Qlik

Script syntax and chart functions

Qlik Sense®
May 2024
Copyright © 1993-2024 QlikTech International AB. All rights reserved.

HELP.QLIK.COM

© 2024 QlikTech International AB. All rights reserved. All company and/or product names may be
trade names, trademarks and/or registered trademarks of the respective owners with which they
are associated.

Contents

1T Whatis QliK Sense? 16
1.1 What canyou doin QIiK SENSe? 16
1.2 How does Qlik Sense WOrK? .. . 16

The app MOdel 16
The associative eXperienCe 16
Collaboration and mMobility 16
1.3 How can you deploy QIIK SENSE? 16
Qlik Sense DesKtOp ... 17
QliK Sense ENterprise . . 17
1.4 How to administer and manage a Qlik Sense site ... 17
1.5 Extend Qlik Sense and adapt it for your own purposes ... 17
Building extensions and mashups 17
BUIldinNg ClieNtS ... 17
BUilding Server toolS 17
Connecting to other data sources 17

2 Script syntax OVervieW ... 18
2.1 Introduction to sCript SYNtax ... 18
2.2 What is Backus-Naur formalism? .. . 18

3 Script statements and keywords ... 20
3.1 Script control statements 20

Script control statements overview 20
Call 22
0. 00D o 23
BN 24
B X 24
Xt STt 24
FOr X L 25
FOr @aCN. NeXT 26
If.then..elseif..else..end if 29
N Xt . 30
SUD..eNA SUD L. 30
Switch..case..default..end switch 32
O 32
3.2 SCiPt PrefiXeS 32
Script prefixes OVerview .. 33
A 37
BUT O 38
CoNCateNate ... 40
CrOSStable 45
ISt 55
GNEIIC . 57
HI O Al O 63
HierarchyBeloNgSTOo 65
D T 67
IntervalMatCh . 68
JOIN 71
KD 81

Script syntax and chart functions - Qlik Sense, May 2024 3

Contents

LTt 82
VAP 83
Mg 84
NoCoONCatENate .. 89
NI 98
U 98
Partial reload 99
RO D ACE 102
RIGNt 104
SaAMIPIE 105
SEMANtIC . 108
UN S S 112
NN 118
3.3 Scriptregular statements 124
Script regular statements overview ... 124
Al S 130
AUTONUMID T 131
BN ANy 134
Comment field 136
Commenttable . . 136
GO G 137
Dl are L 139
DIV 141
DI et QUETY o 142
DI B O Y 147
DISCONNE G 148
DO 149
DO table 150
EXOCUE 151
Fleld Fi IS 152
FIUSILOG .o 152
O G 152
O 154
L0ad 154
LBt 174
Loosen Table . 175
VD 175
NUIASNUIL 176
NUIASY alUE 177
QUYL 177
RO 178
ReNaME 179
S AN Ll 181
SO I ON . 181
SO . 182
SO 184
Sl 185
S 185

Script syntax and chart functions - Qlik Sense, May 2024 4

Contents

SQLCOIUMNS 186
ST ablES 187
SQL T YRS o 187

S Al 188

S O 190
Table/Tables 196
A 196
TG 197
U 198
UNQUAIITY L 198
UN G 199
3.4 Working direCtOrY ... 200
Qlik Sense Desktop Working dir€@CtOry o 200
Qlik Sense working direCtory 200

4 Working with variables in the dataload editor 201
AT OV IV W 201
4.2 Defining avariable ...l 201
4.3 Deleting avariable ... 202
4.4 Loading avariable valueasafieldvalue 202
4.5 Variable calculation 202
4.6 Systemvariables ... 203
System variables OVEIVIEW 203
CreateSearchindexOnReload 206
HIdEPre X 206
HIE S U X 207
INCIUE 207
OPeNUI TIMEOUL . 208
S C OMMIENTS . 208

N I OatiM . 209
4.7 Value handling variables 209
Value handling variables overview ... 209
NUI D S IaY . 210
NUNIN DI 210
NUINV U 210
Other Sy MOl 21
4.8 Number interpretation variables ... 21
Currency formatting AN
Number formatting ... 212
TiMe fOrmMatting .o 212
BroKeNW eEKS 213
DateFormat . 215
DaYIN M S 221
DG M S O .o 225
FIr St W K DAY ... 228
LongDayNamMes 232
LongMonthNames 235
MONEY D ECIMAISEP .. 239

Script syntax and chart functions - Qlik Sense, May 2024 5

Contents

MoONEY R Ot 243
MONEY TROUSANAS D .o 247
MoONtNNaMES 251
NumericalAbbreviation ... 256
RETEIENCEDAY ... 257
TROUSANA S O . o 261
TimeROrmat . 267
TimestampPFOrmMat 268
4.9 Direct Discovery variables 271
Direct Discovery system variables ... 271
Teradata query banding variables ... 272
Direct Discovery character variables 273
Direct Discovery number interpretation variables ... 274
410 Errorvariables . 275
Error variables overview .. 275
ErrOrMOde . 275
ST P T O 276
SR BT O OUNT 277
S I O LISt L 277

B SCript @XPreSSiONS o 278
6 Chart eXPreSSIONS 279
6.1 Defining the aggregation SCOPEo 279
B.2 St ANAIY SIS ..o 282
SOl X P S S ONS 282
XA DI S 283
NatUral SIS . 283
Setidentifiers 286
SOl O EIAT O S . 287
Set MOdifiers . 288
INner and OUter Set EXPreSSIONS 31
Tutorial - Creating @ set eXpPresSioN 313
Syntax for SEt eXPreSSIONS 322
6.3 General syntax for chart @XpressionS 322
6.4 General syntax for aggregations 323
7 OPeratorS 324
7. Bit O PEIAtO S 324
7.2 Logical OperatorS o . 325
7.3 NUMEIC OPEIatO S . 325
7.4 Relational Operatorso 326
7.5 SHING ORI OrS . 328
& 328
K 328

8 Scriptand chartfunctions ... 329
8.1 Analytic connections for server-side extensions (SSE) ... 329
8.2 Aggregation fUNCLIONS 329
Using aggregation functionsina dataload script ... 330

Script syntax and chart functions - Qlik Sense, May 2024 6

Contents

Using aggregation functions in chart eXpressionscccoiiiiiiii 330
How aggregations are calculated ... 330
Aggregation of key fields 330
Basic aggregation functions 331
Counter aggregation fUNCLIONS 354
Financial aggregation fUNCHIONS 371
Statistical aggregation functions 400
Statistical test funCtions 467
String aggregation functions ... 533
Synthetic dimension fUNCLIONS 546
Nested aggregations 549
8.3 Aggr-chartfunction 549
Examples: Chart expressions USING AQQr ... 552
8.4 Color fuNCYiONS .. . 555
Pre-defined color funCtions 558
ARG B 559
RO B 559
H L 561
8.5 Conditional fuNCtiONS 562
Conditional fUNCLIONS OVEIVIEW 562
Al . 563
ClaSS o 564
COAlE S 566
) OO RRO PR UPRPRR 567
AT 570
XA O 574
K 577
WIlAmMat e . 578
8.6 Counter fUNCHiONS .. . 581
Counter fuNCtioNS OVEIVIEW 581
AULONUM DT 582
autonumberhash 28 . 585
autonumbernash256 . 587
N O 589
RECN O L 590
ROWN O 591
RowNoO - chart funCtion 592
8.7 Date and time funCtioNs 594
Date and time fUNCLIONS OVEIVIEW o 595
addmoONtNS . 603
AAAY AT 613
A0 620
converttolocaltime 622
Y 626
AV NG 632
daylightsaving ... 640
Ay A 641
daynUMbErOf QUAITET . 643

Script syntax and chart functions - Qlik Sense, May 2024 7

Contents

AaynNUMbDEIO Y AT .. 649
AaY S At 655
firstwWorkdate 663
OV T 664
PO 668
DAY 672
INAAY OtIME 680
INIUNAIW K 690
inlunarweektodate 702
NN 713
INMONTNS 721
InmoNnthstodate 735
INMON N OO At . 748
QUM T 758
INQUANT B OatE . 771
W K 784
INWeeKtOdate . 800
Y AT 814
INY AN O . 827
lastworkdate 839
lOCalIMe . 849
UnarwWeeKeNd . . 853
UNarWeEKNaME Ll 865
lunarweek S art 877
MAKEAATE 889
MAKE M 896
MmakeweeKdate 903
UL 911
O 917
MONENENA . 923
MONtNNAME 932
MONtNSENd 940
MONTN SN A . 953
MONTNS S At . 966
MONtN S At 979
MW OO KO AY S . 989
DO 999
QUAN BTN 1006
QUM B A 1019
QUANT IS At 1031
SECONA 1043
SEEAATEY Al 1048
setdateyearmoONnth L 1050
M ZONE . 1052
BOaAY 1052
UT G 1058
WK 1058
WK A AY 1074

Script syntax and chart functions - Qlik Sense, May 2024 8

Contents

WeBKENA 1083
WEEKNAM E . 1095
WeEEK S At 1110
WEBKY Car L 1122
YA 1132
VAN O . 1138
Y AN A 1150
VAN S At 1163
YA Odat e 1175
8.8 Exponential and logarithmic functions ... 1190
8.9 Field fUNCHiONS .. . 1191
CoUNt FUNCHIONS L. 1192
Field and selection fUNCHIONS 1192
GetAlternativeCount - chart function 1193
GetCurrentSelections - chart function ... 1194
GetExcludedCount - chart function ... 1196
GetFieldSelections - chart function ... 1197
GetNotSelectedCount - chart function ... 1199
GetObjectDimension - chart funCtion ... 1200
GetObjectField - chart fUNCtioN 1200
GetObjectMeasure - chart fUNCLION 1201
GetPossibleCount - chart function ... 1202
GetSelectedCount - chart function ... 1203
8.10 File fUNCHIONS . 1205
File fUNCHIONS OVEIVIEW ... 1205
AU e . 1207
CONNEC S T ING 1215
FileBaseName . 1215
FIlE DT 1215
FIleEX NS ON . 1216
FlleNaMe . 1216
FIlePatn 1216
FIle Sz . 1217
Rl I 1218
GetFolderPath . . 1218
QVACreateTime 1219
QVAFRieldNaME 1220
QVANOOTFICIAS 1221
QVANOOTRECOIAS . 1222
QudTableName . 1223
8.11 Financial fUNCHIONS .. 1224
Financial fuNCLioNs OVEIVIEW 1225
BlackANdSChoOle .. 1225
BN 1226
NP T 1227
Pt 1228
PN 1229
Rt 1230

Script syntax and chart functions - Qlik Sense, May 2024 9

Contents

8.12 Formatting fUNCLIONS . .. 1231
Formatting functions overview 1231
APPIY COaEPAGE . 1232
Date 1233
DUl Ll 1235
Nt erVal 1236
VO 1237
NUY 1239
TN 1241
T S A o 1243

8.13 General numeric TUNCHIONS 1244
General numeric fUNCtIONS OVEIVIEW 1244
Combination and permutation funCtions ... 1245
Modulo fUNCHIONS . 1245
Parity TUNCHIONS L 1245
RoUNdiNg fUNCHIONS ... 1246
Bt OUN 1246
Gl 1246
COMIDIN 1248
DIV 1248
BV N 1249
FabS . 1249
FaCt 1249
FlOO 1250
P0G 1251
B aC 1252
VOO 1253
O 1253
PermUY 1254
ROUNG 1254
SO 1256

8.14 Geospatial fUNCLIONS 1256
Geospatial fuNCLIONS OVEIVIEW 1257
GEOAGGIGEOM Y 1258
GEOBOUNAINGBOX ..o 1259
GeoCOUN Y B X .. 1260
GeoGetBoundingBoX 1260
GeoGEetPOIYgONC EN Ol . 1261
GeolNVPIroJeCtGeOMETIY 1261
GeoMaKeP OINt L. 1262
GO PO 1263
GEOPIO e G EOM BT . 1263
GEOREAUCE G EOM BT . 1264

8.15 Interpretation fUNCHIONS 1265
Interpretation fUNCLIONS OVEIVIEW 1266
DAt 1267
INterVal 1268
MO Y 1269

Script syntax and chart functions - Qlik Sense, May 2024 10

Contents

NUMEE 1270
T O 1271
T 1271
TIME S aMIDHE 1272
8.16 Inter-record fUNCHIONS 1273
ROW fUNCYIONS . 1274
Column fUNCYIONS . 1275
Field fUNCHONS 1275
Pivot table fUNCLiONS ... 1275
Inter-record functions in the dataload sCript ... 1276
Above - chart fUNCtioN L.l 1277
Below - chart function ... 1282
Bottom - chart function ... 1285
Column - chart function 1290
Dimensionality - chart fUNCLiON 1292
EXIS S . 1293
FleldINdeX 1297
FieldValue 1299
FieldValueCoUNnt . . 1300
LOOKU D o 1302
NOOFROWS - Chart TUNCLION ... 1304
P K 1306
P eVIOUS L 1313
TOp - Chart fUNCHION 1315
SecondaryDimensionality - chart function 1319
After - chart function .. 1319
Before - chart function 1320
First - chart function ... 1322
Last - chart function 1323
ColumnNo - chart fUNCHION ... 1324
NoOfColumns - chart fUNCHION 1324
8.17 Logical TUNCHIONS ..o 1325
8.18 Mapping fUNCtiONS 1326
Mapping fUNCLIONS OVEIVIEW 1326
A YV D 1326
MapP SUD S IING . 1328
8.19 Mathematical functions 1330
8.20 NULL fUNCHiONS . . 1331
NULL funCtions OVerVIeW .. 1331
Bty SNUIL 1331
LSNUIL 1332
NU L 1333
8.21 Range fUNCrioNS 1334
Basic range fUNCHIONS 1334
Counterrange fUNCHiONS 1335
Statistical range funCtions 1335
Financial range fUNCLIONS 1336
RANGE AV 1337

Script syntax and chart functions - Qlik Sense, May 2024 1

Contents

RaANGE C O Tl 1339
RaANGEC OUNT L 1341
RangeFractile .. . 1343
RaNgeIRR 1345
RaANGEKUIT OSIS .. o 1346
RANGEM X 1347
RaNgEeMaX S NG L 1349
RaNGEeMIN 1351
RaANGEMIN S NG 1353
RaNgeMIisSINgCOUNt . 1354
RanNgeMoOde . 1356
RaNGEN PV 1358
RaNGENUI G OUNT 1359
RaNgeNUMENiCCOUNT L L 1360
RaANGEONIY 1362
RaANGE KW 1363
RaANGE S AV 1364
RANGE S UM 1365
RangeT extCoOUNT . . 1368
RaNgeXIRR 1369
RaNGEXN PV 1371
8.22 Relational fUNCHIONS 1373
Ranking fUNCLiONS .. . 1373
Clustering fUNCLIONS ... 1374
Time series decomposition fUNCLIONS 1375
Rank - chart function 1376
HRank - chart function 1380
Optimizing with k-means: A real-world example ... 1382
KMeans2D - chart function 1391
KMeansND - chart fUNCHION 1406
KMeansCentroid2D - chart function ... 1421
KMeansCentroidND - chart function ..., 1422
STL_Trend - chart fUNCHION ... 1423
STL_Seasonal - chart fUNCLION 1425
STL_Residual - chart function 1427
Tutorial - Time series decompositionin Qlik Sense ... 1429
8.23 Statistical distribution fUNCtions ... 1434
Statistical distribution functions overview ... 1434
BetaD eI Y .o 1437
BetaD St 1437
BetaINy 1437
BINOMIDI St . 1438
BiNOMErEQUENCY 1438
BiNOMINY 1439
D NS Y o 1439
OISt 1440
OV 1440
D BN S Y 1441

