syntax and chart functions - Qlik Sense, May 2024 1481

8 Script and chart functions

String StringLength TrimStringLength

def 6 3

abc 10 3

Upper
Upper() converts all the characters in the input string to upper case for all text characters in the
expression. Numbers and symbols are ignored.

Syntax:
Upper(text)

Return data type: string

Example: Chart expression

Example Result

Upper(' abcD') Returns 'ABCD'

Example: Load script
Load

String,Upper(String)

Inline

[String

rHode iSland

washingTon d.C.

new york];

Result

String Upper(String)

rHode iSland RHODE ISLAND

washingTon d.C. WASHINGTON D.C.

new york NEW YORK

8.25 System functions
System functions provide functions for accessing system, device and Qlik Sense app
properties.

System functions overview
Some of the functions are described further after the overview. For those functions, you can click
the function name in the syntax to immediately access the details for that specific function.

Script syntax and chart functions - Qlik Sense, May 2024 1482

8 Script and chart functions

Author()
This function returns a string containing the author property of the current app. It can be used in
both the data load script and in a chart expression.

Author property can not be set in the current version of Qlik Sense. If you migrate a
QlikView document, the author property will be retained.

ClientPlatform()
This function returns the user agent string of the client browser. It can be used in both the data load
script and in a chart expression.

Example:

Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit/537.36 (KHTML, like Gecko)

Chrome/35.0.1916.114 Safari/537.36

ComputerName
This function returns a string containing the name of the computer as returned by the operating
system. It can be used in both the data load script and in a chart expression.

If the name of the computer has more than 15 characters, the string will only contain the
first 15 characters.

ComputerName()

DocumentName
This function returns a string containing the name of the current Qlik Sense app, without path but
with extension. It can be used in both the data load script and in a chart expression.

DocumentName()

DocumentPath
This function returns a string containing the full path to the current Qlik Sense app. It can be used in
both the data load script and in a chart expression.

DocumentPath()

This function is not supported in standard mode. .

DocumentTitle
This function returns a string containing the title of the current Qlik Sense app. It can be used in
both the data load script and in a chart expression.

DocumentTitle()

EngineVersion
This function returns the full Qlik Sense engine version as a string.

Script syntax and chart functions - Qlik Sense, May 2024 1483

8 Script and chart functions

EngineVersion ()

GetCollationLocale
This script function returns the culture name of the collation locale that is used. If the variable
CollationLocale has not been set, the actual user machine locale is returned.

GetCollationLocale()

GetObjectField
GetObjectField() returns the name of the dimension. Index is an optional integer denoting the
dimension that should be returned.

GetObjectField - chart function([index])

GetRegistryString
This function returns the value of a key in the Windows registry. It can be used in both the data load
script and in a chart expression.

GetRegistryString(path, key)

This function is not supported in standard mode. .

GetSysAttr
This function returns the tenant and space domain attributes for a selected app. It can be used in
both the data load script and in a chart expression.

GetSysAttr (name)

If you use this function in Qlik Sense Client-Managed, it only returns empty data values.

GroupDimensionIndex
This function returns the index of the active field for the specified cyclic dimension. The first field
has index value of 1. Enter the name of the cyclic dimension in single quotes. It can only be used in a
chart expression.

GroupDimensionIndex(dim_name Expression)

GroupDimensionLabel
This function returns the field label of current step in the specified cyclic dimension. Enter the name
of the cyclic dimension in single quotes. It can only be used in a chart expression.

GroupDimensionLabel(dim_name Expression)

IsPartialReload
This function returns - 1 (True) if the current reload is partial, otherwise 0 (False).

IsPartialReload ()

Script syntax and chart functions - Qlik Sense, May 2024 1484

8 Script and chart functions

InObject
The InObject() chart function evaluates whether or not the current object is contained inside
another object with the ID specified in the function argument. The object can be a sheet or a
visualization.

InObject - chart function(id_str)

ObjectId
The ObjectId() chart function returns the ID of the object in which the expression is evaluated. The
function takes an optional argument specifying which type of object the function concerns. The
object can be a sheet or a visualization. This function is only available in chart expressions.

ObjectId - chart function([object_type_str])

OSUser
This function returns a string containing the name of the user that is currently connected. It can be
used in both the data load script and in a chart expression.

OSUser()

In Qlik Sense Desktop and Qlik Sense Client-Managed Mobile, this function always
returns 'Personal\Me'.

ProductVersion
This function returns the full Qlik Sense version and build number as a string.

This function is deprecated and replaced by EngineVersion().

ProductVersion ()

ReloadTime
This function returns a timestamp for when the last data load finished. It can be used in both the
data load script and in a chart expression.

ReloadTime()

StateName
StateName() returns the name of the alternate state of the visualization in which it is used.
StateName can be used, for example, to create visualizations with dynamic text and colors to
reflect when the state of a visualization is changed. This function can be used in chart expressions,
but cannot be used to determine the state that the expression refers to.

StateName - chart function()

EngineVersion
This function returns the full Qlik Sense engine version as a string.

Syntax:
EngineVersion()

Script syntax and chart functions - Qlik Sense, May 2024 1485

8 Script and chart functions

GetSysAttr
This function returns the tenant and space domain attributes for a selected app. It can
be used in both the data load script and in a chart expression.

If you use this function in Qlik Sense Client-Managed, it returns empty data values. Therefore, you
can use the function to develop load scripts in Qlik Sense Client-Managed without encountering
errors, to later upload the apps to Qlik Cloud.

To access the full documentation for the Qlik Cloud function, see GetSysAttr - script and chart
function.

InObject - chart function
The InObject() chart function evaluates whether or not the current object is contained
inside another object with the ID specified in the function argument. The object can be
a sheet or a visualization.

This function can be used to show the hierarchy of objects in a sheet, from the top-level sheet
object to visualizations nested within other visualizations. This function can be used alongside the if
and ObjectId functions to create custom navigation in your apps.

Syntax:
InObject(id_str)

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.

Argument Description

id_str A string value representing the ID of the object being evaluated.

Arguments

The sheet ID can be obtained from the app URL. For visualizations, use the Developer options to
identify the object ID and the text string of the object type.

Do the following:

1. In analysis mode, add the following text to your URL:
/options/developer

2. Right-click a visualization and click Developer.

3. Under Properties, obtain the object ID from the dialog header, and the object type from the
"qType" property.

Script syntax and chart functions - Qlik Sense, May 2024 1486

/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/Scripting/SystemFunctions/GetSysAttr.htm
/en-US/cloud-services/Subsystems/Hub/Content/Sense_Hub/Scripting/SystemFunctions/GetSysAttr.htm

8 Script and chart functions

Limitations:

This function can give unexpected results when invoked in an object (for example, a button) inside
a container which is a master item. This limitation also applies to filter pane master items, which are
containers for a number of listboxes. This is because of how master items use the object hierarchy.

InObject() is often used in combination with the following functions:

Function Interaction

if (page 567) The if and
ObjectId
functions can
be used
together to
create
conditional
expressions.
For example,
visualizations
might achieve
conditional
coloring
through
expressions
using these
functions.

ObjectId - chart function (page 1490) Similar to if,
ObjectId is also
used with
InObject to
create
conditional
expressions.

Related functions

Example 1 – Basic functionality
Chart expression and results
The following basic example demonstrates how to determine whether an object is contained inside
another object. In this case, we will be checking if a Text & image object resides in a sheet object
using the ID of the sheet as an argument.

Script syntax and chart functions - Qlik Sense, May 2024 1487

8 Script and chart functions

Do the following:

1. Open a new sheet and drag a Text & image chart onto the sheet.
2. In the properties panel, click Add measure.

3. Click to open the expression editor.

4. Paste the following expression into the dialog:
=InObject()

5. Modify the expression to include the ID of your sheet as a string between the parentheses.
For example, for a sheet with ID 1234-5678, you would use the following:
=InObject('1234-5678')

6. Click Apply.

The value -1 is displayed in the chart, indicating that the expression was evaluated to be true.

Example 2 – Objects with conditional colors
Chart expression and results

Overview

The following example demonstrates how to create custom navigation buttons showing different
coloring to indicate the sheet that is currently open.

Start by creating a new app and opening the Data load editor. Paste the following load script into a
new tab. Note that the data itself is a placeholder and will not be used in the example content.

Load script

Transactions:

Load

*

Inline

[

id,date,amount

8188,'1/19/2022',37.23

8189,'1/7/2022',17.17

8190,'2/28/2022',88.27

8191,'2/5/2022',57.42

8192,'3/16/2022',53.80

8193,'4/1/2022',82.06

8194,'4/7/2022',40.39

8195,'5/16/2022',87.21

8196,'6/15/2022',95.93

8197,'7/26/2022',45.89

8198,'8/9/2022',36.23

8199,'9/22/2022',25.66

8200,'11/23/2022',82.77

8201,'12/27/2022',69.98

8202,'1/1/2023',76.11

Script syntax and chart functions - Qlik Sense, May 2024 1488

8 Script and chart functions

8203,'2/8/2022',25.12

8204,'3/19/2022',46.23

8205,'6/26/2022',84.21

8206,'9/14/2022',96.24

8207,'11/29/2022',67.67

];

Creating the visualizations

Load the data and create two new sheets. Title them Sales 2022 and Sales 2023 respectively.

Next, build two button objects that will be used to navigate between the two sheets.

Do the following:

1. Add two Button objects to the sheet.
2. Under Appearance > General, set the Label of each button to Sales 2022 and Sales 2023,

respectively.
3. Arrange the buttons to match the following image.

Sales 2022 sheet arrangement with two navigation buttons

4. Select the Sales 2022 button, and expand Actions and navigation in the properties panel.
5. Click Add action and under Navigation, select Go to a sheet.
6. Under Sheet, select Sales 2022.
7. Repeat this button action setup to link the Sales 2023 button to the Sales 2023 sheet.

8. Convert the buttons to master items by right-clicking them and selecting Add to master
items.

You can now copy each button and paste it in the Sales 2023 sheet, using the same size and
arrangement on the sheet.

Script syntax and chart functions - Qlik Sense, May 2024 1489

8 Script and chart functions

Creating conditional colors

Next, configure the buttons so that they will be blue if they are linked to the currently open sheet,
and light gray if linked to the sheet that is not open.

Do the following:

1. Open the Sales 2022 sheet and obtain the sheet ID from the URL. Keep the Sales 2022 sheet
open.

2. Click the Sales 2022 button master item and select Edit in the properties panel.
3. Under Appearance > Background, select to color the button By expression.
4. In Expression, paste the following text:

=if(InObject(''), Blue(), LightGray())
5. Between the parentheses in the above expression, paste the sheet ID for the Sales 2022

sheet.

The button is now configured to turn blue when the Sales 2022 sheet is open, and light gray when it
is not open.

Repeat the above instructions for the Sales 2023 sheet, linking the Sales 2023 button master item
to the Sales 2023 sheet ID.

Each sheet should now have two buttons indicating the currently open sheet with the color blue.

Sales 2022 sheet with blue coloring to indicate that Sales 2022 is currently displayed

IsPartialReload
This function returns - 1 (True) if the current reload is partial, otherwise 0 (False).

Syntax:
IsPartialReload()

ObjectId - chart function
The ObjectId() chart function returns the ID of the object in which the expression is evaluated. The
function takes an optional argument specifying which type of object the function concerns. The
object can be a sheet or a visualization. This function is only available in chart expressions.

Syntax:
ObjectId([object_type_str])

Script syntax and chart functions - Qlik Sense, May 2024 1490

8 Script and chart functions

Return data type: string

The function's only argument, object_type_str, is optional and refers to a string value representing
the type of the object.

Argument Description

object_type_str A string value representing the type of the object being evaluated.

Arguments

If no argument is specified in the function expression, ObjectId() returns the ID of the object in
which the expression is used. To return the ID of the sheet object within which the visualization
appears, use ObjectId('sheet').

In the case of visualization objects nested within other visualization objects, specify the desired
object type in the function argument for different results. For example, for a Text & image chart
within a container, use 'text-image' to return the Text & image object and 'container' to return the
ID of the container.

Do the following:

1. In analysis mode, add the following text to your URL:
/options/developer

2. Right-click a visualization and click Developer.

3. Under Properties, obtain the object ID from the dialog header, and the object type from the
"qType" property.

Limitations:

This function can give unexpected results when invoked in an object (for example, a button) inside
a container which is a master item. This limitation also applies to filter pane master items, which are
containers for a number of listboxes. This is because of how master items use the object hierarchy.