Script syntax and chart functions - Qlik Sense, May 2024 12

Contents

P St L 1441
I . 1442
GaMMAD N S Y 1443
GammaDist 1443
GammMalNy 1444
NOIM D St 1444
NOIMINV 1445
POISSONDIST L. 1446
POISSONF I QUENCY .. 1446
POISSONINY . 1447
T NS Y 1447
T DUSt 1447
TN 1448
8.24 SIriNG FUNCHIONS Lo 1449
String functions Overview 1449
Capitalize . 1452
CNT 1453
Evaluate . 1454
FINAONEOT . 1454
HaS T 28 1456
Hash 180 1456
HaSN 20 1457
X 1458
LSO L 1460
JSONG Y . 1461
JOON S Ot 1462
KB Al 1462
LTt 1464
O 1464
LevenshteinDist . . 1465
L OW BT 1467
LTI 1468
MG 1469
ONa 1470
PUrgeCNar 1471
R DAt 1472
REPIACE .o 1473
RIGNt . 1473
R TI l 1474
SUBF IO . 1475
SUB STING C OUN 1479
TeX B W N 1480
T 1481
U DD 1482
8.25 System fUNCHIONS .. 1482
System fUNCLIONS OVEIVIEBW ... e 1482
ENGiNE Y O S 0N 1485
GO S Y S AT 1486

Script syntax and chart functions - Qlik Sense, May 2024 13

Contents

INObject - chart fUNCHION ... 1486
IsPartialReload 1490
Objectld - chart fUNCHION ... 1490
ProdUCtY erSION . 1493
StateName - chart function 1494
8.26 Table fuNCtioNS 1494
Table fUNCLIONS OVEIVIEW ... 1494
FleldNamMe 1496
FleldNUM DT . 1497
NOOTRIIAS 1497
NOOT ROWS 1498
8.27 Trigonometric and hyperbolic functions ... 1498
8.28 Window fUNCHiONS 1500
Window - SCHipt fUNCHION L. 1501
WRaANK - SCHipt fUNCHION L. 1509
9 File system accessrestriction ... 1516
9.1 Security aspects when connecting to file based ODBC and OLE DB data
CONNECT ONS 1516
9.2 Limitations in standard mode 1516
Sy S M VAN A S . 1516
Regular script statements 1518
Script control statements ... 1519
File FUNCIONS 1520
SY S M fUNC I ONS 1522
9.3 Disabling standard mode ... 1522
QUK SN 1522
QIiK SeNnse DeSKIOD 1522
10 Chartlevel scripting 1524
10.1 Control statements 1524
Chart modifier control statements overview ... 1524
Call 1526
D0 00 1527
BN 1527
B XUt 1528
Xt SOt L 1528
POl Xt 1528
For eaCh. .NeXt 1529
If.then..elseif..else..end if .. . 1532
N Xt 1533
SUD..eNA SUD . 1533
Switch..case..default..end switCh ... 1535
O 1535
10,2 PrefiXeS 1535
Chart modifier prefixes OVEerVIEW 1536
A 1536
RO D ACE 1536
10.3 Regular statements . 1537

Script syntax and chart functions - Qlik Sense, May 2024 14

Contents

Chart modifier regular statements OVerview ... 1537
L0ad 1538

Lt 1542

St 1543

P UL 1543
HCOVaAIUE . 1544

11 QlikView functions and statements not supported in Qlik Sense 1546
11.1 Script statements not supported in Qlik Sense ... 1546
11.2 Functions not supported in QliK SENSE 1546
11.3 Prefixes not supported in Qlik Sense ... 1546
12 Functions and statements not recommended in Qlik Sense 1547
12.1 Script statements not recommended in Qlik Sense ... 1547
12.2 Script statement parameters not recommended in Qlik Sense 1547
12.3 Functions not recommended in QlIK SENSe 1548
AL QUANT O 1549

Script syntax and chart functions - Qlik Sense, May 2024 15

T What is Qlik Sense?

1 What is Qlik Sense?

Qlik Sense is a platform for data analysis. With Qlik Sense you can analyze data and make data
discoveries on your own. You can share knowledge and analyze data in groups and across
organizations. Qlik Sense lets you ask and answer your own questions and follow your own paths to
insight. Qlik Sense enables you and your colleagues to reach decisions collaboratively.

1.1 What can you do in Qlik Sense?

Most Business Intelligence (BI) products can help you answer questions that are understood in
advance. But what about your follow-up questions? The ones that come after someone reads your
report or sees your visualization? With the Qlik Sense associative experience, you can answer
question after question after question, moving along your own path to insight. With Qlik Sense you
can explore your data freely, with just clicks, learning at each step along the way and coming up
with next steps based on earlier findings.

1.2 How does Qlik Sense work?

Qlik Sense generates views of information on the fly for you. Qlik Sense does not require predefined
and static reports or you being dependent on other users — you just click and learn. Every time you
click, Qlik Sense instantly responds, updating every Qlik Sense visualization and view in the app
with a newly calculated set of data and visualizations specific to your selections.

The app model

Instead of deploying and managing huge business applications, you can create your own Qlik Sense
apps that you can reuse, modify and share with others. The app model helps you ask and answer
the next question on your own, without having to go back to an expert for a new report or
visualization.

The associative experience

Qlik Sense automatically manages all the relationships in the data and presents information to you
using a green/white/gray metaphor. Selections are highlighted in green, associated data is
represented in white, and excluded (unassociated) data appears in gray. This instant feedback
enables you to think of new questions and continue to explore and discover.

Collaboration and mobility

Qlik Sense further enables you to collaborate with colleagues no matter when and where they are
located. All Qlik Sense capabilities, including the associative experience and collaboration, are
available on mobile devices. With Qlik Sense, you can ask and answer your questions and follow-up
questions, with your colleagues, wherever you are.

1.3 How can you deploy Qlik Sense?

There are two versions of Qlik Sense to deploy, Qlik Sense Desktop and Qlik Sense Enterprise.

Script syntax and chart functions - Qlik Sense, May 2024 16

T What is Qlik Sense?

Qlik Sense Desktop

This is an easy-to-install single user version that is typically installed on a local computer.

Qlik Sense Enterprise

This version is used to deploy Qlik Sense sites. A site is a collection of one or more server machines
connected to a common logical repository or central node.

1.4 How to administer and manage a Qlik Sense site

With the Qlik Management Console you can configure, manage and monitor Qlik Sense sites in an
easy and intuitive way. You can manage licenses, access and security rules, configure nodes and
data source connections and synchronize content and users among many other activities and
resources.

1.5 Extend Qlik Sense and adapt it for your own
purposes

Qlik Sense provides you with flexible APIs and SDKs to develop your own extensions and adapt and
integrate Qlik Sense for different purposes, such as:

Building extensions and mashups

Here you can do web development using JavaScript to build extensions that are custom
visualization in Qlik Sense apps, or you use a mashups APIs to build websites with Qlik Sense
content.

Building clients

You can build clients in .NET and embed Qlik Sense objects in your own applications. You can also
build native clients in any programming language that can handle WebSocket communication by
using the Qlik Sense client protocol.

Building server tools

With service and user directory APIs you can build your own tool to administer and manage Qlik
Sense sites.

Connecting to other data sources

Create Qlik Sense connectors to retrieve data from custom data sources.

Script syntax and chart functions - Qlik Sense, May 2024 17

2 Script syntax overview

2 Script syntax overview

2.1 Introduction to script syntax

In a script, the name of the data source, the names of the tables, and the names of the fields
included in the logic are defined. Furthermore, the fields in the access rights definition are defined
in the script. A script consists of a number of statements that are executed consecutively.

The Qlik Sense command line syntax and script syntax are described in a notation called Backus-
Naur Formalism, or BNF code.

The first lines of code are already generated when a new Qlik Sense file is created. The default
values of these number interpretation variables are derived from the regional settings of the OS.

The script consists of a number of script statements and keywords that are executed
consecutively. All script statements must end with a semicolon, ";".

You can use expressions and functions in the LOAD-statements to transform the data that has
been loaded.

For a table file with commas, tabs or semicolons as delimiters, a LOAD-statement may be used. By
default a LOAD-statement will load all fields of the file.

General databases can be accessed through ODBC or OLE DBdatabase connectors. Here standard
SQL statements are used. The SQL syntax accepted differs between different ODBC drivers.

Additionally, you can access other data sources using custom connectors.

2.2 Whatis Backus-Naur formalism?

The Qlik Sense command line syntax and script syntax are described in a notation
called Backus-Naur formalism, also known as BNF code.

The following table provides a list of symbols used in BNF code, with a description of how they are
interpreted:

Symbols

Symbol Description

| Logical OR: the symbol on either side can be used.

() Parentheses defining precedence: used for structuring the BNF syntax.
[] Square brackets: enclosed items are optional.
{} Braces: enclosed items may be repeated zero or more times.

Script syntax and chart functions - Qlik Sense, May 2024 18

2 Script syntax overview

Symbol
Symbol

LOAD

Description

A non-terminal syntactic category, that: can be divided further into other symbols.
For example, compounds of the above, other non-terminal symbols, text strings,
and soon.

Marks the beginning of a block that defines a symbol.

A terminal symbol consisting of a text string. Should be written as it is into the
script.

All terminal symbols are printed in a bold face font. For example, "(" should be interpreted as a
parenthesis defining precedence, whereas "(" should be interpreted as a character to be printed in

the script.

Example:

The description of the alias statement is:

alias fieldname as aliasname { , fieldname as aliasname}

This should be interpreted as the text string "alias", followed by an arbitrary field name, followed by
the text string "as", followed by an arbitrary alias name. Any number of additional combinations of
"fieldname as alias" may be given, separated by commas.

The following statements are correct:

alias a as first;
alias a as first, b as second;
alias a as first, b as second, c as third;

The following statements are not correct:

alias a as first b as second;
alias a as first { , b as second };

Script syntax and chart functions - Qlik Sense, May 2024 19

3 Script statements and keywords

3 Script statements and keywords

The Qlik Sense script consists of a number of statements. A statement can be either a regular script
statement or a script control statement. Certain statements can be preceded by prefixes.

Regular statements are typically used for manipulating data in one way or another. These
statements may be written over any number of lines in the script and must always be terminated by
a semicolon, *;".

Control statements are typically used for controlling the flow of the script execution. Each clause of
a control statement must be kept inside one script line and may be terminated by a semicolon or the
end-of-line.

Prefixes may be applied to applicable regular statements but never to control statements. The
when and unless prefixes can however be used as suffixes to a few specific control statement
clauses.

In the next subchapter, an alphabetical listing of all script statements, control statements and
prefixes, are found.

All script keywords can be typed with any combination of lower case and upper case characters.
Field and variable names used in the statements are however case sensitive.

3.1 Script control statements

The Qlik Sense script consists of a number of statements. A statement can be either a regular script
statement or a script control statement.

Control statements are typically used for controlling the flow of the script execution. Each clause of
a control statement must be kept inside one script line and may be terminated by semicolon or end-
of-line.

Prefixes are never applied to control statements, with the exceptions of the prefixes when and
unless which may be used with a few specific control statements.

All script keywords can be typed with any combination of lower case and upper case characters.

Script control statements overview

Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

Call
The call control statement calls a subroutine which must be defined by a previous sub statement.

Call name ([paramlist 1)

Script syntax and chart functions - Qlik Sense, May 2024 20

3 Script statements and keywords

Do..loop
The do..loop control statement is a script iteration construct which executes one or several
statements until a logical condition is met.

Do..loop [(while | until) condition] [statements]
[exit do [(when | unless) condition] [statements]
loop [(while | until) condition]

Exit script

This control statement stops script execution. It may be inserted anywhere in the script.

Exit script|[(when | unless) condition]

For each ..next

The for each..next control statement is a script iteration construct which executes one or several
statements for each value in a comma separated list. The statements inside the loop enclosed by
for and next will be executed for each value of the list.

For each. .next var in list

[statements]

[exit for [(when | unless) condition]
[statements]

next [var]

For..next

The for..next control statement is a script iteration construct with a counter. The statements inside
the loop enclosed by for and next will be executed for each value of the counter variable between
specified low and high limits.

For..next counter = exprl to expr2 [stepexpr3]
[statements]

[exit for [(when | unless) condition]
[statements]

Next [counter]

If..then
The if..then control statement is a script selection construct forcing the script execution to follow
different paths depending on one or several logical conditions.

Since the if..then statement is a control statement and as such is ended with either a
semicolon or end-of-line, each of its four possible clauses (if..then, elseif..then, else
and end if) must not cross a line boundary.

If..then..elseif..else..end if condition then
[statements]

{ elseif condition then
[statements] }

[else
[statements]]

Script syntax and chart functions - Qlik Sense, May 2024 21

3 Script statements and keywords

end if

Sub
The sub..end sub control statement defines a subroutine which can be called upon from a call
statement.

Sub. .end sub name [(paramlist)] statements end sub

Switch
The switch control statement is a script selection construct forcing the script execution to follow
different paths, depending on the value of an expression.

Switch. .case..default. .end switch expression {case valuelist [statements]}
[default statements] end switch

Call

The call control statement calls a subroutine which must be defined by a previous sub
statement.

Syntax:
Call name ([paramlist 1)

Arguments:
Arguments
Argument Description
name The name of the subroutine.
paramlist A comma separated list of the actual parameters to be sent to the

subroutine. Each item in the list may be a field name, a variable, or
an arbitrary expression.

The subroutine called by a call statement must be defined by a sub encountered earlier during
script execution.

Parameters are copied into the subroutine and, if the parameter in the call statement is a variable
and not an expression, copied back out again upon exiting the subroutine.

Limitations:

< Since the call statement is a control statement and as such is ended with either a semicolon
or end-of-ling, it must not cross a line boundary.

» When you define a subroutine with sub. .end subinside a control statement, for example
if..then, you can only call the subroutine from within the same control statement.

Script syntax and chart functions - Qlik Sense, May 2024 22

3 Script statements and keywords

Example:

This example lists all Qlik related files in a folder and its subfolders, and stores file informationin a
table. It is assumed that you have created a data connection named Apps to the folder.