The chart expression ObjectId('sheet') will return an empty string in those cases, whereas ObjectId
('masterobject') will show the identifier of the owning master item.

ObjectId() is often used in combination with the following functions:

Script syntax and chart functions - Qlik Sense, May 2024 1491

8 Script and chart functions

Function Interaction

if (page 567) The if and
ObjectId
functions can
be used
together to
create
conditional
expressions.
For example,
visualizations
might achieve
conditional
coloring
through
expressions
using these
functions.

InObject - chart function (page 1486) Similar to if,
InObject is also
used with
ObjectId to
create
conditional
expressions.

Related functions

Example 1 – Return chart object ID
Chart expression and results
The following basic example demonstrates how to return the ID of a visualization.

Do the following:

1. Open a new sheet and drag a Text & image chart onto the sheet.
2. In the properties panel, click Add measure.

3. Click to open the expression editor.

4. Paste the following expression into the dialog:
=ObjectId()

5. Click Apply.

The ID of the Text & image object is displayed in the visualization.

The same result can be achieved with the following expression:

Script syntax and chart functions - Qlik Sense, May 2024 1492

8 Script and chart functions

=ObjectId('text-image')

Example 2 – Return sheet ID
Chart expression and results
The following basic example demonstrates how to return the ID of the sheet in which a visualization
appears.

Do the following:

1. Open a new sheet and drag a Text & image chart onto the sheet.
2. In the properties panel, click Add measure.

3. Click to open the expression editor.

4. Paste the following expression into the dialog:
=ObjectId('sheet')

5. Click Apply.

The ID of the sheet is displayed in the visualization.

Example 3 – Nested expression
Chart expression and results
The following example shows how the ObjectId() function can be nested inside other expressions.

Do the following:

1. Open a new sheet and drag a Text & image chart onto the sheet.
2. In the properties panel, click Add measure.

3. Click to open the expression editor.

4. Paste the following expression into the dialog:
=if(InObject(ObjectId('text-image')), 'In Text & image', 'Not in Text & image')

5. Click Apply.

The text In Text & image appears in the chart, indicating that the object referenced in the
expression is a Text & image chart.

For a more detailed example using conditional coloring, see the example on InObject - chart
function (page 1486).

ProductVersion
This function returns the full Qlik Sense version and build number as a string. This
function is deprecated and replaced by EngineVersion().

Syntax:
ProductVersion()

Script syntax and chart functions - Qlik Sense, May 2024 1493

8 Script and chart functions

StateName - chart function
StateName() returns the name of the alternate state of the visualization in which it is
used. StateName can be used, for example, to create visualizations with dynamic text
and colors to reflect when the state of a visualization is changed. This function can be
used in chart expressions, but cannot be used to determine the state that the
expression refers to.

Syntax:
StateName ()

Example 1:

Dynamic Text
='Region - ' & if(StateName() = '$', 'Default', StateName())

Example 2:

Dynamic Colors
if(StateName() = 'Group 1', rgb(152, 171, 206),

if(StateName() = 'Group 2', rgb(187, 200, 179),

rgb(210, 210, 210)

)

)

8.26 Table functions
The table functions return information about the data table which is currently being
read. If no table name is specified and the function is used within a LOAD statement,
the current table is assumed.

All functions can be used in the data load script, while only NoOfRows can be used in a chart
expression.

Table functions overview
Some of the functions are described further after the overview. For those functions, you can click
the function name in the syntax to immediately access the details for that specific function.

FieldName
The FieldName script function returns the name of the field with the specified number within a
previously loaded table. If the function is used within a LOAD statement, it must not reference the
table currently being loaded.

FieldName (field_number ,table_name)

Script syntax and chart functions - Qlik Sense, May 2024 1494

8 Script and chart functions

FieldNumber
The FieldNumber script function returns the number of a specified field within a previously loaded
table. If the function is used within a LOAD statement, it must not reference the table currently
being loaded.

FieldNumber (field_name ,table_name)

NoOfFields
The NoOfFields script function returns the number of fields in a previously loaded table. If the
function is used within a LOAD statement, it must not reference the table currently being loaded.

NoOfFields (table_name)

NoOfRows
The NoOfRows function returns the number of rows (records) in a previously loaded table. If the
function is used within a LOAD statement, it must not reference the table currently being loaded.

NoOfRows (table_name)

NoOfTables
This script function returns the number of tables previously loaded.

NoOfTables()

TableName
This script function returns the name of the table with the specified number.

TableName(table_number)

TableNumber
This script function returns the number of the specified table. The first table has number 0.

If table_name does not exist, NULL is returned.

TableNumber(table_name)

Example:

In this example, we want to create a table with information about the tables and fields that have
been loaded.

First we load some sample data. This creates the two tables that will be used to illustrate the table
functions described in this section.

Characters:

Load Chr(RecNo()+Ord('A')-1) as Alpha, RecNo() as Num autogenerate 26;

ASCII:

Load

if(RecNo()>=65 and RecNo()<=90,RecNo()-64) as Num,

Chr(RecNo()) as AsciiAlpha,

RecNo() as AsciiNum

Script syntax and chart functions - Qlik Sense, May 2024 1495

8 Script and chart functions

autogenerate 255

Where (RecNo()>=32 and RecNo()<=126) or RecNo()>=160 ;

Next, we iterate through the tables that have been loaded, using the NoOfTables function, and
then through the fields of each table, using the NoOfFields function, and load information using the
table functions.

//Iterate through the loaded tables

For t = 0 to NoOfTables() - 1

//Iterate through the fields of table

For f = 1 to NoOfFields(TableName($(t)))

Tables:

Load

TableName($(t)) as Table,

TableNumber(TableName($(t))) as TableNo,

NoOfRows(TableName($(t))) as TableRows,

FieldName($(f),TableName($(t))) as Field,

FieldNumber(FieldName($(f),TableName($(t))),TableName($(t))) as FieldNo

Autogenerate 1;

Next f

Next t;

The resulting table Tables will look like this:

Table TableNo TableRows Field FieldNo

Characters 0 26 Alpha 1

Characters 0 26 Num 2

ASCII 1 191 Num 1

ASCII 1 191 AsciiAlpha 2

ASCII 1 191 AsciiNum 3

Load table

FieldName
The FieldName script function returns the name of the field with the specified number within a
previously loaded table. If the function is used within a LOAD statement, it must not reference the
table currently being loaded.

Syntax:
FieldName(field_number ,table_name)

Arguments:

Argument Description

field_number The field number of the field you want to reference.

table_name The table containing the field you want to reference.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1496

8 Script and chart functions

Example:

LET a = FieldName(4,'tab1');

FieldNumber
The FieldNumber script function returns the number of a specified field within a
previously loaded table. If the function is used within a LOAD statement, it must not
reference the table currently being loaded.

Syntax:
FieldNumber(field_name ,table_name)

Arguments:

Argument Description

field_name The name of the field.

table_name The name of the table containing the field.

Arguments

If the field field_name does not exist in table_name, or table_name does not exist, the function
returns 0.

Example:

LET a = FieldNumber('Customer','tab1');

NoOfFields
The NoOfFields script function returns the number of fields in a previously loaded
table. If the function is used within a LOAD statement, it must not reference the table
currently being loaded.

Syntax:
NoOfFields(table_name)

Arguments:

Argument Description

table_name The name of the table.

Arguments

Example:

LET a = NoOfFields('tab1');

Script syntax and chart functions - Qlik Sense, May 2024 1497

8 Script and chart functions

NoOfRows
The NoOfRows function returns the number of rows (records) in a previously loaded
table. If the function is used within a LOAD statement, it must not reference the table
currently being loaded.

Syntax:
NoOfRows(table_name)

Arguments:

Argument Description

table_name The name of the table.

Arguments

Example:

LET a = NoOfRows('tab1');

8.27 Trigonometric and hyperbolic functions
This section describes functions for performing trigonometric and hyperbolic
operations. In all of the functions, the arguments are expressions resolving to angles
measured in radians, where x should be interpreted as a real number.

All angles are measured in radians.

All functions can be used in both the data load script and in chart expressions.

cos
Cosine of x. The result is a number between -1 and 1.

cos(x)

acos
Inverse cosine of x. The function is only defined if -1≤x≤1. The result is a number between 0 and π.

acos(x)

sin
Sine of x. The result is a number between -1 and 1.

sin(x)

asin
Inverse sine of x. The function is only defined if -1≤x≤1. The result is a number between - π/2 and
π/2.

Script syntax and chart functions - Qlik Sense, May 2024 1498

8 Script and chart functions

asin(x)

tan
Tangent of x. The result is a real number.

tan(x)

atan
Inverse tangent of x. The result is a number between - π/2 and π/2.

atan(x)

atan2
Two-dimensional generalization of the inverse tangent function. Returns the angle between the
origin and the point represented by the coordinates x and y. The result is a number between - π and
+ π.

atan2(y,x)

cosh
Hyperbolic cosine of x. The result is a positive real number.

cosh(x)

sinh
Hyperbolic sine of x. The result is a real number.

sinh(x)

tanh
Hyperbolic tangent of x. The result is a real number.

tanh(x)

acosh
Inverse hyperbolic cosine of x. The result is a positive real number.

acosh(x)

asinh
Inverse hyperbolic sine of x. The result is a real number.

asinh(x)

atanh
Inverse hyperbolic tangent of x. The result is a real number.

atanh(x)

Examples:

The following script code loads a sample table, and then loads a table containing the calculated
trigonometric and hyperbolic operations on the values.

Script syntax and chart functions - Qlik Sense, May 2024 1499

8 Script and chart functions

SampleData:

LOAD * Inline

[Value

-1

0

1];

Results:

Load *,

cos(Value),

acos(Value),

sin(Value),

asin(Value),

tan(Value),

atan(Value),

atan2(Value, Value),

cosh(Value),

sinh(Value),

tanh(Value)

RESIDENT SampleData;

Drop Table SampleData;

8.28 Window functions
Window functions perform calculations using values from multiple rows to produce a
value for each row separately. Window functions can only be calculated once the entire
table is read.

You can use window functions to perform operations such as:

l Comparing an individual number value in a row with the average, maximum, or minimum
within the column.

l Calculating the rank of an individual value, either within the column or within the entire table.

Window functions do not change the number of records in the table but can perform similar tasks as
aggregation functions or relational functions and range functions.

Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

Window
The Window function performs calculations from multiple rows, producing a value for each row
separately.

Window - script function(input_expr, [partition1, partition2, ...], [sort_

type, [sort_expr]],[filter_expr], [start_expr,end_expr])[row_window_size])

WRank
The WRank function performs ranking calculations inside Window.

Script syntax and chart functions - Qlik Sense, May 2024 1500

8 Script and chart functions

WRank - script function([TOTAL] expr[, mode[, fmt]])

Window - script function
Window() performs calculations from multiple rows, producing a value for each row
separately.

You can use the Window functions to perform operations such as:

l Comparing an individual number value in a row with the average, maximum, or minimum
within the column.

l Calculating the rank of an individual value, either within the column or within the entire table.

The Window function does not change the number of records in the table but it can still perform
similar tasks as aggregation, relational, and range functions.

The Window function must have a cache within the LOAD statement of the table you are working
with to add to the table. For example:

[Transactions]:

Load

*,

Window(avg(Expression1),[Num]);

LOAD

TransLineID,

TransID,

"Num",

Dim1,

Dim2,

Dim3,

Expression1,

Expression2,

Expression3

FROM [lib://AttachedFiles/transactions.qvd] (qvd);

Window supports general functions, such as rounding or basic numerical operations. For example:

Load *, Round(Window(Sum(Salary),Department)) as SumSalary

Load *, Window(Sum(Salary),Department) + 5 as SumSalary

You can define a sliding window for the Window function. This sets the number of rows used when
applying the Window function on the current row. For example, you could set the window to be the
3 previous rows and the 3 subsequent rows.

Syntax:
Window (input_expr, [partition1, partition2, ...], [sort_type, [sort_expr]],

[filter_expr], [start_expr,end_expr])

Return data type: A new field added to the resulting table created by the LOAD statement.

Script syntax and chart functions - Qlik Sense, May 2024 1501

8 Script and chart functions

Arguments:

Argument Description

input_expr The input expression calculated and returned by the function. It must be any
expression based on an aggregation, such as Median(Salary). For example:

Window(Median(Salary)) as MedianSalary

The input can also be a field name with no aggregation applied. In this case,
Window treats it like the Only() function is applied to that field. For example:

Window(Salary,Department) as WSalary

Optionally, you can define partitioning with the input expression. Partitioning is the
same as the grouping achieved by the group by clause, with the difference that
the result is added as a new column to the input table. Partitioning does not reduce
the number of records of the input table. Multiple partition fields can be defined.

Example:

LOAD

Window(Max(Sales), City, 'ASC', OrderDate, Sales > 300)

+ AddMonths(OrderDate,-6) as MAX_Sales_City_Last_6_Mos,

Window(Avg(Sales), City, 'ASC', OrderDate, City = 'Portland')

+ AddMonths(OrderDate,-6) as Avg_Sales_Portland_Last_6_Mos,

Window(Max(Sales), City, 'ASC', OrderDate, Sales > 300)

+ AddMonths(OrderDate,-12) as MAX_Sales_City_Last_12_Mos;

LOAD

City,

Sales,

OrderDate

FROM [lib://AttachedFiles/Sales Data.xlsx]

(ooxml, embedded labels, table is [Sales Data]);

partition1,
partition2

After input_expr, you can define any number of partitions. Partitions are fields that
define which combinations to apply the aggregations with. The aggregation is
applied separately with each partition. For example:

Window(Avg(Salary), Unit, Department, Country) as AvgSalary

In the above, the partitions are Unit, Department, and Country.

Partitions are not mandatory, but are required for proper windowing of fields.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1502

8 Script and chart functions

Argument Description

sort_type,
[sort_expr]]

Optionally, specify the sort type and the sort expression. sort_type can have one
of two values:

l ASC: Ascending sorting.
l DESC: Descending sort.

If you define sort_type, you need to define a sorting expression. This is an
expression that decides the order of the rows within a partition.

For example:

Window(RecNo(), Department, 'ASC', Year)

In the above example, the results within the partition of sorted ascendingly by the
Year field.

The sort type and sort expression are primarily only required with the
RecNo and WRank functions.

filter_expr Optionally, add a filter expression. This is a Boolean expression that decides
whether the record should be included in the calculation or not.

This parameter can be omitted completely, and the result should be that there is
no filter.

For example:

Window(avg(Salary), Department, 'ASC', Age, EmployeeID=3 Or EmployeeID=7)

as wAvgSalary) as wAvgSalaryIfEmpIs3or7

Script syntax and chart functions - Qlik Sense, May 2024 1503

8 Script and chart functions

Argument Description

[start_
expr,end_
expr]

Optionally, set the argument for sliding window functionality. A sliding window
requires two arguments:

l Start expression: The number of rows prior to the current row to include in
the window.

l End expression: The number of rows after the current row to include in the
window.

For example, if you wanted to include the 3 preceding rows, the current row, and
the next following row:

Window(concat(Text(Salary),'-'), Department, 'ASC', Age, Year>0, -3, 1)

as WSalaryDepartment

To indicate all preceding rows or all subsequent rows, you can use the
Unbounded() function. For example, to include all preceding rows, the current
row, and the following row:

Window(concat(Text(Salary),'-'), Department, 'ASC', Age, Year>0, UNBOUNDED(),

1)

as WSlidingSalaryDepartment

For example, to include the third row from the current row and all subsequent
rows:

Window(concat(Text(Salary),'-'), Department, 'ASC', Age, Year>0, 3, UNBOUNDED

())

as WSlidingSalaryDepartment

Example - Adding a field containing an aggregation
Example: Adding a field containing an aggregation

Load script

Create a new tab in the data load editor, and then load the following data as an inline load. Create
the table below in Qlik Sense to see the results.

Transactions:

Load

*,

Window(Avg(transaction_amount),customer_id) as AvgCustTransaction;

Load * Inline [

transaction_id, transaction_date, transaction_amount, transaction_quantity, customer_id, size,

color_code

3750, 20180830, 23.56, 2, 2038593, L, Red

3751, 20180907, 556.31, 6, 203521, M, Orange

3752, 20180916, 5.75, 1, 5646471, S, Blue

3753, 20180922, 125.00, 7, 3036491, L, Black

Script syntax and chart functions - Qlik Sense, May 2024 1504

8 Script and chart functions

3754, 20180922, 484.21, 13, 049681, XS, Red

3756, 20180922, 59.18, 2, 2038593, M, Blue

3757, 20180923, 177.42, 21, 203521, XL, Black

3758, 20180924, 153.42, 14, 2038593, L, Red

3759, 20180925, 7.42, 5, 203521, M, Orange

3760, 20180925, 80.12, 18, 5646471, M, Blue

3761, 20180926, 3.42, 7, 3036491, XS, Black

3763, 20180926, 63.55, 12, 049681, S, Red

3763, 20180927, 177.56, 10, 2038593, L, Blue

3764, 20180927, 325.95, 8, 203521, XL, Black

];

Results

transacti
on_id

transacti
on_date

transacti
on_
amount

transacti
on_
quantity

custom
er_id

size
color_
code

AvgCustTransa
ction

3750 20180830 23.56 2 203859
3

L Red 103.43

3751 20180907 556.31 6 203521 M Orang
e

266.775

3752 20180916 5.75 1 5646471 S Blue 42.935

3753 20180922 125.00 7 3036491 L Black 64.21

3754 20180922 484.21 13 049681 XS Red 273.88

3756 20180922 59.18 2 203859
3

M Blue 103.43

3757 20180923 177.42 21 203521 XL Black 266.775

3758 20180924 153.42 14 203859
3

L Red 103.43

3759 20180925 7.42 5 203521 M Orang
e

266.775

3760 20180925 80.12 18 5646471 M Blue 42.935

3761 20180926 3.42 7 3036491 XS Black 64.21

3763 20180926 63.55 12 049681 S Red 273.88

3763 20180927 177.56 10 203859
3

L Blue 103.43

3764 20180927 325.95 8 203521 XL Black 266.775

Results for adding a field containing an aggregation

Script syntax and chart functions - Qlik Sense, May 2024 1505

8 Script and chart functions

Example - Adding a field containing an aggregation filtered for specific
values
Example: Adding a field containing an aggregation filtered for specific values

Load script

Create a new tab in the data load editor, and then load the following data as an inline load. Create
the table below in Qlik Sense to see the results.

Transactions:

Load

*,

Window(Avg(transaction_amount),customer_id, color_code = 'Blue') as AvgCustTransaction;

Load * Inline [

transaction_id, transaction_date, transaction_amount, transaction_quantity, customer_id, size,

color_code

3750, 20180830, 23.56, 2, 2038593, L, Red

3751, 20180907, 556.31, 6, 203521, M, Orange

3752, 20180916, 5.75, 1, 5646471, S, Blue

3753, 20180922, 125.00, 7, 3036491, L, Black

3754, 20180922, 484.21, 13, 049681, XS, Red

3756, 20180922, 59.18, 2, 2038593, M, Blue

3757, 20180923, 177.42, 21, 203521, XL, Black

3758, 20180924, 153.42, 14, 2038593, L, Red

3759, 20180925, 7.42, 5, 203521, M, Orange

3760, 20180925, 80.12, 18, 5646471, M, Blue

3761, 20180926, 3.42, 7, 3036491, XS, Black

3763, 20180926, 63.55, 12, 049681, S, Red

3763, 20180927, 177.56, 10, 2038593, L, Blue

3764, 20180927, 325.95, 8, 203521, XL, Black

];

Results

transacti
on_id

transacti
on_date

transacti
on_
amount

transacti
on_
quantity

custom
er_id

size
color_
code

AvgCustTransa
ction

3750 20180830 23.56 2 203859
3

L Red -

3751 20180907 556.31 6 203521 M Orang
e

-

3752 20180916 5.75 1 5646471 S Blue 42.94

Results for adding ad field containing an aggregation filtered for specific values

Script syntax and chart functions - Qlik Sense, May 2024 1506

8 Script and chart functions

transacti
on_id

transacti
on_date

transacti
on_
amount

transacti
on_
quantity

custom
er_id

size
color_
code

AvgCustTransa
ction

3753 20180922 125.00 7 3036491 L Black -

3754 20180922 484.21 13 049681 XS Red -

3756 20180922 59.18 2 203859
3

M Blue 118.4

3757 20180923 177.42 21 203521 XL Black -

3758 20180924 153.42 14 203859
3

L Red -

3759 20180925 7.42 5 203521 M Orang
e

-

3760 20180925 80.12 18 5646471 M Blue 42.94

3761 20180926 3.42 7 3036491 XS Black -

3763 20180926 63.55 12 049681 S Red -

3763 20180927 177.56 10 203859
3

L Blue 118.4

3764 20180927 325.95 8 203521 XL Black -

Example - Adding a field with a sliding window
Example: Adding a field with a sliding window

Load script

Create a new tab in the data load editor, and then load the following data as an inline load. Create
the table below in Qlik Sense to see the results.

Transactions:

Load

*,

Window(Avg(transaction_amount),customer_id, 'ASC', -1, 1, 0, 1) as AvgCustTransaction;

Load * Inline [

transaction_id, transaction_date, transaction_amount, transaction_quantity, customer_id, size,

color_code

3750, 20180830, 23.56, 2, 2038593, L, Red

3751, 20180907, 556.31, 6, 203521, M, Orange

3752, 20180916, 5.75, 1, 5646471, S, Blue

3753, 20180922, 125.00, 7, 3036491, L, Black

3754, 20180922, 484.21, 13, 049681, XS, Red

3756, 20180922, 59.18, 2, 2038593, M, Blue

3757, 20180923, 177.42, 21, 203521, XL, Black

3758, 20180924, 153.42, 14, 2038593, L, Red

Script syntax and chart functions - Qlik Sense, May 2024 1507

8 Script and chart functions

3759, 20180925, 7.42, 5, 203521, M, Orange

3760, 20180925, 80.12, 18, 5646471, M, Blue

3761, 20180926, 3.42, 7, 3036491, XS, Black

3763, 20180926, 63.55, 12, 049681, S, Red

3763, 20180927, 177.56, 10, 2038593, L, Blue

3764, 20180927, 325.95, 8, 203521, XL, Black

];

Results

transacti
on_id

transacti
on_date

transacti
on_
amount

transacti
on_
quantity

custom
er_id

size
color_
code

AvgCustTransa
ction

3750 20180830 23.56 2 203859
3

L Red 41.37

3751 20180907 556.31 6 203521 M Orang
e

366.865

3752 20180916 5.75 1 5646471 S Blue 42.935

3753 20180922 125.00 7 3036491 L Black 64.21

3754 20180922 484.21 13 049681 XS Red 273.88

3756 20180922 59.18 2 203859
3

M Blue 106.3

3757 20180923 177.42 21 203521 XL Black 92.42

3758 20180924 153.42 14 203859
3

L Red 165.49

3759 20180925 7.42 5 203521 M Orang
e

166.685

3760 20180925 80.12 18 5646471 M Blue 80.12

3761 20180926 3.42 7 3036491 XS Black 3.42

3763 20180926 63.55 12 049681 S Red 177.56

3763 20180927 177.56 10 203859
3

L Blue 63.55

3764 20180927 325.95 8 203521 XL Black 325.95

Results for adding ad field containing an aggregation filtered for specific values

Limitations
Window has the following limitations:

l Window is a resource intensive function, particularly in terms of memory consumption.
l Window is not supported in Qlik Sense Mobile.

Script syntax and chart functions - Qlik Sense, May 2024 1508

8 Script and chart functions

l Chart expressions do not support Window.
l You cannot nest Window functions inside other Window functions.
l Window cannot be used inside an aggregation function.
l Window needs to be able to scan the whole table.
l WRank(), RecNo(), and RowNo() cannot be used with Window when using the sliding

window functionality.

WRank - script function
WRank() evaluates the rows of a table in the load script, and for each row, displays the
relative position of the value of the field evaluated in the load script. When evaluating
the table, the function compares the result with the result of the other rows containing
the current partition and returns the ranking of the current row within the segment.