The DoDir subroutine is called with the reference to the folder, 'lib://Apps', as parameter. Inside the
subroutine, there is a recursive call, call pobir (pir), that makes the function look for files
recursively in subfolders.

sub DoDir (Root)

For Each Ext in 'qww', 'qvo', 'qvs', 'qvt', 'qvd', 'qvc', 'qvf'
For Each File in filelist (Root&'*.' &EXt)
LOAD

'$(File)' as Name,
Filesize('$(File)') as Size,
FileTime('$(File)') as FileTime
autogenerate 1;
Next File
Next EXt
For Each Dir in dirlist (Root&'*')
call pobir (Dir)
Next Dir
End Sub

call pobir ('Tib://Apps')

Do..loop

The do..loop control statement is a script iteration construct which executes one or
several statements until a logical condition is met.

Syntax:

Do [(while | until) condition] [statements]

[exit do [(when | unless) condition] [statements]
loop[(while | until) condition]

Since the do..loop statement is a control statement and as such is ended with either a
semicolon or end-of-line, each of its three possible clauses (do, exit do and loop) must
not cross a line boundary.

Arguments:
Arguments
Argument Description
condition A logical expression evaluating to True or False.

statements Any group of one or more Qlik Sense script statements.

Script syntax and chart functions - Qlik Sense, May 2024 23

3 Script statements and keywords

Argument Description

while / until The while or until conditional clause must only appear once in any do..loop
statement, i.e. either after do or after loop. Each condition is interpreted only the
first time it is encountered but is evaluated for every time it encountered in the
loop.

exit do If an exit do clause is encountered inside the loop, the execution of the script will
be transferred to the first statement after the loop clause denoting the end of
the loop. An exit do clause can be made conditional by the optional use of a
when or unless suffix.

Example:

// LOAD files filel.csv..file9.csv
Set a=1;

Do while a<10

LOAD * from file$(a).csv;

Let a=a+l;

Loop

End

The End script keyword is used to close If, Sub and Switch clauses.

Exit
The Exit script keyword is part of the Exit Script statement, but can also be used to
exit Do, For or Sub clauses.

Exit script
This control statement stops script execution. It may be inserted anywhere in the
script.

Syntax:
Exit Script [(when | unless) condition]

Since the exit script statement is a control statement and as such is ended with either a semicolon
or end-of-line, it must not cross a line boundary.

Arguments:
Arguments
Argument Description
condition A logical expression evaluating to True or False.
when An exit script statement can be made conditional by the optional
/ unless use of when or unless clause.

Script syntax and chart functions - Qlik Sense, May 2024 24

3 Script statements and keywords

Examples:

//EXit script
Exit Script;

//Exit script when a condition is fulfilled
Exit Script when a=1

For..next

The for..next control statement is a script iteration construct with a counter. The
statements inside the loop enclosed by for and next will be executed for each value of
the counter variable between specified low and high limits.

Syntax:

For counter = exprl to expr2 [step expr3]
[statements]

[exit for [(when | unless) condition]
[statements]

Next [counter]

The expressions expr1, expr2 and expr3 are only evaluated the first time the loop is entered. The
value of the counter variable may be changed by statements inside the loop, but this is not good
programming practice.

If an exit for clause is encountered inside the loop, the execution of the script will be transferred to
the first statement after the next clause denoting the end of the loop. An exit for clause can be
made conditional by the optional use of a when or unless suffix.

Since the for..next statement is a control statement and as such is ended with either a
semicolon or end-of-line, each of its three possible clauses (for..to..step, exit for and
next) must not cross a line boundary.

Arguments:
Arguments
Argument Description
counter A variable name. If counteris specified after next it must be the same variable
name as the one found after the corresponding for.
expri An expression which determines the first value of the counter variable for which

the loop should be executed.

Script syntax and chart functions - Qlik Sense, May 2024 25

3 Script statements and keywords

Argument Description

expr2 An expression which determines the last value of the counter variable for which
the loop should be executed.

expr3 An expression which determines the value indicating the increment of the
countervariable each time the loop has been executed.

condition a logical expression evaluating to True or False.

statements Any group of one or more Qlik Sense script statements.

Example 1: Loading a sequence of files
// LOAD files filel.csv..file9.csv
for a=1 to 9

LOAD * from file$(a).csv;

next

Example 2: Loading a random number of files

In this example, we assume there are data files x7.csv, x3.csv, x5.csv, x7.csvand x9.csv. Loading is
stopped at a random point using the if rand()<0.5 then condition.

for counter=1 to 9 step 2

set filename=x$(counter).csv;
if rand()<0.5 then

exit for unless counter=1

end if
LOAD a,b from $(filename);

next

For each..next

The for each..next control statement is a script iteration construct which executes one
or several statements for each value in a comma separated list. The statements inside
the loop enclosed by for and next will be executed for each value of the list.

Syntax:
Special syntax makes it possible to generate lists with file and directory names in the current
directory.

for each var in list

[statements]

[exit for [(when | unless) condition]
[statements]

next [var]

Script syntax and chart functions - Qlik Sense, May 2024 26

3 Script statements and keywords

Arguments:
Arguments
Argument Description
var A script variable sname which will acquire a new value from list for each loop

execution. If var is specified after next it must be the same variable name as the
one found after the corresponding for each.

The value of the var variable may be changed by statements inside the loop, but this is not good
programming practice.

If an exit for clause is encountered inside the loop, the execution of the script will be transferred to
the first statement after the next clause denoting the end of the loop. An exit for clause can be
made conditional by the optional use of a when or unless suffix.

Since the for each..next statement is a control statement and as such is ended with
either a semicolon or end-of-line, each of its three possible clauses (for each, exit for
and next) must not cross a line boundary.

Syntax:
list := item { , item }
item := constant | (expression) | filelist mask | dirlist mask |

fieldvaluelist mask

Arguments

Argument Description

constant Any number or string. Note that a string written directly in the script must be
enclosed by single quotes. A string without single quotes will be interpreted as
a variable, and the value of the variable will be used. Numbers do not need to
be enclosed by single quotes.

expression An arbitrary expression.

mask A filename or folder name mask which may include any valid filename
characters as well as the standard wildcard characters, * and ?.

You can use absolute file paths or lib:// paths.
condition A logical expression evaluating to True or False.

statements Any group of one or more Qlik Sense script statements.

Script syntax and chart functions - Qlik Sense, May 2024 27

3 Script statements and keywords

Argument Description

filelist mask This syntax produces a comma separated list of all files in the current directory
matching the filename mask.

This argument supports only library connections in standard mode.

dirlist mask This syntax produces a comma separated list of all folders in the current folder
matching the folder name mask.

This argument supports only library connections in standard mode.

fieldvaluelist This syntax iterates through the values of a field already loaded into Qlik Sense.
mask

The Qlik Web Storage Provider Connectors and other DataFiles connections do not
support filter masks that use wildcard (* and ?) characters.

Example 1: Loading a list of files

// LOAD the files 1l.csv, 3.csv, 7.csv and Xyz.csv
for each a in 1,3,7, 'xyz'

LOAD * from file$(a).csv;
next

Example 2: Creating a list of files on disk

This example loads a list of all Qlik Sense related files in a folder.

sub DoDir (Root)
for each Ext in 'qww', 'gqva', 'qvo', 'qvs', 'qvc', 'qvf', 'qvd'
for each File in filelist (Root&'/*.' &Ext)

LOAD
'$(File)' as Name,
Filesize('$(File)') as Size,
FileTime('$(File)') as FileTime

autogenerate 1;

next File

next Ext
for each Dir in dirlist (Root&'/*')

call poDir (Dir)

next Dir

Script syntax and chart functions - Qlik Sense, May 2024 28

3 Script statements and keywords

end sub
call pobir ('Tib://DataFiles"')

Example 3: Iterating through a the values of a field

This example iterates through the list of loaded values of FIELD and generates a new field,
NEWFIELD. For each value of FIELD, two NEWFIELD records will be created.

load * dinline [

FIELD

one

two

three
1;

FOR Each a in FieldvalueList('FIELD')

LOAD '$(a)' &'-'&RecNo() as NEWFIELD AutoGenerate 2;
NEXT a

The resulting table looks like this:

Example table
NEWFIELD
one-1
one-2
two-1
two-2
three-1

three-2

If..then..elseif..else..end if

The if..then control statement is a script selection construct forcing the script
execution to follow different paths depending on one or several logical conditions.

Control statements are typically used to control the flow of the script execution. In a chart
expression, use the if conditional function instead.

Syntax:

If condition then
[statements]

{ elseif condition then
[statements] }

[else
[statements]]

end if

Script syntax and chart functions - Qlik Sense, May 2024 29

3 Script statements and keywords

Since the if..then statement is a control statement and as such is ended with either a semicolon or
end-of-line, each of its four possible clauses (if..then, elseif..then, else and end if) must not cross
aline boundary.

Arguments:
Arguments
Argument Description
condition A logical expression which can be evaluated as True or False.

statements Any group of one or more Qlik Sense script statements.

Example 1:

if a=1 then

LOAD * from abc.csv;
SQL SELECT e, f, g from tabl;

end if

Example 2:

if a=1 then; drop table xyz; end if;
Example 3:

if x>0 then

LOAD * from pos.csv;
elseif x<0 then

LOAD * from neg.csv;
else

LOAD * from zero.txt;

end if

Next

The Next script keyword is used to close For loops.

Sub..end sub

The sub..end sub control statement defines a subroutine which can be called upon
from a call statement.

Syntax:
Sub name [(paramlist)] statements end sub

Script syntax and chart functions - Qlik Sense, May 2024 30

3 Script statements and keywords

Arguments are copied into the subroutine and, if the corresponding actual parameter in the call
statement is a variable name, copied back out again upon exiting the subroutine.

If a subroutine has more formal parameters than actual parameters passed by a call statement, the
extra parameters will be initialized to NULL and can be used as local variables within the subroutine.

Arguments:
Arguments
Argument Description
name The name of the subroutine.
paramlist A comma separated list of variable names for the formal

parameters of the subroutine. These can be used as any variable
inside the subroutine.

statements Any group of one or more Qlik Sense script statements.

Limitations:

* Since the sub statement is a control statement and as such is ended with either a semicolon
or end-of-line, each of its two clauses (sub and end sub) must not cross a line boundary.

* When you define a subroutine with sub. .end subinside a control statement, for example
if..then, you can only call the subroutine from within the same control statement.

Example 1:

Sub INCR (I,J)
I=I+1

Exit Sub when I < 10
J=31+1

End Sub

call INCR (X,Y)

Example 2: - parameter transfer

Sub ParTrans (A,B,C)

A=A+1

B=B+1

C=C+1

End Sub

A=1

X=1

c=1

call parTrans (A, (X+1)*2)

The result of the above will be that locally, inside the subroutine, A will be initialized to 1, B will be

initialized to 4 and C will be initialized to NULL.

When exiting the subroutine, the global variable A will get 2 as value (copied back from subroutine).
The second actual parameter “(X+1)*2” will not be copied back since it is not a variable. Finally, the
global variable C will not be affected by the subroutine call.

Script syntax and chart functions - Qlik Sense, May 2024 31

3 Script statements and keywords

Switch..case..default..end switch

The switch control statement is a script selection construct forcing the script
execution to follow different paths, depending on the value of an expression.

Syntax:
Switch expression {case valuelist [statements]} [default statements] end

switch

Since the switch statement is a control statement and as such is ended with either a
semicolon or end-of-line, each of its four possible clauses (switch, case, default and
end switch) must not cross a line boundary.

Arguments:
Arguments
Argument Description
expression An arbitrary expression.
valuelist A comma separated list of values with which the value of expression will be

compared. Execution of the script will continue with the statements in the first
group encountered with a value in valuelist equal to the value in expression. Each
value in valuelist may be an arbitrary expression. If no match is found in any case
clause, the statements under the default clause, if specified, will be executed.

statements Any group of one or more Qlik Sense script statements.

Example:

Switch I

Case 1

LOAD '$(I): CASE 1' as case autogenerate 1;
Case 2

LOAD '$(I): CASE 2' as case autogenerate 1;
Default

LOAD '$(I): DEFAULT' as case autogenerate 1;
End Switch

To

The To script keyword is used in several script statements.

3.2 Script prefixes

Prefixes may be applied to applicable regular statements but never to control statements. The
when and unless prefixes can however be used as suffixes to a few specific control statement
clauses.

Script syntax and chart functions - Qlik Sense, May 2024 32

3 Script statements and keywords

All script keywords can be typed with any combination of lower case and upper case characters.
Field and variable names used in the statements are however case sensitive.

Script prefixes overview

Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

Add

The Add prefix can be added to any LOAD or SELECT statement in the script to specify that it
should add records to another table. It also specifies that this statement should be run in a partial
reload. The Add prefix can also be used in a Map statement.

Add [only] [Concatenate[(tablename)]] (loadstatement | selectstatement)
Add [Only] mapstatement

Buffer

QVD files can be created and maintained automatically via the buffer prefix. This prefix can be used
on most LOAD and SELECT statements in script. It indicates that QVD files are used to cache/buffer
the result of the statement.

Buffer| (option [, option])] (loadstatement | selectstatement)
option::= incremental | stale [after] amount [(days | hours)]
Concatenate

If two tables that are to be concatenated have different sets of fields, concatenation of two tables
can still be forced with the Concatenate prefix.

Concatenate|[(tablename)] (loadstatement | selectstatement)

Crosstable

The crosstable load prefix is used to transpose “cross table” or “pivot table” structured data. Data
structured this way is commonly encountered when working with spreadsheet sources. The output
and aim of the crosstable load prefix is to transpose such structures into a regular column-oriented
table equivalent, as this structure is generally better suited for analysis in Qlik Sense.

Crosstable (attribute field name, data field name [, n]) (loadstatement |

selectstatement)

First
The First prefix to a LOAD or SELECT (SQL) statement is used for loading a set maximum number
of records from a data source table.

First n(loadstatement | selectstatement)

Generic

The Generic load prefix allows for conversion of entity—attribute-value modeled data (EAV) into a
traditional, normalized relational table structure. EAV modeling is alternatively referred to as
"generic data modeling" or "open schema".

Script syntax and chart functions - Qlik Sense, May 2024 33

3 Script statements and keywords

Generic (loadstatement | selectstatement)

Hierarchy

The hierarchy prefix is used to transform a parent-child hierarchy table to a table that is useful in a
Qlik Sense data model. It can be put in front of a LOAD or a SELECT statement and will use the
result of the loading statement as input for a table transformation.

Hierarchy (NodeID, ParentID, NodeName, [ParentName], [PathSource],
[PathName], [PathDelimiter], [Depth]) (loadstatement | selectstatement)

HierarchBelongsTo

This prefix is used to transform a parent-child hierarchy table to a table that is useful in a Qlik Sense
data model. It can be put in front of a LOAD or a SELECT statement and will use the result of the
loading statement as input for a table transformation.