Partitions in a table

WRank can only be used in a Window function. The Window function must include a sorting type
and sorting expression. The ranking is applied on the sorting expression.

Syntax:
WRank ([mode[, fmt]])

Return data type: dual

Arguments:

Argument Description

mode Optionally, specifies the number representation of the function result.

fmt Optionally, specifies the text representation of the function result.

TOTAL If the table is one-dimensional, or if the script is preceded by the TOTAL qualifier,
the function is evaluated along the entire column. If the table or table equivalent
has multiple vertical dimensions, the current partition will include only rows with
the same values as the current row in all dimension columns except for the
column showing the last dimension in the inter-field sort order.

Arguments

The ranking is returned as a dual value, which in the case when each row has a unique ranking, is an
integer between 1 and the number of rows in the current partition.

In the case where several rows share the same ranking, the text and number representation can be
controlled with the mode and fmt parameters.

Script syntax and chart functions - Qlik Sense, May 2024 1509

8 Script and chart functions

mode
The first argument, mode, can take the following values:

Value Description

0 (default) If all ranks within the sharing group fall on the low side of the middle
value of the entire ranking, all rows get the lowest rank within the
sharing group.

If all ranks within the sharing group fall on the high side of the middle
value of the entire ranking, all rows get the highest rank within the
sharing group.

If ranks within the sharing group span over the middle value of the entire
ranking, all rows get the value corresponding to the average of the top
and bottom ranking in the entire partition.

1 Lowest rank on all rows.

2 Average rank on all rows.

3 Highest rank on all rows.

4 Lowest rank on first row, then incremented by one for each row.

mode values

fmt
The second argument, fmt, can take the following values:

Value Description

0 (default) Low value - high value on all rows (for example 3 - 4).

1 Low value on all rows.

2 Low value on first row, blank on the following rows.

fmt values

The order of rows for mode 4 and fmt 2 is determined by the load order of the table fields.

Example - Adding a ranked field
Example: Adding a ranked field

Load script

Create a new tab in the data load editor, and then load the following data as an inline load. Create
the table below in Qlik Sense to see the results.

Transactions:

Load

*,

Script syntax and chart functions - Qlik Sense, May 2024 1510

8 Script and chart functions

Window(WRank(0),customer_id, 'Desc', transaction_amount) as TransactionRanking;

Load * Inline [

transaction_id, transaction_date, transaction_amount, transaction_quantity, customer_id, size,

color_code

3750, 20180830, 23.56, 2, 2038593, L, Red

3751, 20180907, 556.31, 6, 203521, M, Orange

3752, 20180916, 5.75, 1, 5646471, S, Blue

3753, 20180922, 125.00, 7, 3036491, L, Black

3754, 20180922, 484.21, 13, 049681, XS, Red

3756, 20180922, 59.18, 2, 2038593, M, Blue

3757, 20180923, 177.42, 21, 203521, XL, Black

3758, 20180924, 153.42, 14, 2038593, L, Red

3759, 20180925, 7.42, 5, 203521, M, Orange

3760, 20180925, 80.12, 18, 5646471, M, Blue

3761, 20180926, 3.42, 7, 3036491, XS, Black

3763, 20180926, 63.55, 12, 049681, S, Red

3763, 20180927, 177.56, 10, 2038593, L, Blue

3764, 20180927, 325.95, 8, 203521, XL, Black

];

Results

transacti
on_id

transacti
on_date

transacti
on_
amount

transacti
on_
quantity

custom
er_id

size
color_
code

TransactionRa
nking

3750 20180830 23.56 2 203859
3

L Red 4-4

3751 20180907 556.31 6 203521 M Orang
e

1-1

3752 20180916 5.75 1 5646471 S Blue 2-2

3754 20180922 484.21 13 049681 XS Red 1-1

3756 20180922 59.18 2 203859
3

M Blue 3-3

3753 20180922 125.00 7 3036491 L Black 1-1

3757 20180923 177.42 21 203521 XL Black 3-3

3758 20180924 153.42 14 203859
3

L Red 2-2

3759 20180925 7.42 5 203521 M Orang
e

4-4

3760 20180925 80.12 18 5646471 M Blue 1-1

3763 20180926 63.55 12 049681 S Red 2-2

Results for adding a ranked field

Script syntax and chart functions - Qlik Sense, May 2024 1511

8 Script and chart functions

transacti
on_id

transacti
on_date

transacti
on_
amount

transacti
on_
quantity

custom
er_id

size
color_
code

TransactionRa
nking

3761 20180926 3.42 7 3036491 XS Black 2-2

3764 20180927 325.95 8 203521 XL Black 2-2

3763 20180927 177.56 10 203859
3

L Blue 1-1

Example - Adding a ranked field using fmt for a single digit result
Example: Adding a ranked field using fmt for a single digit result

Load script

Create a new tab in the data load editor, and then load the following data as an inline load. Create
the table below in Qlik Sense to see the results.

Transactions:

Load

*,Window(WRank(0,1),customer_id, 'Desc', transaction_amount) as TransactionRanking;

Load * Inline [

transaction_id, transaction_date, transaction_amount, transaction_quantity, customer_id, size,

color_code

3750, 20180830, 23.56, 2, 2038593, L, Red

3751, 20180907, 556.31, 6, 203521, M, Orange

3752, 20180916, 5.75, 1, 5646471, S, Blue

3753, 20180922, 125.00, 7, 3036491, L, Black

3754, 20180922, 484.21, 13, 049681, XS, Red

3756, 20180922, 59.18, 2, 2038593, M, Blue

3757, 20180923, 177.42, 21, 203521, XL, Black

3758, 20180924, 153.42, 14, 2038593, L, Red

3759, 20180925, 7.42, 5, 203521, M, Orange

3760, 20180925, 80.12, 18, 5646471, M, Blue

3761, 20180926, 3.42, 7, 3036491, XS, Black

3763, 20180926, 63.55, 12, 049681, S, Red

3763, 20180927, 177.56, 10, 2038593, L, Blue

3764, 20180927, 325.95, 8, 203521, XL, Black

];

Results

transacti
on_id

transacti
on_date

transacti
on_
amount

transacti
on_
quantity

custom
er_id

size
color_
code

TransactionRa
nking

3750 20180830 23.56 2 203859 L Red 4

Results for adding a ranked field using fmt for a single digit result

Script syntax and chart functions - Qlik Sense, May 2024 1512

8 Script and chart functions

transacti
on_id

transacti
on_date

transacti
on_
amount

transacti
on_
quantity

custom
er_id

size
color_
code

TransactionRa
nking

3

3751 20180907 556.31 6 203521 M Orang
e

1

3752 20180916 5.75 1 5646471 S Blue 2

3754 20180922 484.21 13 049681 XS Red 1

3756 20180922 59.18 2 203859
3

M Blue 3

3753 20180922 125.00 7 3036491 L Black 1

3757 20180923 177.42 21 203521 XL Black 3

3758 20180924 153.42 14 203859
3

L Red 2

3759 20180925 7.42 5 203521 M Orang
e

4

3760 20180925 80.12 18 5646471 M Blue 1

3763 20180926 63.55 12 049681 S Red 2

3761 20180926 3.42 7 3036491 XS Black 2

3764 20180927 325.95 8 203521 XL Black 2

3763 20180927 177.56 10 203859
3

L Blue 1

Example - Adding a ranked field with multiple partitions
Example: Adding a ranked field with multiple partitions

Load script

Create a new tab in the data load editor, and then load the following data as an inline load. Create
the table below in Qlik Sense to see the results.

Transactions:

Load

*,Window(WRank(0,1),customer_id, size, color_code, 'Desc', transaction_amount) as

TransactionRanking;

Load * Inline [

transaction_id, transaction_date, transaction_amount, transaction_quantity, customer_id, size,

color_code

3750, 20180830, 23.56, 2, 2038593, L, Red

3751, 20180907, 556.31, 6, 203521, M, Orange

3752, 20180916, 5.75, 1, 5646471, S, Blue

Script syntax and chart functions - Qlik Sense, May 2024 1513

8 Script and chart functions

3753, 20180922, 125.00, 7, 3036491, L, Black

3754, 20180922, 484.21, 13, 049681, XS, Red

3756, 20180922, 59.18, 2, 2038593, M, Blue

3757, 20180923, 177.42, 21, 203521, XL, Black

3758, 20180924, 153.42, 14, 2038593, L, Red

3759, 20180925, 7.42, 5, 203521, M, Orange

3760, 20180925, 80.12, 18, 5646471, M, Blue

3761, 20180926, 3.42, 7, 3036491, XS, Black

3763, 20180926, 63.55, 12, 049681, S, Red

3763, 20180927, 177.56, 10, 2038593, L, Blue

3764, 20180927, 325.95, 8, 203521, XL, Black

];

Results

transacti
on_id

transacti
on_date

transacti
on_
amount

transacti
on_
quantity

custom
er_id

size
color_
code

TransactionRa
nking

3750 20180830 23.56 2 203859
3

L Red 2

3751 20180907 556.31 6 203521 M Orang
e

1

3752 20180916 5.75 1 5646471 S Blue 1

3754 20180922 484.21 13 049681 XS Red 1

3756 20180922 59.18 2 203859
3

M Blue 1

3753 20180922 125.00 7 3036491 L Black 1

3757 20180923 177.42 21 203521 XL Black 2

3758 20180924 153.42 14 203859
3

L Red 1

3759 20180925 7.42 5 203521 M Orang
e

2

3760 20180925 80.12 18 5646471 M Blue 1

3763 20180926 63.55 12 049681 S Red 1

3761 20180926 3.42 7 3036491 XS Black 1

3764 20180927 325.95 8 203521 XL Black 1

3763 20180927 177.56 10 203859
3

L Blue 1

Results for adding a ranked field using fmt for a single digit result

Limitations
WRank has the following limitations:

Script syntax and chart functions - Qlik Sense, May 2024 1514

8 Script and chart functions

l If your fmt value is 0 and you want to use the text part of the dual result for WRank, you must
use Text() with Window(WRank). For example: Text(Window(WRank(0), Unit, 'DESC', Age))

as UnitWRankedByAgeText.

Script syntax and chart functions - Qlik Sense, May 2024 1515

9 File system access restriction

9 File system access restriction
For security reasons, Qlik Sense in standard mode does not support paths in the data
load script or functions and variables that expose the file system.

However, since file system paths were supported in QlikView, it is possible to disable standard
mode and use legacy mode in order to reuse QlikView load scripts.

Disabling standard mode can create a security risk by exposing the file system.

Disabling standard mode (page 1522)

9.1 Security aspects when connecting to file based
ODBC and OLE DB data connections

ODBC and OLE DB data connections using file-based drivers will expose the path to the connected
data file in the connection string. The path can be exposed when the connection is edited, in the
data selection dialog, or in certain SQL queries. This is the case both in standard mode and legacy
mode.

If exposing the path to the data file is a concern, it is recommended to connect to the
data file using a folder data connection if it is possible.

9.2 Limitations in standard mode
Several statements, variables and functions cannot be used or have limitations in standard mode.
Using unsupported statements in the data load script produces an error when the load script runs.
Error messages can be found in the script log file. Using unsupported variables and functions does
not produce error messages or log file entries. Instead, the function returns NULL.

There is no indication that a variable, statement or function is unsupported when you are editing the
data load script.

System variables

Variable Standard mode Legacy mode Definition

Floppy Not supported Supported Returns the drive
letter of the first
floppy drive found,
normally a:.

System variables

Script syntax and chart functions - Qlik Sense, May 2024 1516

9 File system access restriction

Variable Standard mode Legacy mode Definition

CD Not supported Supported Returns the drive
letter of the first CD-
ROM drive found. If no
CD-ROM is found,
then c: is returned.

QvPath Not supported Supported Returns the browse
string to the Qlik
Sense executable.

QvRoot Not supported Supported Returns the root
directory of the Qlik
Sense executable.

QvWorkPath Not supported Supported Returns the browse
string to the current
Qlik Sense app.

QvWorkRoot Not supported Supported Returns the root
directory of the
current Qlik Sense
app.

WinPath Not supported Supported Returns the browse
string to Windows.

WinRoot Not supported Supported Returns the root
directory of Windows.

$(include=...) Supported input: Path
using library
connection

Supported input: Path
using library
connection or file
system

The Include/Must_
Include variable
specifies a file that
contains text that
should be included in
the script and
evaluated as script
code. It is not used to
add data. You can
store parts of your
script code in a
separate text file and
reuse it in several
apps. This is a user-
defined variable.

Script syntax and chart functions - Qlik Sense, May 2024 1517

9 File system access restriction

Regular script statements

Statement Standard mode Legacy mode Definition

Binary Supported input: Path
using library
connection

Supported input: Path
using library
connection or file
system

The binary statement
is used for loading
data from another
app.

Connect Supported input: Path
using library
connection

Supported input: Path
using library
connection or file
system

The CONNECT
statement is used to
define Qlik Sense
access to a general
database through the
OLE DB/ODBC
interface. For ODBC,
the data source first
needs to be specified
using the ODBC
administrator.

Directory Supported input: Path
using library
connection

Supported input: Path
using library
connection or file
system

The Directory
statement defines
which directory to
look in for data files in
subsequent LOAD
statements, until a
new Directory
statement is made.

Execute Not supported Supported input: Path
using library
connection or file
system

The Execute
statement is used to
run other programs
while Qlik Sense is
loading data. For
example, to make
conversions that are
necessary.

Regular script statements

Script syntax and chart functions - Qlik Sense, May 2024 1518

9 File system access restriction

Statement Standard mode Legacy mode Definition

LOAD from ... Supported input: Path
using library
connection

Supported input: Path
using library
connection or file
system

The LOAD statement
loads fields from a
file, from data defined
in the script, from a
previously loaded
table, from a web
page, from the result
of a subsequent
SELECT statement or
by generating data
automatically.

Store into ... Supported input: Path
using library
connection

Supported input: Path
using library
connection or file
system

The Store statement
creates a QVD,
Parquet, CSV, or TXT
file.

Script control statements

Statement Standard mode Legacy mode Definition

For each...

filelist mask/dirlist
mask

Supported input: Path
using library
connection

Returned output:
Library connection

Supported input: Path
using library
connection or file
system

Returned output:
Library connection or
file system path,
depending on input

The filelist mask
syntax produces a
comma separated list
of all files in the
current directory
matching the filelist
mask. The dirlist
mask syntax
produces a comma
separated list of all
directories in the
current directory
matching the
directory name mask.

Script control statements

Script syntax and chart functions - Qlik Sense, May 2024 1519

9 File system access restriction

File functions

Function Standard mode Legacy mode Definition

Attribute() Supported input: Path
using library
connection

Supported input: Path
using library
connection or file
system

Returns the value of
the meta tags of
different media files
as text.

ConnectString() Returned output:
Library connection
name

Library connection
name or actual
connection,
depending on input

Returns the active
connect string for
ODBC or OLE DB
connections.

FileDir() Returned output:
Library connection

Returned output:
Library connection or
file system path,
depending on input

The FileDir function
returns a string
containing the path to
the directory of the
table file currently
being read.

FilePath() Returned output:
Library connection

Returned output:
Library connection or
file system path,
depending on input

The FilePath function
returns a string
containing the full
path to the table file
currently being read.

FileSize() Supported input: Path
using library
connection

Supported input: Path
using library
connection or file
system

The FileSize function
returns an integer
containing the size in
bytes of the file
filename or, if no
filename is specified,
of the table file
currently being read.

FileTime() Supported input: Path
using library
connection

Supported input: Path
using library
connection or file
system

The FileTime function
returns a timestamp
in UTC format of the
last modification of a
specified file. If a file
is not specified, the
function returns a
timestamp in UTC of
the last modification
of the currently read
table file.

File functions

Script syntax and chart functions - Qlik Sense, May 2024 1520

9 File system access restriction

Function Standard mode Legacy mode Definition

GetFolderPath() Not supported Returned output:
Absolute path

The GetFolderPath
function returns the
value of the Microsoft
Windows
SHGetFolderPath
function. This
function takes as
input the name of a
Microsoft Windows
folder and returns the
full path of the folder.

QvdCreateTime() Supported input: Path
using library
connection

Supported input: Path
using library
connection or file
system

This script function
returns the XML-
header timestamp
from a QVD file, if any
is present, otherwise
it returns NULL. In the
timestamp, time is
provided in UTC.

QvdFieldName() Supported input: Path
using library
connection

Supported input: Path
using library
connection or file
system

This script function
returns the name of
field number fieldno
in a QVD file. If the
field does not exist
NULL is returned.

QvdNoOfFields() Supported input: Path
using library
connection

Supported input: Path
using library
connection or file
system

This script function
returns the number of
fields in a QVD file.

QvdNoOfRecords() Supported input: Path
using library
connection

Supported input: Path
using library
connection or file
system

This script function
returns the number of
records currently in a
QVD file.

QvdTableName() Supported input: Path
using library
connection

Supported input: Path
using library
connection or file
system

This script function
returns the name of
the table stored in a
QVD file.

Script syntax and chart functions - Qlik Sense, May 2024 1521

9 File system access restriction

System functions

Function Standard mode Legacy mode Definition

DocumentPath() Not supported Returned output:
Absolute path

This function returns
a string containing the
full path to the current
Qlik Sense app.

GetRegistryString() Not supported Supported Returns the value of a
named registry key
with a given registry
path. This function
can be used in chart
and script alike.

System functions

9.3 Disabling standard mode
You can disable standard mode, or in other words, set legacy mode, in order to reuse
QlikView load scripts that refer to absolute or relative file paths as well as library
connections.

Disabling standard mode can create a security risk by exposing the file system.

Qlik Sense
For Qlik Sense, standard mode can be disabled in QMC using the Standard mode property.

Qlik Sense Desktop
In Qlik Sense Desktop, you can set standard/legacy mode in Settings.ini.

If you installed Qlik Sense Desktop using the default installation location, Settings.ini is located in
C:\Users\{user}\Documents\Qlik\Sense\Settings.ini. If you installed Qlik Sense Desktop to a folder
that you selected, Settings.ini is located in the Engine folder of the installation path.

Do the following:

1. Open Settings.ini in a text editor.
2. Change StandardReload=1 to StandardReload=0.
3. Save the file and start Qlik Sense Desktop.

Qlik Sense Desktop now runs in legacy mode.

Settings
The available settings for StandardReload are:

Script syntax and chart functions - Qlik Sense, May 2024 1522

9 File system access restriction

l 1 (standard mode)
l 0 (legacy mode)

Script syntax and chart functions - Qlik Sense, May 2024 1523

10 Chart level scripting

10 Chart level scripting
When modifying chart data, you use a sub-set of the Qlik Sense script which consists of a number
of statements. A statement can be either a regular script statement or a script control statement.
Certain statements can be preceded by prefixes.

Regular statements are typically used for manipulating data in one way or another. These
statements may be written over any number of lines in the script and must always be terminated by
a semicolon, ";".

Control statements are typically used for controlling the flow of the script execution. Each clause of
a control statement must be kept inside one script line and may be terminated by a semicolon or the
end-of-line.

Prefixes may be applied to applicable regular statements but never to control statements.

All script keywords can be typed with any combination of lower case and upper case characters.
Field and variable names used in the statements are however case sensitive.

In this section you can find an alphabetical listing of all script statements, control statements and
prefixes available in the sub-set of the script used when modifying chart data.

10.1 Control statements
When modifying chart data, you use a sub-set of the Qlik Sense script which consists of a number
of statements. A statement can be either a regular script statement or a script control statement.

Control statements are typically used for controlling the flow of the script execution. Each clause of
a control statement must be kept inside one script line and may be terminated by semicolon or end-
of-line.

Prefixes are never applied to control statements.

All script keywords can be typed with any combination of lower case and upper case characters.

Chart modifier control statements overview
Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

Call
The call control statement calls a subroutine which must be defined by a previous sub statement.

Call name ([paramlist])

Do..loop
The do..loop control statement is a script iteration construct which executes one or several
statements until a logical condition is met.

Script syntax and chart functions - Qlik Sense, May 2024 1524

10 Chart level scripting

Do..loop [(while | until) condition] [statements]

[exit do [(when | unless) condition] [statements]

loop [(while | until) condition]

End
The End script keyword is used to close If, Sub and Switch clauses.

Exit
The Exit script keyword is part of the Exit Script statement, but can also be used to exit Do, For or
Sub clauses.

Exit script
This control statement stops script execution. It may be inserted anywhere in the script.

Exit script[(when | unless) condition]

For..next
The for..next control statement is a script iteration construct with a counter. The statements inside
the loop enclosed by for and next will be executed for each value of the counter variable between
specified low and high limits.

For..next counter = expr1 to expr2 [stepexpr3]
[statements]
[exit for [(when | unless) condition]
[statements]
Next [counter]

For each ..next
The for each..next control statement is a script iteration construct which executes one or several
statements for each value in a comma separated list. The statements inside the loop enclosed by
for and next will be executed for each value of the list.

For each..next var in list
[statements]
[exit for [(when | unless) condition]
[statements]
next [var]

If..then
The if..then control statement is a script selection construct forcing the script execution to follow
different paths depending on one or several logical conditions.

Since the if..then statement is a control statement and as such is ended with either a
semicolon or end-of-line, each of its four possible clauses (if..then, elseif..then, else
and end if) must not cross a line boundary.

If..then..elseif..else..end if condition then
[statements]

{ elseif condition then

Script syntax and chart functions - Qlik Sense, May 2024 1525

10 Chart level scripting

[statements] }
[else
[statements]]

end if

Next
The Next script keyword is used to close For loops.

Sub
The sub..end sub control statement defines a subroutine which can be called upon from a call
statement.

Sub..end sub name [(paramlist)] statements end sub

Switch
The switch control statement is a script selection construct forcing the script execution to follow
different paths, depending on the value of an expression.

Switch..case..default..end switch expression {case valuelist [statements]}

[default statements] end switch

To
The To script keyword is used in several script statements.

Call
The call control statement calls a subroutine which must be defined by a previous sub
statement.

Syntax:
Call name ([paramlist])

Arguments:

Argument Description

name The name of the subroutine.

paramlist A comma separated list of the actual parameters to be sent to the
subroutine. Each item in the list may be a field name, a variable or an
arbitrary expression.

Arguments

The subroutine called by a call statement must be defined by a sub encountered earlier during
script execution.

Parameters are copied into the subroutine and, if the parameter in the call statement is a variable
and not an expression, copied back out again upon exiting the subroutine.

Script syntax and chart functions - Qlik Sense, May 2024 1526

10 Chart level scripting

Limitations:

l Since the call statement is a control statement and as such is ended with either a semicolon
or end-of-line, it must not cross a line boundary.

l When you define a subroutine with Sub..end sub inside a control statement, for example
if..then, you can only call the subroutine from within the same control statement.

Do..loop
The do..loop control statement is a script iteration construct which executes one or
several statements until a logical condition is met.

Syntax:
Do [(while | until) condition] [statements]

[exit do [(when | unless) condition] [statements]

loop[(while | until) condition]

Since the do..loop statement is a control statement and as such is ended with either a
semicolon or end-of-line, each of its three possible clauses (do, exit do and loop) must
not cross a line boundary.

Arguments:

Argument Description

condition A logical expression evaluating to True or False.

statements Any group of one or more Qlik Sense script statements.

while / until The while or until conditional clause must only appear once in any do..loop
statement, i.e. either after do or after loop. Each condition is interpreted only the
first time it is encountered but is evaluated for every time it encountered in the
loop.

exit do If an exit do clause is encountered inside the loop, the execution of the script will
be transferred to the first statement after the loop clause denoting the end of
the loop. An exit do clause can be made conditional by the optional use of a
when or unless suffix.

Arguments

End
The End script keyword is used to close If, Sub and Switch clauses.

Script syntax and chart functions - Qlik Sense, May 2024 1527

10 Chart level scripting

Exit
The Exit script keyword is part of the Exit Script statement, but can also be used to
exit Do, For or Sub clauses.

Exit script
This control statement stops script execution. It may be inserted anywhere in the
script.

Syntax:
Exit Script [(when | unless) condition]

Since the exit script statement is a control statement and as such is ended with either a semicolon
or end-of-line, it must not cross a line boundary.

Arguments:

Argument Description

condition A logical expression evaluating to True or False.

when
/ unless

An exit script statement can be made conditional by the optional
use of when or unless clause.