HierarchyBelongsTo (NodeID, ParentID, NodeName, AncestorID, AncestorName,
[DepthDiff]) (loadstatement | selectstatement)

Inner
The join and keep prefixes can be preceded by the prefix inner.

If used before join it specifies that an inner join should be used. The resulting table will thus only
contain combinations of field values from the raw data tables where the linking field values are
represented in both tables. If used before keep, it specifies that both raw data tables should be
reduced to their common intersection before being stored in Qlik Sense.

Inner (Join | Keep) [(tablename)] (loadstatement |selectstatement)

IntervalMatch
The IntervalMatch prefix is used to create a table matching discrete numeric values to one or more
numeric intervals, and optionally matching the values of one or several additional keys.

IntervalMatch (matchfield) (loadstatement | selectstatement)
IntervalMatch (matchfield,keyfieldl [, keyfield2, ... keyfield5])
(loadstatement | selectstatement)

Join

The join prefix joins the loaded table with an existing named table or the last previously created
data table.

[Inner | Outer | Left | Right] Join [(tablename)] (loadstatement |
selectstatement)
Keep

The keep prefix is similar to the join prefix. Just as the join prefix, it compares the loaded table with
an existing named table or the last previously created data table, but instead of joining the loaded
table with an existing table, it has the effect of reducing one or both of the two tables before they
are stored in Qlik Sense, based on the intersection of table data. The comparison made is
equivalent to a natural join made over all the common fields, i.e. the same way as in a corresponding

Script syntax and chart functions - Qlik Sense, May 2024 34

3 Script statements and keywords

join. However, the two tables are not joined and will be kept in Qlik Sense as two separately named
tables.

(Inner | Left | Right) Keep [(tablename)] (loadstatement | selectstatement
)

Left
The Join and Keep prefixes can be preceded by the prefix left.

If used before join it specifies that a left join should be used. The resulting table will only contain
combinations of field values from the raw data tables where the linking field values are represented
in the first table. If used before keep, it specifies that the second raw data table should be reduced
to its common intersection with the first table, before being stored in Qlik Sense.

Left (Join | Keep) [(tablename)] (loadstatement |selectstatement)

Mapping
The mapping prefix is used to create a mapping table that can be used to, for example, replacing
field values and field names during script execution.

Mapping (loadstatement | selectstatement)

Merge

The Merge prefix can be added to any LOAD or SELECT statement in the script to specify that the
loaded table should be merged into another table. It also specifies that this statement should be run
in a partial reload.

Merge [only] [(SequenceNoField [, SequenceNoVar])] On ListOfKeys [Concatenate
[(TableName)]] (loadstatement | selectstatement)
NoConcatenate

The NoConcatenate prefix forces two loaded tables with identical field sets to be treated as two
separate internal tables, when they would otherwise be automatically concatenated.

NoConcatenate (loadstatement | selectstatement)

Outer

The explicit Join prefix can be preceded by the prefix Outer to specify an outer join. In an outer join,
all combinations between the two tables are generated. The resulting table will thus contain
combinations of field values from the raw data tables where the linking field values are represented
in one or both tables. The Outer keyword is optional and is the default join type used when a join
prefix is not specified.

Outer Join [(tablename)] (loadstatement |selectstatement)

Partial reload
A full reload always starts by deleting all tables in the existing data model, and then runs the load
script.

Script syntax and chart functions - Qlik Sense, May 2024 35

3 Script statements and keywords

A Partial reload (page 99) will not do this. Instead it keeps all tables in the data model and then
executes only Load and Select statements preceded by an Add, Merge, or Replace prefix. Other
data tables are not affected by the command. The only argument denotes that the statement
should be executed only during partial reloads, and should be disregarded during full reloads. The
following table summarizes statement execution for partial and full reloads.

Replace

The Replace prefix can be added to any LOAD or SELECT statement in the script to specify that the
loaded table should replace another table. It also specifies that this statement should be runin a
partial reload. The Replace prefix can also be used in a Map statement.

Replace [only] [Concatenate[(tablename)]] (loadstatement | selectstatement)
Replace [only] mapstatement

Right
The Join and Keep prefixes can be preceded by the prefix right.

If used before join it specifies that a right join should be used. The resulting table will only contain
combinations of field values from the raw data tables where the linking field values are represented
in the second table. If used before keep, it specifies that the first raw data table should be reduced
to its common intersection with the second table, before being stored in Qlik Sense.

Right (Join | Keep) [(tablename)] (loadstatement |selectstatement)

Sample
The sample prefix to a LOAD or SELECT statement is used for loading a random sample of records
from the data source.

Sample p (loadstatement | selectstatement)

Semantic

Tables containing relations between records can be loaded through a semantic prefix. This can for
example be self-references within a table, where one record points to another, such as parent,
belongs to, or predecessor.

Semantic (loadstatement | selectstatement)

Unless

The unless prefix and suffix is used for creating a conditional clause which determines whether a
statement or exit clause should be evaluated or not. It may be seen as a compact alternative to the
full if..end if statement.

(Unless condition statement | exitstatement Unless condition)

When

The when prefix and suffix is used for creating a conditional clause which determines whether a
statement or exit clause should be executed or not. It may be seen as a compact alternative to the
full if..end if statement.

(When condition statement | exitstatement when condition)

Script syntax and chart functions - Qlik Sense, May 2024 36

3 Script statements and keywords

Add

The Add prefix can be added to any LOAD or SELECT statement in the script to specify that it
should add records to another table. It also specifies that this statement should be run in a partial
reload. The Add prefix can also be used in a Map statement.

For partial reload to work properly, the app must be opened with data before a partial
reload is triggered.

Perform a partial reload using the Reload button. You can also use the Qlik Engine JSON API.

Syntax:
Add [only] [Concatenate|[(tablename)]] (loadstatement | selectstatement)

Add [only] mapstatement
During a normal (non-partial) reload, the Add LOAD construction will work as a normal LOAD
statement. Records will be generated and stored in a table.

If the Concatenate prefix is used, or if there exists a table with the same set of fields, the records
will be appended to the relevant existing table. Otherwise, the Add LOAD construction will create a
new table.

A partial reload will do the same. The only difference is that the Add LOAD construction will never
create a new table. There always exists a relevant table from the previous script execution to which
the records should be appended.

No check for duplicates is performed. Therefore, a statement using the Add prefix will often include
either a distinct qualifier or a where clause guarding duplicates.

The Add Map...Using statement causes mapping to take place also during partial script execution.

Arguments:
Arguments
Argument Description
only An optional qualifier denoting that the statement should be

executed only during partial reloads. It should be disregarded during
normal (non-partial) reloads.

Script syntax and chart functions - Qlik Sense, May 2024 37

3 Script statements and keywords

Examples and results:
Example

Tabl:

LOAD Name, Number FROM
Persons.csv;

Add LOAD Name, Number
FROM newPersons.csv;

Tabl:

SQL SELECT Name,
Number FROM
Persons.csv;

Add LOAD Name, Number
FROM NewPersons.csv
where not exists
(Name) ;

Tabl:

LOAD Name, Number FROM
Persons.csv;

Add only LOAD Name,
Number FROM
NewPersons.csv where
not exists(Name);

Buffer

Result

During normal reload, data is loaded from Persons.csv and stored in
the Qlik Sense table Tab1. Data from NewPersons.csvis then
concatenated to the same Qlik Sense table.

During partial reload, data is loaded from NewPersons.csv and
appended to the Qlik Sense table Tab1. No check for duplicates is
made.

A check for duplicates is made by means of looking if Name exists in
the previously loaded table data.

During normal reload, data is loaded from Persons.csv and stored in
the Qlik Sense table Tab1. Data from NewPersons.csvis then
concatenated to the same Qlik Sense table.

During partial reload, data is loaded from NewPersons.csv which is
appended to the Qlik Sense table Tab1. A check for duplicates is made
by means of seeing if Name exists in the previously loaded table data.

During normal reload, data is loaded from Persons.csv and stored in
the Qlik Sense table Tab1. The statement loading NewPersons.csvis
disregarded.

During partial reload, data is loaded from NewPersons.csv which is
appended to the Qlik Sense table Tab1. A check for duplicates is made
by means of seeing if Name exists in the previously loaded table data.

QVD files can be created and maintained automatically via the buffer prefix. This prefix
can be used on most LOAD and SELECT statements in script. It indicates that QVD files
are used to cache/buffer the result of the statement.

Syntax:
Buffer [(option [, option])] (loadstatement | selectstatement)
option::= incremental | stale [after] amount [(days | hours)]

If no option is used, the QVD buffer created by the first execution of the script will be used

indefinitely.

The buffer file is stored in the Buffers sub-folder, typically
C:\ProgramData|Qlik|\Sense|Engine|Buffers (server installation) or C:|Users|
{user}|Documents|Qlik\Sense|Buffers (Qlik Sense Desktop).

The name of the QVD file is a calculated name, a 160-bit hexadecimal hash of the entire following
LOAD or SELECT statement and other discriminating info. This means that the QVD buffer will be
rendered invalid by any change in the following LOAD or SELECT statement.

Script syntax and chart functions - Qlik Sense, May 2024

38

3 Script statements and keywords

QVD buffers will normally be removed when no longer referenced anywhere throughout a complete
script execution in the app that created it or when the app that created it no longer exists.

Arguments:

Argument

incremental

stale [after]
amount
[(days |
hours)]

Limitations:

Arguments

Description

The incremental option enables the ability to read only part of an
underlying file. Previous size of the file is stored in the XML header
in the QVD file. This is particularly useful with log files. All records
loaded at a previous occasion are read from the QVD file whereas
the following new records are read from the original source and
finally an updated QVD-file is created.

The incremental option can only be used with LOAD statements
and text files. Incremental load cannot be used where old data is
changed or deleted.

amount is a number specifying the time period. Decimals may be
used. The unit is assumed to be days if omitted.

The stale after option is typically used with DB sources where
there is no simple timestamp on the original data. Instead you
specify how old the QVD snapshot can be to be used. A stale after
clause simply states a time period from the creation time of the
QVD buffer after which it will no longer be considered valid. Before
that time the QVD buffer will be used as source for data and after
that the original data source will be used. The QVD buffer file will
then automatically be updated and a new period starts.

Numerous limitations exist, most notable is that there must be either a file LOAD or a SELECT
statement at the core of any complex statement.

Example 1:

Buffer SELECT * from MyTable;

Example 2:

Buffer (stale after 7 days) SELECT * from MyTable;

Example 3:

Buffer (incremental) LOAD * from MyLog.log;

Script syntax and chart functions - Qlik Sense, May 2024 39

3 Script statements and keywords

Concatenate

concatenate iS @ script load prefix that enables a dataset to be appended to an already
existing in-memory table. It is often used to append different sets of transactional data
to a single central fact table, or to build up common reference datasets of a specific
type that originate from multiple sources. It is similar in functionality to a SQL UNION
operator.

The resulting table from a concatenate operation will contain the original dataset with the new rows
of data appended to the bottom of that table. The source and target tables may have different
fields present. Where fields are different, the resulting table will be widened to represent the
combined result of all fields present in both the source table and the target table.

Syntax:
Concatenate|[(tablename)] (loadstatement | selectstatement)
Arguments
Argument Description
tablename The name of an existing table. The named table will be the
target of the concatenate operation and any records of data
loaded will be appended to that table. If the tablename
parameterisn't used, the target table will be the last loaded
table before this statement.
Toadstatement/selectstatement The Toadstatement/selectstatement argument that follows the
tablename argument will be concatenated to the specified
table.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the seT pateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Script syntax and chart functions - Qlik Sense, May 2024 40

3 Script statements and keywords

Function example

Example Result
concatenate The data loaded in the load statement below the concatenate prefix will be
(Transactions)

appended to the existing in-memory table named Transactions (assuming
that a table named Transactions has been loaded prior to this point in the load
script.

Load ... ;

Example 1- Appending multiple sets of data to a target table with
Concatenate load prefix

Load script and results

Overview

In this example you will load two scripts in sequential order.

» The first load script contains an initial dataset with dates and amounts that is sent to a table
named Transactions.

» The second load script contains:

» A second dataset that is appended to the initial dataset by using the concatenate
prefix. This dataset has an additional field, type, that is not in the initial dataset.

* The concatenate prefix.

Open the data load editor and add the load script below to a new tab.
First load script

Transactions:
Load * Inline [

id, date, amount

3750, 08/30/2018, 23.56
3751, 09/07/2018, 556.31
3752, 09/16/2018, 5.75
3753, 09/22/2018, 125.00
3754, 09/22/2018, 484.21
3756, 09/22/2018, 59.18
3757, 09/23/2018, 177.42
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:
e id
e date

e amount

Script syntax and chart functions - Qlik Sense, May 2024 41

3 Script statements and keywords

First load script results table

id

3750
3751
3752
3753
3754
3756
3757

date

08/30/2018
09/07/2018
09/16/2018
09/22/2018
09/22/2018
09/22/2018
09/23/2018

amount
23.56
556.31
5.75
125.00
484.21
59.18
177.42

The table shows the initial dataset.

Second load script

Open the data load editor and add the load script below .

Concatenate(Transactions)

Load * Inline [

id, date, amount,
3758, 10/01/2018,
3759, 10/03/2018,
3760, 10/06/2018,
3761, 10/09/2018,
3762, 10/15/2018,
3763, 10/16/2018,
3764, 10/18/2018,

type
164.27,
384.00,

Internal
External
25.82, Internal
312.00, Internal
4.56, Internal
90.24, Internal
19.32, External

1;

Results

Load the data and go to the sheet. Create this field as a dimension.

e type

Second load script results table

3750
3751
3752
3753
3754
3756

date

08/30/2018
09/07/2018
09/16/2018
09/22/2018
09/22/2018
09/22/2018

amount type
23.56 -
556.31 -
5.75 -
125.00 -
484.21 -

59.18 -

Script syntax and chart functions - Qlik Sense, May 2024 42

3 Script statements and keywords

id date amount type
3757 09/23/2018 177.42 -
3758 10/01/2018 164.27 Internal

3759 10/03/2018 384.00 External

3760 10/06/2018 25.82 Internal
3761 10/09/2018 312.00 Internal
3762 10/15/2018 4.56 Internal
3763 10/16/2018 90.24 Internal
3764 10/18/2018 19.32 External

Note the null values in the type field for the first seven records loaded where type had not been
defined.

Example 2 — Appending multiple sets of data to a target table using implicit
concatenation

Load script and results

Overview

A typical use case for implicitly appending data is when you load several files of identically
structured data and want to append them all to a target table.

For example, by using wildcards in file names with syntax such as:

myTable:
Load * from [myFile_*.qvd] (qvd);

or in loops using constructs such as:

for each file in filelist('myFile_*.qvd')

myTable:
Load * from [$(file)] (qvd);

next file

Implicit concatenation will take place between any two tables that are loaded with
identically named fields, even if they aren't defined after one another in the script. This
can lead to data being unintentionally appended to tables. If you don't want a secondary
table with identical fields to be appended in this way, use the Noconcatenate load prefix.
Renaming the table with an alternate table name tag is not sufficient to prevent implicit
concatenation to occur. For more information, see NoConcatenate (page 89).

In this example you will load two scripts in sequential order.

Script syntax and chart functions - Qlik Sense, May 2024 43

3 Script statements and keywords

» The firstload script contains an initial dataset with four fields that is sent to a table named
Transactions.

» The second load script contains a dataset with the same fields as the first dataset.
Open the data load editor and add the load script below to a new tab.
First load script

Transactions:

Load * InTline [

id, date, amount, type

3758, 10/01/2018, 164.27, Internal
3759, 10/03/2018, 384.00, External
3760, 10/06/2018, 25.82, Internal
3761, 10/09/2018, 312.00, Internal
3762, 10/15/2018, 4.56, Internal
3763, 10/16/2018, 90.24, Internal
3764, 10/18/2018, 19.32, External
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e id
e date
e amount
e type
First load script results table
id date type amount
3758 10/01/2018 Internal 164.27
3759 10/03/2018 External 384.00
3760 10/06/2018 Internal 25.82
3761 10/09/2018 Internal 312.00
3762 10/15/2018 Internal 4.56
3763 10/16/2018 Internal 90.24
3764 10/18/2018 External 19.32
The table shows the initial dataset.
Second load script
Open the data load editor and add the load script below .
Load * InTline [
id, date, amount, type
Script syntax and chart functions - Qlik Sense, May 2024 44

3 Script statements and keywords

3765, 11/03/2018, 129.40, Internal
3766, 11/05/2018, 638.50, External
1;

Results

Load the data and go to the sheet.

Second load script results table

id date type amount
3758 10/01/2018 Internal 164.27
3759 10/03/2018 External 384.00
3760 10/06/2018 Internal 25.82
3761 10/09/2018 Internal 312.00
3762 10/15/2018 Internal 4.56
3763 10/16/2018 Internal 90.24
3764 10/18/2018 External 19.32
3765 11/03/2018 Internal 129.40
3766 11/05/2018 External 638.50

The second dataset was implicitly concatenated onto the initial dataset because they had identical
fields.

Crosstable

The crosstable load prefix is used to transpose “cross table” or “pivot table” structured
data. Data structured this way is commonly encountered when working with
spreadsheet sources. The output and aim of the crosstable load prefix is to transpose
such structures into a regular column-oriented table equivalent, as this structure is
generally better suited for analysis in Qlik Sense.

Script syntax and chart functions - Qlik Sense, May 2024 45

3 Script statements and keywords

Example of data structured as a crosstable and its equivalent structure after a crosstable transformation

DATASETS OPERATION QuUTPUT
Source Table CROSSTABLE Output Table
. —
Area Lisa lames Sharon e Sales Person Target
APAC 1500 1750 1850 APAC i 1500
EMEA 1350 950 2050 APAC e 1750
APAC Sharon 1850
NA 1800 1200 1350
EMEA Lisa 1350
EMEA James 950
EMEA Sharon 2050
NA Lisa 1800
Key
Unchanged dimensions NA James 1200
Dimension attributes
Dimension data MA Sharon 1350
Syntax:
crosstable (attribute field name, data field name [, n]) (loadstatement |
selectstatement)
Arguments
Argument Description
attribute The desired output field name describing the horizontally oriented dimension that
field name is to be transposed (the header row).
data field The desired output field name which describes the horizontally oriented data of
name the dimension that is to be transposed (the matrix of data values beneath the
header row).
n The number of qualifier fields, or unchanged dimensions preceding the table to

be transformed to generic form. The default value is 1.

This scripting function is related to the following functions:

Related functions
Function Interaction
Generic A transformation load prefix which takes an entity-attribute-value structured data

(page 57) set and transforms it into a regular relational table structure, separating each
attribute encountered into a new field or column of data.

Script syntax and chart functions - Qlik Sense, May 2024 46

3 Script statements and keywords

Example 1-Transforming pivoted sales data (simple)

Load scripts and results

Overview

Open the Data load editor and add the first load script below to a new tab.

The first load script contains a dataset to which the crosstable script prefix will be applied later,
with the section applying crosstable commented out. This means that comment syntax was used to
disable this section in the load script.

The second load script is the same as the first, but with the application of crosstable uncommented
(enabled by removing the comment syntax). The scripts are shown this way to highlight the value of
this scripting function in transforming data.

First load script (function not applied)

tmpData:

//Crosstable (MonthText, Sales)

Load * inTline [

Product, Jan 2021, Feb 2021, Mar 2021, Apr 2021, May 2021, Jun 2021
A, 100, 98, 103, 63, 108, 82

B, 284, 279, 297, 305, 294, 292

c, 50, 53, 50, 54, 49, 51];

//Final:

//Load Product,

//Date(Date#(MonthText, '"MMM YYYY'), 'MMM YYYY') as Month,
//Sales

//Resident tmpData;
//Drop Table tmpData;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e Product

e Jan 2021
e Feb 2021
e Mar 2021
e Apr 2021
e May 2021
e Jun 2021

Script syntax and chart functions - Qlik Sense, May 2024 47

3 Script statements and keywords

Results table

Product Jan2021 Feb2021 Mar 2021 Apr2021 May 2021 ;‘(‘)’; :
A 100 98 103 63 108 82

284 279 297 305 294 292
C 50 53 50 54 49 51

This script allows the creation of a crosstable with one column for each month and one row per
product. In its current format, this data is not easy to analyze. It would be much better to have all
numbers in one field and all months in another, in a three-column table. The next section explains
how to do this transformation to the crosstable.

Second load script (function applied)

Uncomment the script by removing the //. The load script should look like this:

tmpData:

Crosstable (MonthText, Sales)

Load * inline [

Product, Jan 2021, Feb 2021, Mar 2021, Apr 2021, May 2021, Jun 2021
A, 100, 98, 103, 63, 108, 82

B, 284, 279, 297, 305, 294, 292

c, 50, 53, 50, 54, 49, 51];

Final:

Load Product,

Date(Date#(MonthText, '"MMM YYYY'),'MMM YYYY') as Month,
Ssales

Resident tmpData;

Drop Table tmpData;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e Product

e Month

e« Sales

Results table

Product Month Sales
A Jan 2021 100
A Feb 2021 98
A Mar 2021 103

Script syntax and chart functions - Qlik Sense, May 2024 48

3 Script statements and keywords

Product Month Sales
A Apr 2021 63
A May 2021 108
A Jun 2021 82
B Jan 2021 284
B Feb 2021 279
B Mar 2021 297
B Apr 2021 305
B May 2021 294
B Jun 2021 292
C Jan 2021 50
C Feb 2021 53
C Mar 2021 50
C Apr 2021 54
C May 2021 49
C Jun 2021 51

Once the script prefix has been applied, the crosstable is transformed into a straight table with one
column for month and another for sales. This improves the readability of the data.

Example 2 — Transforming pivoted sales target data into a vertical table
structure (intermediate)

Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

« A dataset which is loaded into a table named Targets.

» The crosstable load prefix, which transposes the pivoted sales person names into a field of
its own, labeled sales Person.

» The associated sales target data, which is structured into a field called Target.
Load script

SalesTargets:
CROSSTABLE([Sales Person],Target,1)

Script syntax and chart functions - Qlik Sense, May 2024 49

3 Script statements and keywords

LOAD

%

INLINE [

Area, Lisa, James, Sharon
APAC, 1500,
EMEA, 1350,

1750, 1850
950, 2050

NA, 1800, 1200, 1350

1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e Area

e Sales Person

Add this measure:

=Sum(Target)

=sum(Target)
Results table

Area Sales Person

APAC James 1750
APAC Lisa 1500
APAC Sharon 1850
EMEA James 950
EMEA Lisa 1350
EMEA Sharon 2050
NA James 1200
NA Lisa 1800
NA Sharon 1350

If you want to replicate the display of data as the pivoted input table, you can create an equivalent
pivot table in a sheet.

Do the following:

. Copy and paste the table you have just created into the sheet.

1

2. Dragthe Pivot table chart object on top of the newly created table copy. Select Convert.
3. Click ¥ Done editing.
4

Drag the sales person field from the vertical column shelf to the horizontal column shelf.

The following table shows the data in its initial table form, as it is displayed in Qlik Sense:

Script syntax and chart functions - Qlik Sense, May 2024 50

3 Script statements and keywords

Original results table, as shown in Qlik Sense

Area Sales Person =Sum(Target)
Totals - 13800
APAC James 1750
APAC Lisa 1500
APAC Sharon 1850
EMEA James 950
EMEA Lisa 1350
EMEA Sharon 2050
NA James 1200
NA Lisa 1800
NA Sharon 1350

The equivalent pivot table looks similar to the following, with the column for each sales person's
name being contained within the larger row for sales person:

Equivalent pivot table with the sales person
field pivoted horizontally

Area James Lisa Sharon
APAC 1750 1500 1850
EMEA 950 1350 2050
NA 1350 1350 1350

Example of data displayed as a table and an equivalent pivot table with the sales Person field pivoted
horizontally

Table Pivot table
Area Q. Sales Person (Sum{Target
A - L - Area O Sales Person O
Totals 13500
APAC James 1750 -] Li 5
APALC Liza 1500 o _
APAL Sharor 850 ;
EMEA James 850 A
EME Lisa 350
EMES Sharon 2050
James 200
Lisa 1800
Sharon 5

Script syntax and chart functions - Qlik Sense, May 2024 51

3 Script statements and keywords

Example 3 - Transforming pivoted sales and target data into a vertical table
structure (advanced)

Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

» A dataset representing sales and targets data, organized by area and month of the year. This
is loaded into a table called salesandTargets.

* The crosstable load prefix. This is used to unpivot the Mmonth year dimension into a dedicated
field, as well as to transpose the matrix of sales and target amounts into a dedicated field
called amount.

» A conversion of the month vear field from text to a proper date, using the text-to-date

conversion function date#. This date-converted Month vear field is joined back onto the
salesAndTarget table via a Join load prefix.

Load script

SalesAndTargets:

CROSSTABLE (MonthYearAsText,Amount,2)

LOAD

INLINE [

Area Type Jan-22 Feb-22 Mar-22 Apr-22 May-22 3Jun-22 Jul-22 Aug-22 Sep-22 O0ct-22 Nov-22 Dec-22
APAC Target 425 425 425 425 425 425 425 425 425 425 425 425
APAC Actual 435 434 397 404 458 447 413 458 385 421 448 397

EMEA Target 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5 362.5
EMEA Actual 363.5 359.5 337.5 361.5 341.5 337.5 379.5 352.5 327.5 337.5 360.5 334.5
NA Target 375 375 375 375 375 375 375 375 375 375 375 375
NA Actual 378 415 363 356 403 343 401 365 393 340 360 405

1 (deTimiter is "\t');

tmp:
LOAD DISTINCT MonthYearAsText,date#(MonthYearAsText, 'MMM-YY') AS [Month Year]

RESIDENT SalesAndTargets;

JOIN (SalesAndTargets)
LOAD * RESIDENT tmp;

DROP TABLE tmp;
DROP FIELD MonthYearAsText;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 52

3 Script statements and keywords

e Area

e Month Year
Create the following measure, with the label Actual:
=sum({<Type={'Actual'}>} Amount)
Also create this measure, with the label Target:
=sum({<Type={'Target'}>} Amount)

Results table (cropped)

Area Month Year Actual Target
APAC Jan-22 435 425
APAC Feb-22 434 425
APAC Mar-22 397 425
APAC Apr-22 404 425
APAC May-22 458 425
APAC Jun-22 447 425
APAC Jul-22 413 425
APAC Aug-22 458 425
APAC Sep-22 385 425
APAC Oct-22 421 425
APAC Nov-22 448 425
APAC Dec-22 397 425
EMEA Jan-22 363.5 362.5
EMEA Feb-22 359.5 362.5

If you wish to replicate the display of data as the pivoted input table, you can create an equivalent
pivot table in a sheet.

Do the following:

Copy and paste the table you have just created into the sheet.
Drag the Pivot table chart object on top of the newly created table copy. Select Convert.

Click ¥ Done editing.

Drag the month vear field from the vertical column shelf to the horizontal column shelf.

a kr w0 DN =

Drag the values item from the horizontal column shelf to the vertical column shelf.

The following table shows the data in its initial table form, as it is displayed in Qlik Sense:

Script syntax and chart functions - Qlik Sense, May 2024 53

3 Script statements and keywords

Original results table (cropped), as shown in Qlik

Sense

Area Month Year Actual Target
Totals - 13812 13950
APAC Jan-22 435 425
APAC Feb-22 434 425
APAC Mar-22 397 425
APAC Apr-22 404 425
APAC May-22 458 425
APAC Jun-22 447 425
APAC Jul-22 413 425
APAC Aug-22 458 425
APAC Sep-22 385 425
APAC Oct-22 421 425
APAC Nov-22 448 425
APAC Dec-22 397 425
EMEA Jan-22 363.5 362.5
EMEA Feb-22 359.5 362.5

The equivalent pivot table looks similar to the following, with the column for each individual month
of the year being contained within the larger row for month vear:

Equivalent pivot table (cropped) with the Mmonth vear field pivoted horizontally

Area
(Value Jan- Feb- Mar- Apr- Ma Jun- Jul- Au Sep- Oct- No Dec-
s) 22 22 22 22 y-22 22 22 9g-22 22 22 v-22 22

APAC 435 434 397 404 458 447 413 458 385 421 448 397

Actual

APAC 425 425 425 425 425 425 425 425 425 425 425 425

Target

EMEA 363. 359. 337. 361. 341. 337. 379. 352. 327. 337. 360. 334.
- 5 5 5 5 5 5 5 5 5 5 5 5
Actual

Script syntax and chart functions - Qlik Sense, May 2024 54

3 Script statements and keywords

A
(\;ZIaue Jan- Feb- Mar- Apr- Ma Jun- Jul- Au Sep- Oct- No Dec-
5) 22 22 22 22 y-22 22 22 g-22 22 22 v-22 22

EMEA 362. 362. 362. 362. 362. 362. 362. 362. 362. 362. 362. 362

- 5 5 5 5 5 5 5 5 5 5 5 5
Target
NA - 378 415 363 356 403 343 401 365 393 340 360 405
Actual
NA - 375 375 375 375 375 375 375 375 375 375 375 375
Target

Example of data displayed as a table and an equivalent pivot table with the month vear field pivoted
horizontally

Table Pivot table

Area Q Month Year Q

Totals 12
APAC
APAC

APAC

APAC
APAC

APAC oct22
APAC Nov-22

First

The rirst prefix to a Loap or seLect (SQL) statement is used for loading a set maximum
number of records from a data source table. A typical use case for using the rirst prefix
is when you want to retrieve a small subset of records from a large and/or slow data

load step. As soon as the defined “n” number of records has been loaded, the load step
terminates prematurely, and the rest of the script execution continues as normal.