Arguments

Examples:

//Exit script

Exit Script;

//Exit script when a condition is fulfilled

Exit Script when a=1

For..next
The for..next control statement is a script iteration construct with a counter. The
statements inside the loop enclosed by for and next will be executed for each value of
the counter variable between specified low and high limits.

Syntax:
For counter = expr1 to expr2 [step expr3]
[statements]
[exit for [(when | unless) condition]
[statements]
Next [counter]

Script syntax and chart functions - Qlik Sense, May 2024 1528

10 Chart level scripting

The expressions expr1, expr2 and expr3 are only evaluated the first time the loop is entered. The
value of the counter variable may be changed by statements inside the loop, but this is not good
programming practice.

If an exit for clause is encountered inside the loop, the execution of the script will be transferred to
the first statement after the next clause denoting the end of the loop. An exit for clause can be
made conditional by the optional use of a when or unless suffix.

Since the for..next statement is a control statement and as such is ended with either a
semicolon or end-of-line, each of its three possible clauses (for..to..step, exit for and
next) must not cross a line boundary.

Arguments:

Argument Description

counter A variable name. If counter is specified after next it must be the same variable
name as the one found after the corresponding for.

expr1 An expression which determines the first value of the counter variable for which
the loop should be executed.

expr2 An expression which determines the last value of the counter variable for which
the loop should be executed.

expr3 An expression which determines the value indicating the increment of the
counter variable each time the loop has been executed.

condition a logical expression evaluating to True or False.

statements Any group of one or more Qlik Sense script statements.

Arguments

For each..next
The for each..next control statement is a script iteration construct which executes one
or several statements for each value in a comma separated list. The statements inside
the loop enclosed by for and next will be executed for each value of the list.

Syntax:
Special syntax makes it possible to generate lists with file and directory names in the current
directory.

for each var in list
[statements]
[exit for [(when | unless) condition]
[statements]
next [var]

Script syntax and chart functions - Qlik Sense, May 2024 1529

10 Chart level scripting

Arguments:

Argument Description

var A script variable name which will acquire a new value from list for each loop
execution. If var is specified after next it must be the same variable name as the
one found after the corresponding for each.

Arguments

The value of the var variable may be changed by statements inside the loop, but this is not good
programming practice.

If an exit for clause is encountered inside the loop, the execution of the script will be transferred to
the first statement after the next clause denoting the end of the loop. An exit for clause can be
made conditional by the optional use of a when or unless suffix.

Since the for each..next statement is a control statement and as such is ended with
either a semicolon or end-of-line, each of its three possible clauses (for each, exit for
and next) must not cross a line boundary.

Syntax:
list := item { , item }
item := constant | (expression) | filelist mask | dirlist mask |

fieldvaluelist mask

Argument Description

constant Any number or string. Note that a string written directly in the script must be
enclosed by single quotes. A string without single quotes will be interpreted as
a variable, and the value of the variable will be used. Numbers do not need to
be enclosed by single quotes.

expression An arbitrary expression.

mask A filename or folder name mask which may include any valid filename
characters as well as the standard wildcard characters, * and ?.

You can use absolute file paths or lib:// paths.

condition A logical expression evaluating to True or False.

statements Any group of one or more Qlik Sense script statements.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1530

10 Chart level scripting

Argument Description

filelist mask This syntax produces a comma separated list of all files in the current directory
matching the filename mask.

This argument supports only library connections in standard mode.

dirlist mask This syntax produces a comma separated list of all folders in the current folder
matching the folder name mask.

This argument supports only library connections in standard mode.

fieldvaluelist
mask

This syntax iterates through the values of a field already loaded into Qlik Sense.

The Qlik Web Storage Provider Connectors and other DataFiles connections do not
support filter masks that use wildcard (* and ?) characters.

Example 1: Loading a list of files

// LOAD the files 1.csv, 3.csv, 7.csv and xyz.csv

for each a in 1,3,7,'xyz'

LOAD * from file$(a).csv;

next

Example 2: Creating a list of files on disk

This example loads a list of all Qlik Sense related files in a folder.

sub DoDir (Root)

for each Ext in 'qvw', 'qva', 'qvo', 'qvs', 'qvc', 'qvf', 'qvd'

for each File in filelist (Root&'/*.' &Ext)

LOAD

'$(File)' as Name,

FileSize('$(File)') as Size,

FileTime('$(File)') as FileTime

autogenerate 1;

next File

next Ext

for each Dir in dirlist (Root&'/*')

call DoDir (Dir)

next Dir

Script syntax and chart functions - Qlik Sense, May 2024 1531

10 Chart level scripting

end sub

call DoDir ('lib://DataFiles')

Example 3: Iterating through a the values of a field

This example iterates through the list of loaded values of FIELD and generates a new field,
NEWFIELD. For each value of FIELD, two NEWFIELD records will be created.

load * inline [

FIELD

one

two

three

];

FOR Each a in FieldValueList('FIELD')

LOAD '$(a)' &'-'&RecNo() as NEWFIELD AutoGenerate 2;

NEXT a

The resulting table looks like this:

NEWFIELD

one-1

one-2

two-1

two-2

three-1

three-2

Example table

If..then..elseif..else..end if
The if..then control statement is a script selection construct forcing the script
execution to follow different paths depending on one or several logical conditions.

Control statements are typically used to control the flow of the script execution. In a chart
expression, use the if conditional function instead.

Syntax:
If condition then
[statements]

{ elseif condition then
[statements] }

[else
[statements]]

end if

Script syntax and chart functions - Qlik Sense, May 2024 1532

10 Chart level scripting

Since the if..then statement is a control statement and as such is ended with either a semicolon or
end-of-line, each of its four possible clauses (if..then, elseif..then, else and end if) must not cross
a line boundary.

Arguments:

Argument Description

condition A logical expression which can be evaluated as True or False.

statements Any group of one or more Qlik Sense script statements.

Arguments

Example 1:

if a=1 then

LOAD * from abc.csv;

SQL SELECT e, f, g from tab1;

end if

Example 2:

if a=1 then; drop table xyz; end if;

Example 3:

if x>0 then

LOAD * from pos.csv;

elseif x<0 then

LOAD * from neg.csv;

else

LOAD * from zero.txt;

end if

Next
The Next script keyword is used to close For loops.

Sub..end sub
The sub..end sub control statement defines a subroutine which can be called upon
from a call statement.

Syntax:
Sub name [(paramlist)] statements end sub

Script syntax and chart functions - Qlik Sense, May 2024 1533

10 Chart level scripting

Arguments are copied into the subroutine and, if the corresponding actual parameter in the call
statement is a variable name, copied back out again upon exiting the subroutine.

If a subroutine has more formal parameters than actual parameters passed by a call statement, the
extra parameters will be initialized to NULL and can be used as local variables within the subroutine.

Arguments:

Argument Description

name The name of the subroutine.

paramlist A comma separated list of variable names for the formal
parameters of the subroutine. These can be used as any variable
inside the subroutine.

statements Any group of one or more Qlik Sense script statements.

Arguments

Limitations:

l Since the sub statement is a control statement and as such is ended with either a semicolon
or end-of-line, each of its two clauses (sub and end sub) must not cross a line boundary.

l When you define a subroutine with Sub..end sub inside a control statement, for example
if..then, you can only call the subroutine from within the same control statement.

Example 1:

Sub INCR (I,J)

I = I + 1

Exit Sub when I < 10

J = J + 1

End Sub

Call INCR (X,Y)

Example 2: - parameter transfer

Sub ParTrans (A,B,C)

A=A+1

B=B+1

C=C+1

End Sub

A=1

X=1

C=1

Call ParTrans (A, (X+1)*2)

The result of the above will be that locally, inside the subroutine, A will be initialized to 1, B will be
initialized to 4 and C will be initialized to NULL.

When exiting the subroutine, the global variable A will get 2 as value (copied back from subroutine).
The second actual parameter “(X+1)*2” will not be copied back since it is not a variable. Finally, the
global variable C will not be affected by the subroutine call.

Script syntax and chart functions - Qlik Sense, May 2024 1534

10 Chart level scripting

Switch..case..default..end switch
The switch control statement is a script selection construct forcing the script
execution to follow different paths, depending on the value of an expression.

Syntax:
Switch expression {case valuelist [statements]} [default statements] end
switch

Since the switch statement is a control statement and as such is ended with either a
semicolon or end-of-line, each of its four possible clauses (switch, case, default and
end switch) must not cross a line boundary.

Arguments:

Argument Description

expression An arbitrary expression.

valuelist A comma separated list of values with which the value of expression will be
compared. Execution of the script will continue with the statements in the first
group encountered with a value in valuelist equal to the value in expression. Each
value in valuelist may be an arbitrary expression. If no match is found in any case
clause, the statements under the default clause, if specified, will be executed.

statements Any group of one or more Qlik Sense script statements.

Arguments

Example:

Switch I

Case 1

LOAD '$(I): CASE 1' as case autogenerate 1;

Case 2

LOAD '$(I): CASE 2' as case autogenerate 1;

Default

LOAD '$(I): DEFAULT' as case autogenerate 1;

End Switch

To
The To script keyword is used in several script statements.

10.2 Prefixes
Prefixes may be applied to applicable regular statements but never to control statements.

All script keywords can be typed with any combination of lower case and upper case characters.
Field and variable names used in the statements are however case sensitive.

Script syntax and chart functions - Qlik Sense, May 2024 1535

10 Chart level scripting

Chart modifier prefixes overview
Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

Add
The Add prefix can be added to any LOAD or SELECT statement in the script to specify that it
should add records to another table. It also specifies that this statement should be run in a partial
reload. The Add prefix can also be used in a Map statement.

Add [only] [Concatenate[(tablename)]] (loadstatement | selectstatement)
Add [Only] mapstatement

Replace
The Replace prefix can be added to any LOAD or SELECT statement in the script to specify that the
loaded table should replace another table. It also specifies that this statement should be run in a
partial reload. The Replace prefix can also be used in a Map statement.

Replace [only] [Concatenate[(tablename)]] (loadstatement | selectstatement)
Replace [only] mapstatement

Add
In a chart modifying context, the Add prefix is used with LOAD to append values to the HC1 table,
representing the hypercube computed by the Qlik associative engine. You can specify one or
several columns. Missing values are automatically filled by the Qlik associative engine.

Syntax:
Add loadstatement

Example:

This example adds two rows to the columns Dates and Sales from the inline statement

Add Load

x as Dates,

y as Sales

Inline

[

Dates,Sales

2001/09/1,1000

2001/09/10,-300

]

Replace
In a chart modifying context, the Replace prefix changes all values of the HC1 table with a
computed value defined by the script.

Syntax:
Replace loadstatement

Script syntax and chart functions - Qlik Sense, May 2024 1536

10 Chart level scripting

Example:

This example overwrites all values in column z with the sum of x and y.

Replace Load

x+y as z

Resident HC1;

10.3 Regular statements
Regular statements are typically used for manipulating data in one way or another. These
statements may be written over any number of lines in the script and must always be terminated by
a semicolon, ";".

All script keywords can be typed with any combination of lower case and upper case characters.
Field and variable names used in the statements are however case sensitive.

Chart modifier regular statements overview
Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

LOAD
In a chart modifying context, the LOAD statement loads additional data to the hypercube from data
defined in the script, or from a previously loaded table. It is also possible to load data from analytic
connections.

The LOAD statement must have either Replace or Add prefix, or it will be rejected.

Add | Replace Load [distinct] fieldlist
(
inline data [format-spec] |
resident table-label
) | extension pluginname.functionname([script] tabledescription)]
[where criterion | while criterion]
[group by groupbyfieldlist]
[order by orderbyfieldlist]

Let
The let statement is a complement to the set statement, used for defining script variables. The let
statement, in opposition to the set statement, evaluates the expression on the right side of the ' ='
at script run time before it is assigned to the variable.

Let variablename=expression

Script syntax and chart functions - Qlik Sense, May 2024 1537

10 Chart level scripting

Set
The set statement is used for defining script variables. These can be used for substituting strings,
paths, drives, and so on.

Set variablename=string

Put
The Put statement is used to set some numeric value in the hypercube.

HCValue
The HCValue statement is used to retrieve values in a row of a specified column.

Load
In a chart modifying context, the LOAD statement loads additional data to the
hypercube from data defined in the script, or from a previously loaded table. It is also
possible to load data from analytic connections.