Syntax:
First n (loadstatement | selectstatement)
Arguments
Argument Description
n An arbitrary expression that evaluates to an integer indicating the maximum
number of records to be read. n can also be enclosed in parentheses: (n).
loadstatement | The Toad statement/select statement that follows the n argument will define
selectstatement the specified table that must be loaded with the set maximum number of

records.

Script syntax and chart functions - Qlik Sense, May 2024 55

3 Script statements and keywords

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the seT pateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Function examples

Example Result

FIRST 10 LOAD * from abc.csv; This example will retrieve the first ten lines from an excel file.
FIRST (1) SQL SELECT * from This example will retrieve the first selected line from the
orders; orders dataset.

Example — Load the first five rows

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

» A dataset of dates from the first two weeks of 2020.
» The First variable that instructs the application to only load the first five records.

Load script

Sales:
FIRST 5
LOAD

Inline [
date,sales
01/01/2020,6000
01/02/2020,3000
01/03/2020,6000
01/04/2020,8000
01/05/2020,5000
01/06/2020,7000
01/07/2020,3000
01/08/2020,5000
01/09/2020,9000

Script syntax and chart functions - Qlik Sense, May 2024 56

3 Script statements and keywords

01/10/2020,5000
01/11/2020,7000
01/12/2020,7000
01/13/2020,7000
01/14/2020,7000

1

Results

Load the data and open a sheet. Create a new table and add pate as a field and sum(sales) as a

measure:

Results table

Date

01/01/2020
01/02/2020
01/03/2020
01/04/2020
01/05/2020

sum(sales)

6000
3000
6000
8000
5000

The script only loads the first five records of the sales table.

Generic

The Generic load prefix allows for conversion of entity—attribute-value modeled data
(EAV) into a traditional, normalized relational table structure. EAV modeling is
alternatively referred to as "generic data modeling" or "open schema".

Example of EAV modeled data and an equivalent denormalized relational table

product 1D | Ariowe | value |

13
13
20
13
20

Status
Colour
Colour
Size

Size

Discontinued
mmm

Brown
. —— Discontinued Brown 13-15

White
20 White 16-18

13-15

16-18

Script syntax and chart functions - Qlik Sense, May 2024 57

3 Script statements and keywords

Example of EAV modeled data and an equivalent set of normalized relational tables

produci0 | satun

Status Discontinued /
13 Colour Brown Product ID m
20 Colour White — 13 Brown
13 Size 13-15 \ 20 White
20 Size 16-18

ProductID |Size |

13 13-15
20 16-18

While it is technically possible to load and analyze EAV modeled data in Qlik, it is often easier to
work with an equivalent traditional relational data structure.

Syntax:
Generic(loadstatement | selectstatement)
These topics may help you work with this function:

Related topics
Topic Description

Crosstable The crosstable load prefix transforms data that is horizontally-oriented into

(page 45) vertically-oriented data. From a purely functional perspective, it performs the
opposite transformation to the Generic load prefix, although the prefixes typically
serve entirely different use cases.

Generic EAV structured data models are further described here.
databases in
Manage data

Example 1-Transforming EAV structured data with the Generic load prefix

Load script and chart expression

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, May 2024 58

3 Script statements and keywords

The load script contains a dataset which is loaded into a table named Transactions. The dataset
includes a date field. The default monthNames definition is used.

Load script

Products:

Generic

Load * inTline [

Product ID, Attribute, value
13, Status, Discontinued
13, color, Brown

20, color, Wwhite

13, Size, 13-15

20, size, 16-18

2, Status, Discontinued
5, color, Brown

2, Color, White

44, color, Brown

45, Size, 16-18

45, color, Brown

1;

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: color.

Add this measure:

=Count([Product ID])
Now you can inspect the number of products by color.

Results table

Color =Count([Product ID])
Brown 4
White 2

Note the shape of the data model, where each attribute has been broken out into a separate table
named according to the original target table tag product.Each table has the attribute as a suffix. One
example of this is Product.color. The resulting Product Attribute output records are associated by
the product 1D.

Script syntax and chart functions - Qlik Sense, May 2024 59

3 Script statements and keywords

Data model viewer representation of the results

Preducts.Sire
Products. Status

"'“\\(|y
- L EL LT

|

_|

e

Products.Calour

Resulting table of
records: Products.Status

ProductID Status
13 Discontinued

2 Discontinued

Resulting table of
records: Products.Size

ProductID Size

13 13-15
20 16-18
45 16-18

Resulting table of
records: Products.Color

ProductID Color

13 Brown
5 Brown
44 Brown
45 Brown
20 White
2 White

Script syntax and chart functions - Qlik Sense, May 2024 60

3 Script statements and keywords

Example 2 — Analyzing EAV structured data without the Generic load prefix

Load script and chart expression

Overview

This example shows how to analyze EAV structured data in its original form.
Open the Data load editor and add the load script below to a new tab.
The load script contains a dataset which is loaded into a table named products in an EAV structure.

In this example, we are still counting products by color attribute. In order to analyze data structured
in this way, you will need to apply expression-level filtering of products carrying the Attribute value

color.

Furthermore, individual attributes are not available to select as dimensions or fields, making it
harder to determine how to build effective visualizations.

Load script

Products:

Load * Inline

[

Product ID, Attribute, value
13, Sstatus, Discontinued
13, color, Brown

20, color, white

13, size, 13-15

20, size, 16-18

2, Status, Discontinued
5, Color, Brown

2, Color, White

44, color, Brown

45, size, 16-18

45, color, Brown

1;

Results

Load the data and open a sheet. Create a new table and add this field as a dimension: value.

Create the following measure:

=Count({<Attribute={'Color'}>} [Product ID])

Now you can inspect the number of products by color.

Script syntax and chart functions - Qlik Sense, May 2024 61

3 Script statements and keywords

Resulting table of records: Products.Status

Value =Count({<Attribute={'Color'}>} [Product ID])
Brown 4
White 2

Example 3 — Denormalizing the resulting output tables from a Generic load

(advanced)

Load script and chart expression

Overview

In this example, we show how the normalised data structure produced by the Generic load prefix
can be denormalised back into a consolidated product dimension table. This is an advanced
modeling technique which can be employed as part of data model performance tuning.

Open the Data load editor and add the load script below to a new tab.

Load script
Products:

Generic

Load * inTline [

Product ID, Attribute, value
13, Status, Discontinued
13, color, Brown

20, color, White

13, size, 13-15

20, size, 16-18

2, Status, Discontinued
5, color, Brown

2, Color, White

44, color, Brown

45, size, 16-18

45, color, Brown

1;

RENAME TABLE Products.Color TO Products;

OUTER JOIN (Products)
LOAD * RESIDENT Products.Size;

OUTER JOIN (Products)
LOAD * RESIDENT Products.Status;
DROP TABLES Products.Size,Products.Status;

Script syntax and chart functions - Qlik Sense, May 2024 62

3 Script statements and keywords

Results

Open the Data model viewer and note the shape of the resulting data model. Only one denormalized
table is present. It is a combination of the three intermediary output tables: products.size,
Products.Status, and Products.cColor.

Resulting
internal data
model

Products
Product ID
Status
Color

Size

Resulting table of records: Products

ProductID Status Color Size
13 Discontinued Brown 13-15
20 - White 16-18
2 Discontinued White -

5 - Brown -

44 - Brown -

45 - Brown 16-18

Load the data and open a sheet. Create a new table and add this field as a dimension: color.

Add this measure:

=Count([Product ID])

Results table

Color =Count([Product ID])
Brown 4

White 2
Hierarchy

The hierarchy prefix is used to transform a parent-child hierarchy table to a table that
is useful in a Qlik Sense data model. It can be put in front of a LOAD or a SELECT
statement and will use the result of the loading statement as input for a table

Script syntax and chart functions - Qlik Sense, May 2024 63

3 Script statements and keywords

transformation.

The prefix creates an expanded nodes table, which normally has the same number of records as the
input table, but in addition each level in the hierarchy is stored in a separate field. The path field can
be used in a tree structure.

Syntax:
Hierarchy (NodeID, ParentID, NodeName, [ParentName, [PathSource, [PathName,
[PathDelimiter, Depth]]]]) (loadstatement | selectstatement)

The input table must be an adjacent nodes table. Adjacent nodes tables are tables where each
record corresponds to a node and has a field that contains a reference to the parent node. In such a
table the node is stored on one record only but the node can still have any number of children. The
table may of course contain additional fields describing attributes for the nodes.

The prefix creates an expanded nodes table, which normally has the same number of records as the
input table, but in addition each level in the hierarchy is stored in a separate field. The path field can
be used in a tree structure.

Usually the input table has exactly one record per node and in such a case the output table will
contain the same number of records. However, sometimes there are nodes with multiple parents,
i.e. one node is represented by several records in the input table. If so, the output table may have
more records than the input table.

All nodes with a parent id not found in the node id column (including nodes with missing parent id)
will be considered as roots. Also, only nodes with a connection to a root node - direct or indirect -
will be loaded, thus avoiding circular references.

Additional fields containing the name of the parent node, the path of the node and the depth of the
node can be created.

Arguments:
Arguments

Argument Description

NodelD The name of the field that contains the node id. This field must exist in the
input table.

ParentID The name of the field that contains the node id of the parent node. This field
must exist in the input table.

NodeName The name of the field that contains the name of the node. This field must exist
in the input table.

ParentName A string used to name the new ParentName field. If omitted, this field will not

be created.

Script syntax and chart functions - Qlik Sense, May 2024 64

3 Script statements and keywords

Argument Description

ParentSource The name of the field that contains the name of the node used to build the

node path. Optional parameter. If omitted, NodeName will be used.

PathName A string used to name the new Path field, which contains the path from the
root to the node. Optional parameter. If omitted, this field will not be created.

PathDelimiter A string used as delimiter in the new Path field. Optional parameter. If omitted,

'I" will be used.

Depth A string used to name the new Depth field, which contains the depth of the

node in the hierarchy. Optional parameter. If omitted, this field will not be

created.

Example:

Hierarchy(NodeID, ParentID, NodeName, ParentName, NodeName, PathName,

inline [

NodeID, ParentID, NodeName
1, 4, London

2, 3, Munich

, 5, Germany

, 5, UK

, , Europe

3
4
5
]

Nod Paren NodeN NodeNa

elD tiD ame me1

1 4 London Europe

2 3 Munich Europe

3 5 Germa Europe
ny

4 5 UK Europe

5 Europe Europe

HierarchyBelongsTo

NodeNa
me2

UK

German
y
German
y

UK

NodeNa
me3

London

Munich

ParentN
ame

UK

German
y

Europe

Europe

"\', Depth) LOAD *

PathName

Europe\UK\Lon
don

Europe\German
y\Munich

Europe\German
y

Europe\UK

Europe

Dep
th

This prefix is used to transform a parent-child hierarchy table to a table that is useful in
a Qlik Sense data model. It can be put in front of a LOAD or a SELECT statement and
will use the result of the loading statement as input for a table transformation.

The prefix creates a table containing all ancestor-child relations of the hierarchy. The ancestor

fields can then be used to select entire trees in the hierarchy. The output table in most cases

contains several records per node.

Script syntax and chart functions - Qlik Sense, May 2024

65

3 Script statements and keywords

Syntax:
HierarchyBelongsTo (NodeID, ParentID, NodeName, AncestorID, AncestorName,
[DepthDiff]) (loadstatement | selectstatement)

The input table must be an adjacent nodes table. Adjacent nodes tables are tables where each
record corresponds to a node and has a field that contains a reference to the parent node. In such a
table the node is stored on one record only but the node can still have any number of children. The
table may of course contain additional fields describing attributes for the nodes.

The prefix creates a table containing all ancestor-child relations of the hierarchy. The ancestor
fields can then be used to select entire trees in the hierarchy. The output table in most cases
contains several records per node.

An additional field containing the depth difference of the nodes can be created.

Arguments:
Arguments

Argument Description

NodelD The name of the field that contains the node id. This field must exist in the
input table.

ParentID The name of the field that contains the node id of the parent node. This field
must exist in the input table.

NodeName The name of the field that contains the name of the node. This field must
exist in the input table.

AncestorID A string used to name the new ancestor id field, which contains the id of the

ancestor node.

AncestorName A string used to name the new ancestor field, which contains the name of the
ancestor node.

DepthDiff A string used to name the new DepthDiff field, which contains the depth of
the node in the hierarchy relative the ancestor node. Optional parameter. If
omitted, this field will not be created.

Example:

HierarchyBelongsTo (NodeID, AncestorID, NodeName, AncestorID, AncestorName, DepthDiff) LOAD *
inline [

NodeID, AncestorID, NodeName

1, 4, London

2, 3, Munich

3, 5, Germany
4, 5, UK

5, , Europe

]

Script syntax and chart functions - Qlik Sense, May 2024 66

3 Script statements and keywords

Results

NodelD AncestorlD NodeName AncestorName DepthDiff
1 1 London London 0
1 4 London UK 1
1 5 London Europe 2
2 2 Munich Munich 0
2 3 Munich Germany 1
2 5 Munich Europe 2
3 3 Germany Germany 0
3 5 Germany Europe 1
4 4 UK UK 0
4 5 UK Europe 1
5 5 Europe Europe 0
Inner

The join and keep prefixes can be preceded by the prefix inner. If used before join it
specifies that an inner join should be used. The resulting table will thus only contain
combinations of field values from the raw data tables where the linking field values are
represented in both tables. If used before keep, it specifies that both raw data tables
should be reduced to their common intersection before being stored in Qlik Sense.

Syntax:
Inner (Join | Keep) [(tablename)] (loadstatement |selectstatement)
Arguments:
Arguments

Argument Description

tablename The named table to be compared to the loaded table.

loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.
Example
Load script

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Tablel:
Load * inTline [
columnl, Column2

Script syntax and chart functions - Qlik Sense, May 2024 67

3 Script statements and keywords

B
, aa

, CC
, ee]1;

w N R >

Table2:
Inner Join Load * inline [
columnl, Column3

A, C
1, xx
4, yy 1;
Result

Resulting table
Column1 Column2 Column3
A B C
1 aa XX
Explanation

This example demonstrates the Inner Join output where only values present in both the first (left)
and the second (right) tables are joined.

IntervalMatch

The IntervalMatch prefix is used to create a table matching discrete numeric values to
one or more numeric intervals, and optionally matching the values of one or several
additional keys.

Syntax:

IntervalMatch (matchfield) (loadstatement | selectstatement)
IntervalMatch (matchfield,keyfieldl [, keyfield2, ... keyfield5])
(loadstatement | selectstatement)

The IntervalMatch prefix must be placed before a LOAD or a SELECT statement that loads the
intervals. The field containing the discrete data points (Time in the example below) and additional
keys must already have been loaded into Qlik Sense before the statement with the IntervalMatch
prefix. The prefix does not by itself read this field from the database table. The prefix transforms
the loaded table of intervals and keys to a table that contains an additional column: the discrete
numeric data points. It also expands the number of records so that the new table has one record
per possible combination of discrete data point, interval and value of the key field(s).

The intervals may be overlapping and the discrete values will be linked to all matching intervals.

When the IntervalMatch prefix is extended with key fields, it is used to create a table matching
discrete numeric values to one or more numeric intervals, while at the same time matching the
values of one or several additional keys.

Script syntax and chart functions - Qlik Sense, May 2024 68

3 Script statements and keywords

In order to avoid undefined interval limits being disregarded, it may be necessary to allow NULL
values to map to other fields that constitute the lower or upper limits to the interval. This can be
handled by the NullAsValue statement or by an explicit test that replaces NULL values with a
numeric value well before or after any of the discrete numeric data points.

Arguments:
Arguments
Argument Description
matchfield The field containing the discrete numeric values to be linked to intervals.
keyfield Fields that contain the additional attributes that are to be matched in the
transformation.
loadstatement Must result in a table, where the first field contains the lower limit of each

orselectstatement interval, the second field contains the upper limit of each interval, and in the

case of using key matching, the third and any subsequent fields contain the
keyfield(s) present in the IntervalMatch statement. The intervals are
always closed, i.e. the end points are included in the interval. Non-numeric
limits render the interval to be disregarded (undefined).

Example 1:

In the two tables below, the first one lists a number of discrete events and the second one defines
the start and end times for the production of different orders. By means of the IntervalMatch prefix
it is possible to logically connect the two tables in order to find out e.g. which orders were affected
by disturbances and which orders were processed by which shifts.

EventLog:

LOAD *

Inline [

Time, Event, Comment

00:
01:

02

1;

00,
18,

123,
04:
08:
11:

15,
00,
43,

0, Start of shift 1
1, Line stop

2, Line restart 50%
3, Line speed 100%
4, Start of shift 2
5, End of production

orderLog:

LOAD *

Start,

01:
02:
03:
07:

1;

00,
30,
04,
23,

INLINE [
End, oOrder
03:35, A
07:58, B
10:27, ¢
11:43, D

//Link the field Time to the time intervals defined by the fields Start and End.
Inner Join IntervalMatch (Time)

LOAD Start, End

Resident OrderLog;

Script syntax and chart functions - Qlik Sense, May 2024 69

3 Script statements and keywords

The table OrderLog contains now an additional column: Time. The number of records is also

expanded.

Table with additional column

Time
00:00
01:18
02:23
04:15
04:15
08:00
08:00
11:43

Start

01:00
01:00
02:30
03:04
03:04
07:23
07:23

End
03:35
03:35
07:58
10:27
10:27
11:43
11:43

Example 2: (using keyfield)

Order

g o O O wW » >

Same example than above, adding ProductionLine as a key field.

EventLog:

LOAD * Inline [

Time, Event, Comment,
00:00, 0, start of shift 1, Pl
01:00, 0, start of shift 1, P2

01:18,
02:23,
04:15,

09:00,
11:43,
11:43,
1;

orderLog:

1, Line stop, P1

2, Line restart 50%, P1

3, Line speed 100%, Pl
08:00, 4, start of shift 2, Pl

4

5

5

LOAD * INLINE [

Start, End, Order, ProductionLine

01:00, 03:35, A, P1

02:30, 07:58,
03:04, 10:27,
07:23, 11:43,
1;

B, Pl
c, P1
D, P2

, Start of shift 2, P2
, End of production, P1
, End of production, P2

ProductionLine

//Link the field Time to the time intervals defined by the fields Start and End and match the

values

// to the key ProductionLine.

Inner Join

IntervalMatch (Time,
LOAD Start, End, ProductionLine
Resident OrderLog;

ProductionLine)

Script syntax and chart functions - Qlik Sense, May 2024 70

3 Script statements and keywords

A table box could now be created as below:

Tablebox example

ProductionLine Time Event Comment Order Start End
P1 00:00 0 Start of shift 1 - - -
P2 01:00 0 Start of shift 1 - - -
P1 01:18 1 Line stop A 01:00 03:35
P1 02:23 2 Line restart A 01:00 03:35
50%
P1 04:15 3 Line speed B 02:30 07:58
100%

P1 04:15 3 Line speed C 03:04 10:27
100%

P1 08:00 4 Start of shift 2 C 03:04 10:27

P2 09:00 4 Start of shift 2 D 07:23 11:43

P1 11:43 5 End of - - -
production

P2 11:43 5 End of D 07:23 11:43
production

Join

The join prefix joins the loaded table with an existing named table or the last previously
created data table.

The effect of joining data is to extend the target table by an additional set of fields or attributes,
namely ones not already present in the target table. Any common field names between the source
data set and the target table are used to work out how to associate the new incoming records. This
is commonly referred to as a “natural join”. A Qlik join operation can lead to the resulting target table
having more or fewer records than it started with, depending on the uniqueness of the join
association and the type of join employed.

There are four types of joins:

Left join

Left joins are the most common join type. For example, if you have a transaction data set and would
like to combine it with a reference data set, you would typically use a Left Join. You would load the
transaction table first, then load the reference data set while joining it via a Left Join prefix onto the
already loaded transaction table. A Left Join would keep all transactions as-is and add on the
supplementary reference data fields where a match is found.

Script syntax and chart functions - Qlik Sense, May 2024 71

3 Script statements and keywords

Inner join

When you have two data sets where you only care about any results where there is a matching
association, consider using an Inner 3Join. This will eliminate all records from both the source data
loaded and the target table if no match is found. As a result, this may leave your target table with
fewer records than before the join operation took place.

Outer join

When you need to keep both the target records and all of the incoming records, use an outer 3Join.
Where no match is found, each set of records is still kept while the fields from the opposite side of
the join will remain unpopulated (null).

If the type keyword is omitted, the default join type is an outer join.
Right join

This join type keeps all the records about to be loaded, while reducing the records in the table
targeted by the join to only those records where there is an association match in the incoming
records. This is a niche join type that is sometimes used as a means of trimming down an already
pre-loaded table of records to a required subset.

Example results sets from different types of join operations

DATASETS OPERATION OUTPUT

Target Table LEFT JOIN TadelD |AssetClass | |
Trade ID AssetClass | — 101533 Fixed Income LSE

101533 Fixed Income 606601 Commodities

606601 Commodities
LUCPCUN TradeD |Assetclass | |
— 101533 Fixed Income LSE

Incoming Dataset mm-

QUTER JOIN 101533 Fixed Income LSE
m — 606601 Commeodities
101533 LSE 78053 Hong Kong
79052 Hong Kong
RIGHT JOIN Trade D |AssetClass | |
— 101533 Fixed Income LSE
79052 Hong Kong

If there are no field names in common between the source and target of a join operation,
the join will result in a cartesian product of all rows — this is called a “cross join”.

Script syntax and chart functions - Qlik Sense, May 2024 72

3 Script statements and keywords

Example result set from a "cross join" operation

DATASETS OPERATION QUTPUT

Target Table

e I o o el
101533 EUR 1250

606601 EUR 1650 101533 EUR 1250 usD 1.08
101533 EUR 1250 GBP 0.84
606601 EUR 1650 usD 1.08
Incoming Dataset 606601 EUR 1650 GBP 0.84
Target Currency |Rate |
usD 1.08
GBP 0.84
Syntax:
[inner | outer | left | right]Join [(tablename)] (loadstatement |
selectstatement)
Arguments
Argument Description
tablename The named table to be compared to the loaded table.
loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.

These topics may help you work with this function:

Related topics

Topic Description

Combining tables This topic provides further explanation of the concepts of “joining” and
with Join and “keeping” data sets.

Keep in Manage

data

Keep (page 81) The keep load prefix is similar to the Join prefix, but it does not combine the
source and target datasets. Instead, it trims each dataset according to the
type of operation adopted (inner, outer, left, or right).

Script syntax and chart functions - Qlik Sense, May 2024 73

3 Script statements and keywords

Example 1 - Left join: Enriching a target table with a reference data set

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

« A dataset representing change records, which is loaded into a table named changes. It
includes a Status ID key field.

« A second dataset representing change statuses, which is loaded and combined with the
original change records by joining it with a left J0in load prefix.

This left join ensures that the change records remain intact while adding on status attributes where
a match in the incoming status records is found based on a common Status ID.

Load script

Changes:

Load * inTline [

Change 1ID Status ID Scheduled Start Date Scheduled End Date Business Impact
10030 4 19/01/2022 23/02/2022 None
10015 3 04/01/2022 15/02/2022 Low
10103 1 02/04/2022 29/05/2022 Med1ium
10185 2 23/06/2022 08/09/2022 None
10323 1 08/11/2022 26/11/2022 High
10326 2 11/11/2022 05/12/2022 None
10138 2 07/05/2022 03/08/2022 None
10031 3 20/01/2022 25/03/2022 Low
10040 1 29/01/2022 22/04/2022 None
10134 1 03/05/2022 08/07/2022 Low
10334 2 19/11/2022 06/02/2023 Low
10220 2 28/07/2022 06/09/2022 None
10264 1 10/09/2022 17/10/2022 Med1ium
10116 1 15/04/2022 24/04/2022 None
10187 2 25/06/2022 24/08/2022 Low

] (delimiter is '\t');

Status:
Left Join (Changes)
Load * inTline [

Status ID Status Sub Status
1 Open Not Started

2 Open Started

3 Closed Completed

4 Closed cCancelled

5 Closed Obsolete

] (deTimiter is '\t');

Script syntax and chart functions - Qlik Sense, May 2024 74

3 Script statements and keywords

Results

Open the Data model viewer and note the shape of the data model. Only one denormalized table is
present. It is a combination of all the original change records, with the matching status attributes
joined onto each change record.

Resulting internal data
model

Changes

Change ID

Status ID

Scheduled Start Date
Scheduled End Date
Business Impact
Status

Sub Status

If you expand the preview window in the Data model viewer, you will see a portion of this full result
set organized into a table:

Preview of Changes table in the Data model viewer

Change Status Scheduled Scheduled Business Status Sub Status
ID ID Start Date End Date Impact

10030 4 19/01/2022 23/02/2022 None Closed Cancelled
10031 3 20/01/2022 25/03/2022 Low Closed Completed
10015 3 04/01/2022 15/02/2022 Low Closed Completed
10103 1 02/04/2022 29/05/2022 Medium Open Not Started
10116 1 15/04/2022 24/04/2022 None Open Not Started
10134 1 03/05/2022 08/07/2022 Low Open Not Started
10264 1 10/09/2022 17/10/2022 Medium Open Not Started
10040 1 29/01/2022 22/04/2022 None Open Not Started
10323 1 08/11/2022 26/11/2022 High Open Not Started
10187 2 25/06/2022 24/08/2022 Low Open Started
10185 2 23/06/2022 08/09/2022 None Open Started
10220 2 28/07/2022 06/09/2022 None Open Started
10326 2 11/11/2022 05/12/2022 None Open Started
Script syntax and chart functions - Qlik Sense, May 2024 75

3 Script statements and keywords

h hedul hedul Busi
Change Status Scheduled Scheduled usiness Status Sub Status

ID ID Start Date End Date Impact
10138 2 07/05/2022 03/08/2022 None Open Started
10334 2 19/11/2022 06/02/2023 Low Open Started

Since the fifth row in the Status table (Status ID: '5', Status: 'Closed’, Sub Status: '‘Obsolete') does
not correspond to any of the records in the Changes table, the information in this row does not
appear in the result set above.

Return to the Data load editor. Load the data and open a sheet. Create a new table and add this
field as a dimension: status.

Add this measure:

=Count([Change ID])
Now you can inspect the number of Changes by Status.

Results table

Status =Count([Change ID])
Open 12
Closed 3

Example 2 —Inner join: Combining matching records only

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

» A dataset representing change records, which is loaded into a table named changes.

« A second dataset representing change records originating from the source system 11rA.This
is loaded and combined with the original records by joining it with an Inner 3oinload prefix.

This Inner Join ensures that only the five change records which are found in both datasets are
kept.

Load script

Changes:

Load * inline [

Change 1ID Status ID Scheduled start Date Scheduled End Date Business Impact
10030 4 19/01/2022 23/02/2022 None

10015 3 04/01/2022 15/02/2022 Low

10103 1 02/04/2022 29/05/2022 Medium

Script syntax and chart functions - Qlik Sense, May 2024 76

3 Script statements and keywords

10185 2 23/06/2022 08/09/2022 None
10323 1 08/11/2022 26/11/2022 High
10326 2 11/11/2022 05/12/2022 None
10138 2 07/05/2022 03/08/2022 None
10031 3 20/01/2022 25/03/2022 Low
10040 1 29/01/2022 22/04/2022 None
10134 1 03/05/2022 08/07/2022 Low
10334 2 19/11/2022 06/02/2023 Low
10220 2 28/07/2022 06/09/2022 None
10264 1 10/09/2022 17/10/2022 Med1ium
10116 1 15/04/2022 24/04/2022 None
10187 2 25/06/2022 24/08/2022 Low

] (delimiter is '\t');

JIRA_changes:

Inner Join (Changes)

Load
[Ticket ID] AS [Change ID],
[Source System]

inTline

[

Ticket ID Source System

10000 3JIRA

10030 JIRA

10323 JIRA

10134 JIRA

10334 JIRA

10220 3JIRA

20000 TFS

] (deTimiter is '"\t');

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e Source System
e Change ID

e Business Impact

Now you can inspect the five resulting records. The resultant table from an Inner Join will only
include records with matching information in both datasets.

Results table

Source System Change ID Business Impact

JIRA 10030 None
JIRA 10134 Low
JIRA 10220 None
JIRA 10323 High
JIRA 10334 Low

Script syntax and chart functions - Qlik Sense, May 2024 77

3 Script statements and keywords

Example 3 — Outer join: Combining overlapping record sets

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

» A dataset representing change records, which is loaded into a table named changes.

» A second dataset representing change records originating from the source system j1ra,
which is loaded and combined with the original records by joining it with an outer Joinload

prefix.

This ensures that all the overlapping change records from both datasets are kept.

Load script

// 8 Change records

Changes:

Load * inTline [

Change 1ID Status ID Scheduled Start Date
10030 4 19/01/2022 23/02/2022 None
10015 3 04/01/2022 15/02/2022 Low
10138 2 07/05/2022 03/08/2022 None
10031 3 20/01/2022 25/03/2022 Low
10040 1 29/01/2022 22/04/2022 None
10134 1 03/05/2022 08/07/2022 Low
10334 2 19/11/2022 06/02/2023 Low
10220 2 28/07/2022 06/09/2022 None

] (deTimiter is '\t');
// 6 Change records

JIRA_changes:

outer Join (Changes)

Load
[Ticket ID] AS [Change ID],
[Source System]

inTline

[

Ticket ID Source System

10030 JIRA

10323 JIRA

10134 JIRA

10334 JIRA

10220 3JIRA

10597 JIRA

] (deTimiter is '\t');

Scheduled End Date

Business Impact

Script syntax and chart functions - Qlik Sense, May 2024

78

3 Script statements and keywords

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e Source System
e Change ID

e Business Impact

Now you can inspect the 10 resulting records.