The LOAD statement must have either Replace or Add prefix, or it will be rejected.

Syntax:
Add | Replace LOAD fieldlist
(
inline data [format-spec] |
resident table-label
) | extension pluginname.functionname([script] tabledescription)]
[where criterion | while criterion]
[group by groupbyfieldlist]
[order by orderbyfieldlist]

Script syntax and chart functions - Qlik Sense, May 2024 1538

10 Chart level scripting

Arguments:

Argument Description

fieldlist fieldlist ::= (* | field{, * | field })
A list of the fields to be loaded. Using * as a field list indicates all fields in
the table.
field ::= (fieldref | expression) [as aliasname]

The field definition must always contain a literal, a reference to an
existing field, or an expression.

fieldref ::= (fieldname |@fieldnumber |@startpos:endpos [I | U | R | B | T])
fieldname is a text that is identical to a field name in the table. Note that
the field name must be enclosed by straight double quotation marks or
square brackets if it contains e.g. spaces. Sometimes field names are not
explicitly available. Then a different notation is used:

@fieldnumber represents the field number in a delimited table file. It must
be a positive integer preceded by "@". The numbering is always made
from 1 and up to the number of fields.

@startpos:endpos represents the start and end positions of a field in a file
with fixed length records. The positions must both be positive integers.
The two numbers must be preceded by "@" and separated by a colon. The
numbering is always made from 1 and up to the number of positions. In the
last field, n is used as end position.

l If @startpos:endpos is immediately followed by the characters I or
U, the bytes read will be interpreted as a binary signed (I) or
unsigned (U) integer (Intel byte order). The number of positions
read must be 1, 2 or 4.

l If @startpos:endpos is immediately followed by the character R, the
bytes read will be interpreted as a binary real number (IEEE 32-bit
or 64 bit floating point). The number of positions read must be 4 or
8.

l If @startpos:endpos is immediately followed by the character B, the
bytes read will be interpreted as a BCD (Binary Coded Decimal)
numbers according to the COMP-3 standard. Any number of bytes
may be specified.

expression can be a numeric function or a string function based on one or
several other fields in the same table. For further information, see the
syntax of expressions.

as is used for assigning a new name to the field.

Arguments

Script syntax and chart functions - Qlik Sense, May 2024 1539

10 Chart level scripting

Argument Description

inline inline is used if data should be typed within the script, and not loaded
from a file.
data ::= [text]

Data entered through an inline clause must be enclosed by double
quotation marks or by square brackets. The text between these is
interpreted in the same way as the content of a file. Hence, where you
would insert a new line in a text file, you should also do it in the text of an
inline clause, i.e. by pressing the Enter key when typing the script. The
number of columns are defined by the first line.
format-spec ::= (fspec-item {, fspec-item })
The format specification consists of a list of several format specification
items, within brackets. For more information, see Format specification
items (page 165).

resident resident is used if data should be loaded from a previously loaded table.
table label is a label preceding the LOAD statement that created the
original table. The label should be given with a colon at the end.

Script syntax and chart functions - Qlik Sense, May 2024 1540

10 Chart level scripting

Argument Description

extension You can load data from analytic connections. You need to use the
extension clause to call a function defined in the server-side extension
(SSE) plugin, or evaluate a script.

You can send a single table to the SSE plugin, and a single data table is
returned. If the plugin does not specify the names of the fields that are
returned, the fields will be named Field1, Field2, and so on.

Extension pluginname.functionname(tabledescription);

l Loading data using a function in an SSE plugin
tabledescription ::= (table { ,tablefield})
If you do not state table fields, the fields will be used in load order.

l Loading data by evaluating a script in an SSE plugin
tabledescription ::= (script, table { ,tablefield})

Data type handling in the table field definition

Data types are automatically detected in analytic connections. If the data
has no numeric values and at least one non-NULL text string, the field is
considered as text. In any other case it is considered as numeric.

You can force the data type by wrapping a field name with String() or
Mixed().

l String() forces the field to be text. If the field is numeric, the text
part of the dual value is extracted, there is no conversion
performed.

l Mixed() forces the field to be dual.

String() or Mixed() cannot be used outside extension table field
definitions, and you cannot use other Qlik Sense functions in a table field
definition.

where where is a clause used for stating whether a record should be included in
the selection or not. The selection is included if criterion is True.
criterion is a logical expression.

while while is a clause used for stating whether a record should be repeatedly
read. The same record is read as long as criterion is True. In order to be
useful, a while clause must typically include the IterNo() function.

criterion is a logical expression.

Script syntax and chart functions - Qlik Sense, May 2024 1541

10 Chart level scripting

Argument Description

group by group by is a clause used for defining over which fields the data should be
aggregated (grouped). The aggregationfields should be included in some
way in the expressions loaded. No other fields than the aggregation fields
may be used outside aggregation functions in the loaded expressions.

groupbyfieldlist ::= (fieldname { ,fieldname })

order by order by is a clause used for sorting the records of a resident table before
they are processed by the load statement. The resident table can be
sorted by one or more fields in ascending or descending order. The sorting
is made primarily by numeric value and secondarily by national collation
order. This clause may only be used when the data source is a resident
table.
The ordering fields specify which field the resident table is sorted by. The
field can be specified by its name or by its number in the resident table
(the first field is number 1).

orderbyfieldlist ::= fieldname [sortorder] { , fieldname [sortorder] }

sortorder is either asc for ascending or desc for descending. If no
sortorder is specified, asc is assumed.

fieldname, path, filename and aliasname are text strings representing
what the respective names imply. Any field in the source table can be used
as fieldname. However, fields created through the as clause (aliasname)
are out of scope and cannot be used inside the same load statement.

Let
The let statement is a complement to the set statement, used for defining script
variables. The let statement, in opposition to the set statement, evaluates the
expression on the right side of the ' =' at script run time before it is assigned to the
variable.

Syntax:
Let variablename=expression

Script syntax and chart functions - Qlik Sense, May 2024 1542

10 Chart level scripting

Examples and results:

Example Result

Set x=3+4;

Let y=3+4;

z=$(y)+1;

$(x) will be evaluated as ' 3+4 '

$(y) will be evaluated as ' 7 '

$(z) will be evaluated as ' 8 '

Note the difference between the Set and Let statements. The Set
statement assigns the string '3+4' to the variable whereas the Let
statement evaluates the string and assigns 7 to the variable.

Let T=now(); $(T) will be given the value of the current time.

Set
The set statement is used for defining script variables. These can be used for substituting strings,
paths, drives, and so on.

Syntax:
Set variablename=string

Example 1:

Set FileToUse=Data1.csv;

Example 2:

Set Constant="My string";

Example 3:

Set BudgetYear=2012;

Put
The put statement is used to set some numeric value in the hypercube.

Access to the columns can be done by labels. You can also access columns and rows by
declaration order. See the examples below for more details.

Syntax:
put column(position)=value

Example 1:

Access to the columns can be done by labels.

This example will set a value of 1 in the first position of the column labeled Sales.

Put Sales(1) = 1;

Script syntax and chart functions - Qlik Sense, May 2024 1543

10 Chart level scripting

Example 2:

You can access measure columns by declaration order using the #hc1.measure format for
measures.

This example will set the value 1000 in the tenth position of the final sorted hypercube.

Put #hc1.measure.2(10) = 1000;

Example 3:

You can access the dimension rows by declaration order using the #hc1.dimension format for
dimensions.

This example puts the value of the constant Pi in the fifth row of the third declared dimension.

Put #hc1.dimension.3(5) = Pi();

If there are no such dimensions or expressions, in value or labels, an error is returned
indicating that the column was not found. If the index for the column is out of bounds, no
error is displayed.

HCValue
The HCValue function it is used to retrieve values in a row of a specified column.

Syntax:
HCValue(column,position)

Example 1:

This example returns the value at the first position of the column with label ‘Sales’.

HCValue(Sales,1)

Example 2:

This example returns the value at the tenth position of the sorted hypercube.

HCValue(#hc1.measure2,10)

Example 3:

This example returns the value at the fifth row in the third dimension.

HCValue(#hc1.dimension.3,5)

Script syntax and chart functions - Qlik Sense, May 2024 1544

10 Chart level scripting

If there are no such dimensions or expressions, in value or labels, an error is returned
indicating that the column was not found. If the index for the column is out of bounds,
NULL is returned.

Script syntax and chart functions - Qlik Sense, May 2024 1545

11 QlikView functions and statements not supported in Qlik Sense

11 QlikView functions and statements not
supported in Qlik Sense

Most functions and statements that can be used in QlikView load scripts and chart
expressions are also supported in Qlik Sense, but there are some exceptions, as
described here.

11.1 Script statements not supported in Qlik Sense

Statement Comments

Command Use SQL instead.

InputField

QlikView script statements that are not supported in Qlik Sense

11.2 Functions not supported in Qlik Sense
This list describes QlikView script and chart functions that are not supported in Qlik Sense.

l GetCurrentField
l GetExtendedProperty
l Input
l InputAvg
l InputSum
l MsgBox
l NoOfReports
l ReportComment
l ReportId
l ReportName
l ReportNumber

11.3 Prefixes not supported in Qlik Sense
This list describes QlikView prefixes that are not supported in Qlik Sense.

l Bundle
l Image_Size
l Info

Script syntax and chart functions - Qlik Sense, May 2024 1546

12 Functions and statements not recommended in Qlik Sense

12 Functions and statements not
recommended in Qlik Sense

Most functions and statements that can be used in QlikView load scripts and chart
expressions are also supported in Qlik Sense, but some of them are not recommended
for use in Qlik Sense. There are also functions and statements available in previous
versions of Qlik Sense that have been deprecated.

For compatibility reasons they will still work as intended, but it is advisable to update the code
according to the recommendations in this section, as they may be removed in coming versions.

12.1 Script statements not recommended in Qlik Sense
This table contains script statements that are not recommended for use in Qlik Sense.

Statement Recommendation

Command Use SQL instead.

CustomConnect Use Custom Connect instead.

Script statements that are not recommended

12.2 Script statement parameters not recommended in
Qlik Sense

This table describes script statement parameters that are not recommended for use in Qlik Sense.

Statement Parameters

Buffer Use Incremental instead of:

l Inc (not recommended)
l Incr (not recommended)

Script statement parameters that are not recommended

Script syntax and chart functions - Qlik Sense, May 2024 1547

12 Functions and statements not recommended in Qlik Sense

Statement Parameters

LOAD The following parameter keywords are generated by QlikView file transformation
wizards. Functionality is retained when data is reloaded, but Qlik Sense does not
provide guided support/wizards for generating the statement with these
parameters:

l Bottom
l Cellvalue
l Col
l Colmatch
l Colsplit
l Colxtr
l Compound
l Contain
l Equal
l Every
l Expand
l Filters
l Intarray
l Interpret
l Length
l Longer
l Numerical
l Pos
l Remove
l Rotate
l Row
l Rowcnd
l Shorter
l Start
l Strcnd
l Top
l Transpose
l Unwrap
l XML: XMLSAX and Pattern is Path

12.3 Functions not recommended in Qlik Sense
This table describes script and chart functions that are not recommended for use in Qlik Sense.

Script syntax and chart functions - Qlik Sense, May 2024 1548

12 Functions and statements not recommended in Qlik Sense

Function Recommendation

NumAvg

NumCount

NumMax

NumMin

NumSum

Use Range functions instead.

Range functions (page 1334)

Color()

QliktechBlue

QliktechGray

Use other color functions instead. QliktechBlue() can be replaced by RGB
(8, 18, 90) and QliktechGray can be replaced by RGB(158, 148, 137) to
get the same colors.

Color functions (page 555)

QlikViewVersion Use EngineVersion instead.

EngineVersion (page 1485)

ProductVersion Use EngineVersion instead.

EngineVersion (page 1485)

QVUser

Year2Date Use YearToDate instead.

Vrank Use Rank instead.

WildMatch5 Use WildMatch instead.

Functions that are not recommended

ALL qualifier
In QlikView, the ALL qualifier may occur before an expression. This is equivalent to using {1}
TOTAL. In such a case the calculation will be made over all the values of the field in the document,
disregarding the chart dimensions and current selections. The same value is always returned
regardless of the logical state in the document. If the ALL qualifier is used, a set expression cannot
be used, since the ALL qualifier defines a set by itself. For legacy reasons, the ALL qualifier will still
work in this version of Qlik Sense, but may be removed in coming versions.

Script syntax and chart functions - Qlik Sense, May 2024 1549

	1 What is Qlik Sense?
	1.1 What can you do in Qlik Sense?
	1.2 How does Qlik Sense work?
	The app model
	The associative experience
	Collaboration and mobility

	1.3 How can you deploy Qlik Sense?
	Qlik Sense Desktop
	Qlik Sense Enterprise

	1.4 How to administer and manage a Qlik Sense site
	1.5 Extend Qlik Sense and adapt it for your own purposes
	Building extensions and mashups
	Building clients
	Building server tools
	Connecting to other data sources

	2 Script syntax overview
	2.1 Introduction to script syntax
	2.2 What is Backus-Naur formalism?

	3 Script statements and keywords
	3.1 Script control statements
	Script control statements overview
	Call
	Do..loop
	End
	Exit
	Exit script
	For..next
	For each..next
	If..then..elseif..else..end if
	Next
	Sub..end sub
	Switch..case..default..end switch
	To

	3.2 Script prefixes
	Script prefixes overview
	Add
	Buffer
	Concatenate
	Crosstable
	First
	Generic
	Hierarchy
	HierarchyBelongsTo
	Inner
	IntervalMatch
	Join
	Keep
	Left
	Mapping
	Merge
	NoConcatenate
	Only
	Outer
	Partial reload
	Replace
	Right
	Sample
	Semantic
	Unless
	When

	3.3 Script regular statements
	Script regular statements overview
	Alias
	AutoNumber
	Binary
	Comment field
	Comment table
	Connect
	Declare
	Derive
	Direct Query
	Directory
	Disconnect
	Drop
	Drop table
	Execute
	Field/Fields
	FlushLog
	Force
	From
	Load
	Let
	Loosen Table
	Map
	NullAsNull
	NullAsValue
	Qualify
	Rem
	Rename
	Search
	Section
	Select
	Set
	Sleep
	SQL
	SQLColumns
	SQLTables
	SQLTypes
	Star
	Store
	Table/Tables
	Tag
	Trace
	Unmap
	Unqualify
	Untag

	3.4 Working directory
	Qlik Sense Desktop working directory
	Qlik Sense working directory

	4 Working with variables in the data load editor
	4.1 Overview
	4.2 Defining a variable
	4.3 Deleting a variable
	4.4 Loading a variable value as a field value
	4.5 Variable calculation
	4.6 System variables
	System variables overview
	CreateSearchIndexOnReload
	HidePrefix
	HideSuffix
	Include
	OpenUrlTimeout
	StripComments
	Verbatim

	4.7 Value handling variables
	Value handling variables overview
	NullDisplay
	NullInterpret
	NullValue
	OtherSymbol

	4.8 Number interpretation variables
	Currency formatting
	Number formatting
	Time formatting
	BrokenWeeks
	DateFormat
	DayNames
	DecimalSep
	FirstWeekDay
	LongDayNames
	LongMonthNames
	MoneyDecimalSep
	MoneyFormat
	MoneyThousandSep
	MonthNames
	NumericalAbbreviation
	ReferenceDay
	ThousandSep
	TimeFormat
	TimestampFormat

	4.9 Direct Discovery variables
	Direct Discovery system variables
	Teradata query banding variables
	Direct Discovery character variables
	Direct Discovery number interpretation variables

	4.10 Error variables
	Error variables overview
	ErrorMode
	ScriptError
	ScriptErrorCount
	ScriptErrorList

	5 Script expressions
	6 Chart expressions
	6.1 Defining the aggregation scope
	6.2 Set analysis
	Set expressions
	Examples
	Natural sets
	Set identifiers
	Set operators
	Set modifiers
	Inner and outer set expressions
	Tutorial - Creating a set expression
	Syntax for set expressions

	6.3 General syntax for chart expressions
	6.4 General syntax for aggregations

	7 Operators
	7.1 Bit operators
	7.2 Logical operators
	7.3 Numeric operators
	7.4 Relational operators
	7.5 String operators
	&
	like

	8 Script and chart functions
	8.1 Analytic connections for server-side extensions (SSE)
	8.2 Aggregation functions
	Using aggregation functions in a data load script
	Using aggregation functions in chart expressions
	How aggregations are calculated
	Aggregation of key fields
	Basic aggregation functions
	Counter aggregation functions
	Financial aggregation functions
	Statistical aggregation functions
	Statistical test functions
	String aggregation functions
	Synthetic dimension functions
	Nested aggregations

	8.3 Aggr - chart function
	Examples: Chart expressions using Aggr

	8.4 Color functions
	Pre-defined color functions
	ARGB
	RGB
	HSL

	8.5 Conditional functions
	Conditional functions overview
	alt
	class
	coalesce
	if
	match
	mixmatch
	pick
	wildmatch

	8.6 Counter functions
	Counter functions overview
	autonumber
	autonumberhash128
	autonumberhash256
	IterNo
	RecNo
	RowNo
	RowNo - chart function

	8.7 Date and time functions
	Date and time functions overview
	addmonths
	addyears
	age
	converttolocaltime
	day
	dayend
	daylightsaving
	dayname
	daynumberofquarter
	daynumberofyear
	daystart
	firstworkdate
	GMT
	hour
	inday
	indaytotime
	inlunarweek
	inlunarweektodate
	inmonth
	inmonths
	inmonthstodate
	inmonthtodate
	inquarter
	inquartertodate
	inweek
	inweektodate
	inyear
	inyeartodate
	lastworkdate
	localtime
	lunarweekend
	lunarweekname
	lunarweekstart
	makedate
	maketime
	makeweekdate
	minute
	month
	monthend
	monthname
	monthsend
	monthsname
	monthsstart
	monthstart
	networkdays
	now
	quarterend
	quartername
	quarterstart
	second
	setdateyear
	setdateyearmonth
	timezone
	today
	UTC
	week
	weekday
	weekend
	weekname
	weekstart
	weekyear
	year
	yearend
	yearname
	yearstart
	yeartodate

	8.8 Exponential and logarithmic functions
	8.9 Field functions
	Count functions
	Field and selection functions
	GetAlternativeCount - chart function
	GetCurrentSelections - chart function
	GetExcludedCount - chart function
	GetFieldSelections - chart function
	GetNotSelectedCount - chart function
	GetObjectDimension - chart function
	GetObjectField - chart function
	GetObjectMeasure - chart function
	GetPossibleCount - chart function
	GetSelectedCount - chart function

	8.10 File functions
	File functions overview
	Attribute
	ConnectString
	FileBaseName
	FileDir
	FileExtension
	FileName
	FilePath
	FileSize
	FileTime
	GetFolderPath
	QvdCreateTime
	QvdFieldName
	QvdNoOfFields
	QvdNoOfRecords
	QvdTableName

	8.11 Financial functions
	Financial functions overview
	BlackAndSchole
	FV
	nPer
	Pmt
	PV
	Rate

	8.12 Formatting functions
	Formatting functions overview
	ApplyCodepage
	Date
	Dual
	Interval
	Money
	Num
	Time
	Timestamp

	8.13 General numeric functions
	General numeric functions overview
	Combination and permutation functions
	Modulo functions
	Parity functions
	Rounding functions
	BitCount
	Ceil
	Combin
	Div
	Even
	Fabs
	Fact
	Floor
	Fmod
	Frac
	Mod
	Odd
	Permut
	Round
	Sign

	8.14 Geospatial functions
	Geospatial functions overview
	GeoAggrGeometry
	GeoBoundingBox
	GeoCountVertex
	GeoGetBoundingBox
	GeoGetPolygonCenter
	GeoInvProjectGeometry
	GeoMakePoint
	GeoProject
	GeoProjectGeometry
	GeoReduceGeometry

	8.15 Interpretation functions
	Interpretation functions overview
	Date#
	Interval#
	Money#
	Num#
	Text
	Time#
	Timestamp#

	8.16 Inter-record functions
	Row functions
	Column functions
	Field functions
	Pivot table functions
	Inter-record functions in the data load script
	Above - chart function
	Below - chart function
	Bottom - chart function
	Column - chart function
	Dimensionality - chart function
	Exists
	FieldIndex
	FieldValue
	FieldValueCount
	LookUp
	NoOfRows - chart function
	Peek
	Previous
	Top - chart function
	SecondaryDimensionality - chart function
	After - chart function
	Before - chart function
	First - chart function
	Last - chart function
	ColumnNo - chart function
	NoOfColumns - chart function

	8.17 Logical functions
	8.18 Mapping functions
	Mapping functions overview
	ApplyMap
	MapSubstring

	8.19 Mathematical functions
	8.20 NULL functions
	NULL functions overview
	EmptyIsNull
	IsNull
	NULL

	8.21 Range functions
	Basic range functions
	Counter range functions
	Statistical range functions
	Financial range functions
	RangeAvg
	RangeCorrel
	RangeCount
	RangeFractile
	RangeIRR
	RangeKurtosis
	RangeMax
	RangeMaxString
	RangeMin
	RangeMinString
	RangeMissingCount
	RangeMode
	RangeNPV
	RangeNullCount
	RangeNumericCount
	RangeOnly
	RangeSkew
	RangeStdev
	RangeSum
	RangeTextCount
	RangeXIRR
	RangeXNPV

	8.22 Relational functions
	Ranking functions
	Clustering functions
	Time series decomposition functions
	Rank - chart function
	HRank - chart function
	Optimizing with k-means: A real-world example
	KMeans2D - chart function
	KMeansND - chart function
	KMeansCentroid2D - chart function
	KMeansCentroidND - chart function
	STL_Trend - chart function
	STL_Seasonal - chart function
	STL_Residual - chart function
	Tutorial - Time series decomposition in Qlik Sense

	8.23 Statistical distribution functions
	Statistical distribution functions overview
	BetaDensity
	BetaDist
	BetaInv
	BinomDist
	BinomFrequency
	BinomInv
	ChiDensity
	ChiDist
	ChiInv
	FDensity
	FDist
	FInv
	GammaDensity
	GammaDist
	GammaInv
	NormDist
	NormInv
	PoissonDist
	PoissonFrequency
	PoissonInv
	TDensity
	TDist
	TInv

	8.24 String functions
	String functions overview
	Capitalize
	Chr
	Evaluate
	FindOneOf
	Hash128
	Hash160
	Hash256
	Index
	IsJson
	JsonGet
	JsonSet
	KeepChar
	Left
	Len
	LevenshteinDist
	Lower
	LTrim
	Mid
	Ord
	PurgeChar
	Repeat
	Replace
	Right
	RTrim
	SubField
	SubStringCount
	TextBetween
	Trim
	Upper

	8.25 System functions
	System functions overview
	EngineVersion
	GetSysAttr
	InObject - chart function
	IsPartialReload
	ObjectId - chart function
	ProductVersion
	StateName - chart function

	8.26 Table functions
	Table functions overview
	FieldName
	FieldNumber
	NoOfFields
	NoOfRows

	8.27 Trigonometric and hyperbolic functions
	8.28 Window functions
	Window - script function
	WRank - script function

	9 File system access restriction
	9.1 Security aspects when connecting to file based ODBC and OLE DB data connections
	9.2 Limitations in standard mode
	System variables
	Regular script statements
	Script control statements
	File functions
	System functions

	9.3 Disabling standard mode
	Qlik Sense
	Qlik Sense Desktop

	10 Chart level scripting
	10.1 Control statements
	Chart modifier control statements overview
	Call
	Do..loop
	End
	Exit
	Exit script
	For..next
	For each..next
	If..then..elseif..else..end if
	Next
	Sub..end sub
	Switch..case..default..end switch
	To

	10.2 Prefixes
	Chart modifier prefixes overview
	Add
	Replace

	10.3 Regular statements
	Chart modifier regular statements overview
	Load
	Let
	Set
	Put
	HCValue

	11 QlikView functions and statements not supported in Qlik Sense
	11.1 Script statements not supported in Qlik Sense
	11.2 Functions not supported in Qlik Sense
	11.3 Prefixes not supported in Qlik Sense

	12 Functions and statements not recommended in Qlik Sense
	12.1 Script statements not recommended in Qlik Sense
	12.2 Script statement parameters not recommended in Qlik Sense
	12.3 Functions not recommended in Qlik Sense
	ALL qualifier