Results table

Source System ChangeID Business Impact

JIRA 10030 None
JIRA 10134 Low
JIRA 10220 None
JIRA 10323 -
JIRA 10334 Low
JIRA 10597 -

- 10015 Low
- 10031 Low
- 10040 None
- 10138 None

Example 4 — Right join: Trimming down a target table by a secondary master
dataset

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

» A dataset representing change records, which is loaded into a table named changes.

» A second dataset representing change records originating from the source system Teamwork.
This is loaded and combined with the original records by joining it with a Right Joinload
prefix.

This ensures that only Teamwork change records are kept, while not losing any Teamwork records if the
target table does not have a matching change 1D.

Script syntax and chart functions - Qlik Sense, May 2024 79

3 Script statements and keywords

Load script
Changes:

Load * inline [

Change 1ID Status ID Scheduled start Date Scheduled End Date Business Impact
10030 4 19/01/2022 23/02/2022 None
10015 3 04/01/2022 15/02/2022 Low
10103 1 02/04/2022 29/05/2022 Medium
10185 2 23/06/2022 08/09/2022 None
10323 1 08/11/2022 26/11/2022 High
10326 2 11/11/2022 05/12/2022 None
10138 2 07/05/2022 03/08/2022 None
10031 3 20/01/2022 25/03/2022 Low
10040 1 29/01/2022 22/04/2022 None
10134 1 03/05/2022 08/07/2022 Low
10334 2 19/11/2022 06/02/2023 Low
10220 2 28/07/2022 06/09/2022 None
10264 1 10/09/2022 17/10/2022 Medium
10116 1 15/04/2022 24/04/2022 None
10187 2 25/06/2022 24/08/2022 Low

] (delimiter is '\t');

Teamwork_changes:

Right Join (Changes)

Load
[Ticket ID] ASs [Change ID],
[Source Ssystem]

inTline

[

Ticket ID Source System

10040 Teamwork

10015 Teamwork

10103 Teamwork

10031 Teamwork

50231 Teamwork

1 (delimiter is '\t');

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e Source System
e Change ID

e Business Impact

Now you can inspect the five resulting records.

Script syntax and chart functions - Qlik Sense, May 2024 80

3 Script statements and keywords

Results table

Source System ChangeID Business Impact

Teamwork 10015 Low

Teamwork 10031 Low

Teamwork 10040 None

Teamwork 10103 Medium

Teamwork 50231 -
Keep

The keep prefix is similar to the join prefix. Just as the join prefix, it compares the loaded table with
an existing named table or the last previously created data table, but instead of joining the loaded
table with an existing table, it has the effect of reducing one or both of the two tables before they
are stored in Qlik Sense, based on the intersection of table data. The comparison made is
equivalent to a natural join made over all the common fields, i.e. the same way as in a corresponding
join. However, the two tables are not joined and will be kept in Qlik Sense as two separately named
tables.

Syntax:
(inner | left | right) keep [(tablename)](loadstatement | selectstatement

)

The keep prefix must be preceded by one of the prefixes inner, left or right.

The explicit join prefix in Qlik Sense script language performs a full join of the two tables. The result
is one table. In many cases such joins will result in very large tables. One of the main features of Qlik
Sense is its ability to make associations between multiple tables instead of joining them, which
greatly reduces memory usage, increases processing speed and offers enormous flexibility. Explicit
joins should therefore generally be avoided in Qlik Sense scripts. The keep functionality was
designed to reduce the number of cases where explicit joins needs to be used.

Arguments:
Arguments
Argument Description
tablename The named table to be compared to the loaded table.
loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.
Example:

Inner Keep LOAD * from abc.csv;
Left Keep SELECT * from tablel;
tabl:

LOAD * from filel.csv;

tab2:

Script syntax and chart functions - Qlik Sense, May 2024 81

3 Script statements and keywords

LOAD * from file2.csv;

Left Keep (tabl) LOAD * from file3.csv;

Left

The Join and Keep prefixes can be preceded by the prefix left.

If used before join it specifies that a left join should be used. The resulting table will only contain
combinations of field values from the raw data tables where the linking field values are represented
in the first table. If used before keep, it specifies that the second raw data table should be reduced
to its common intersection with the first table, before being stored in Qlik Sense.

Were you looking for the string function by the same name? See: Left (page 1464)

Syntax:
Left (Join | Keep) [(tablename)] (loadstatement | selectstatement)
Arguments:
Arguments

Argument Description

tablename The named table to be compared to the loaded table.

loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.
Example
Load script

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Tablel:

Load * inline [
columnl, Column2
A, B

1, aa

2, cc

3, ee];

Table2:

Left Join Load * inline [
columnl, Column3

A, C

1, xx

4, yy 1;

Script syntax and chart functions - Qlik Sense, May 2024 82

3 Script statements and keywords

Result
Resulting table

Columni Column2 Column3
A B C

1 aa XX

2 cc -

3 ee -
Explanation

This example demonstrates the Left Join output where only values present in the first (left) table
are joined.

Mapping
The mapping prefix is used to create a mapping table that can be used to, for example,
replacing field values and field names during script execution.

Syntax:
Mapping (loadstatement | selectstatement)

The mapping prefix can be put in front of a LOAD or a SELECT statement and will store the result of
the loading statement as a mapping table. Mapping provides an efficient way to substituting field
values during script execution, e.g. replacing US, U.S. or America with USA. A mapping table
consists of two columns, the first containing comparison values and the second containing the
desired mapping values. Mapping tables are stored temporarily in memory and dropped
automatically after script execution.

The content of the mapping table can be accessed using e.g. the Map ... Using statement, the
Rename Field statement, the Applymap() function or the Mapsubstring() function.

Example:

In this example we load a list of salespersons with a country code representing their country of
residence. We use a table mapping a country code to a country to replace the country code with the
country name. Only three countries are defined in the mapping table, other country codes are
mapped to ‘Rest of the world'.

// Load mapping table of country codes:
mapl:

mapping LOAD *

Inline [

CCode, Country

Sw, Sweden

Dk, Denmark

No, Norway

1;

Script syntax and chart functions - Qlik Sense, May 2024 83

3 Script statements and keywords

// Load 1ist of salesmen, mapping country code to country
// If the country code is not in the mapping table, put Rest of the world
Salespersons:

LOAD *,

ApplyMap('mapl', CCode, 'Rest of the world') As Country
Inline [

CCode, Salesperson

Sw, John

Sw, Mary

Sw, Per

Dk, Preben

Dk, ol1le

No, Ole

sf, Risttu] ;

// We don't need the CCode anymore

Drop Field 'CCode';

The resulting table looks like this:

Mapping table

Salesperson Country

John Sweden

Mary Sweden

Per Sweden

Preben Denmark

Olle Denmark

Ole Norway

Risttu Rest of the world

Merge

The Merge prefix can be added to any LOAD or SELECT statement in the script to
specify that the loaded table should be merged into another table. It also specifies that
this statement should be run in a partial reload.

The typical use case is when you load a change log and want to use this to apply inserts, updates,
and deletes to an existing table.

For partial reload to work properly, the app must be opened with data before a partial
reload is triggered.

Perform a partial reload using the Reload button. You can also use the Qlik Engine JSON API.

Syntax:
Merge [only] [(SequenceNoField [, SequenceNoVar])] On ListOfKeys [Concatenate
[(TableName)]] (loadstatement | selectstatement)

Script syntax and chart functions - Qlik Sense, May 2024 84

3 Script statements and keywords

Arguments:
Arguments

Argument Description

only An optional qualifier denoting that the statement should be
executed only during partial reloads. The statement is
disregarded during normal (non-partial) reloads.

SequenceNoField The name of the field containing a timestamp or a sequence
number that defines the order of the operations.

SequenceNoVar The name of the variable that gets assigned the maximum value
for SequenceNoField of the table being merged.

ListOfKeys A comma separated list of field names specifying the primary
key.

Operation The first field of the load statement must contain the operation
as a text string: 'Insert’, 'Update’, or 'Delete'. ‘', ‘U’ and ‘d’ are also
accepted.

General functionality

During a normal (non-partial) reload, the Merge LOAD construction works as a normal Load
statement but with the additional functionality of removing older obsolete records and records
marked for deletion. The first field of the Load statement must hold information about the
operation: Insert, Update, or Delete.

For each loaded record, the record identifier is compared with previously loaded records, and only
the latest record (according to the sequence number) will be kept. If the latest record is marked
with Delete, none will be kept.

Target table

Which table to modify is determined by the set of fields. If a table with the same set of fields (except
the first field; the operation) already exists, this will be the relevant table to modify. Alternatively, a
Concatenate prefix can be used to specify the table. If the target table is not determined, the result
of the Merge LOAD construction is stored in a new table.

If the Concatenate prefix is used, the resulting table has a set of fields corresponding to the union
of the existing table and the input to the merge. Hence, the target table may get more fields than
the change log that is used as input to the merge.

A partial reload does the same as a full reload. One difference is that a partial reload rarely creates a
new table. Unless you have used the Only clause, a target table with the same set of fields from the
previous script execution always exists.

Script syntax and chart functions - Qlik Sense, May 2024 85

3 Script statements and keywords

Sequence number

If the loaded change log is an accumulated log, that is, it contains changes that already have been
loaded, the parameter SequenceNoVar can be used in a Where clause to limit the amount of input
data. The Merge LOAD could then be made to only load records where the field SequenceNoField
is greater than SequenceNoVar. Upon completion, the Merge LOAD assigns a new value to the
SequenceNoVar with the maximum value seen in the SequenceNoField field.

Operations

The Merge LOAD can have fewer fields than the target table. The different operations treat missing
fields differently:

Insert: Fields missing in the Merge LOAD, but existing in the target table, get a NULL in the target
table.

Delete: Missing fields do not affect the result. The relevant records are deleted anyway.

Update: Fields listed in the Merge LOAD are updated in the target table. Missing fields are not
changed. This means that the two following statements are not identical:

» Merge on Key Concatenate Load 'U' as Operation, Key, F1, Null() as F2 From ...;
» Merge on Key Concatenate Load 'U' as Operation, Key, F1From ...;

The first statement updates the listed records and changes F2 to NULL. The second does not
change F2, but instead, leaves the values in the target table.

Examples

Example 1: Simple merge with specified table

In this example, an inline table named Persons is loaded with three rows. Merge then changes the
table as follows:

e Addstherow, Mary, 4 .
* Deletes the row, Steven, 3.
e Assigns the number 5to Jake.

The LastChangeDate variable is set to the maximum value in the ChangeDate column after Merge is
executed.

Load script

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Set DateFormat='D/M/YYYY';
Persons:

load * inTline [

Name, Number

Jake, 3

Jil11, 2

Steven, 3

Script syntax and chart functions - Qlik Sense, May 2024 86

3 Script statements and keywords

1;

Merge (ChangeDate, LastChangeDate) on Name Concatenate(Persons)
LOAD * inTline [

Operation, ChangeDate, Name, Number
Insert, 1/1/2021, Mary, 4
Delete, 1/1/2021, Steven,

Update, 2/1/2021, Jake, 5

1;

Result

Prior to the Merge Load, the resulting table appears as follows:

Resulting table

Name Number
Jake 3
Jill 2
Steven 3

Following the Merge Load, the table appears as follows:

Resulting table

ChangeDate Name Number
2/1/2021 Jake 5
- Jill 2
1/1/2021 Mary 4

When the data is loaded, the Data load progress dialog box shows the operations that are
performed:

Data load progress dialog box

Script syntax and chart functions - Qlik Sense, May 2024 87

3 Script statements and keywords

Data load progress

Data losd Is complete

Example 2: Data load script with missing fields

In this example, the same data as above is loaded, but now with an ID for each person.
Merge changes the table as follows:

e Addstherow, Mary, 4.

» Deletes the row, Steven, 3.

e Assigns the number 5to Jake.
» Assigns the number 6to Jill.

Load script

Here we use two Merge Load statements, one for ‘Insert’ and ‘Delete’, and a second one for the
‘Update’.

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Set DateFormat='D/M/YYYY';
Persons:

Load * Inline [

PersonID, Name, Number

1, Jake, 3

2, Jil1, 2

3, Steven, 3

Script syntax and chart functions - Qlik Sense, May 2024 88

3 Script statements and keywords

1;

Merge (ChangeDate, LastChangeDate) on PersonID Concatenate(Persons)
Load * InTline [

Operation, ChangeDate, PersonID, Name, Number
Insert, 1/1/2021, 4, Mary, 4
Delete, 1/1/2021, 3, Steven,

1;

Merge (ChangeDate, LastChangeDate) on PersonID Concatenate(Persons)
Load * InTline [

Operation, ChangeDate, PersonID, Number
Update, 2/1/2021, 1, 5
Update, 3/1/2021, 2, 6

1;

Result

Following the Merge Load statements, the table appears as follows:

Resulting table

PersoniD ChangeDate Name Number
1 2/1/2021 Jake 5
2 3/1/2021 Jill 6
4 1/1/2021 Mary 4

Note that the second Merge statement does not include the field Name, and as a consequence, the
names have not been changed.

Example 3: Data load script - Partial reload using a Where-clause with
ChangeDate

In the following example, the Only argument specifies that the Merge command is only executed
during a partial reload. Updates are filtered based on the previously captured LastChangeDate.
After Merge is finished, LastChangeDate variable is assigned the maximum value of the
ChangeDate column processed during the merge.

Load script

Merge Only (ChangeDate, LastChangeDate) on Name Concatenate(Persons)
LOAD Operation, ChangeDate, Name, Number

from [1ib://ChangeFilesFolder/BulkChangesInPersonsTable.csv] (txt)
where ChangeDate >='§$(LastChangeDate)';

NoConcatenate

The NoConcatenate prefix forces two loaded tables with identical field sets to be
treated as two separate internal tables, when they would otherwise be automatically
concatenated.

Syntax:
NoConcatenate (loadstatement | selectstatement)

Script syntax and chart functions - Qlik Sense, May 2024 89

3 Script statements and keywords

By default, if a table is loaded that contains an identical number of fields and matching field names
to a table loaded earlier in the script, Qlik Sense will auto concatenate these two tables. This will
happen even if the second table is named differently.

However, if the script prefix Noconcatenate is included before the load statement or select statement
of the second table, then these two tables will be loaded separately.

A typical use case for Noconcatenate is when you may need to create a temporary copy of a table to
perform some temporary transformations on that copy, while retaining a copy of the original data.
NoConcatenate ensures that you can make that copy without implicitly adding it back onto the source
table.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the seT pateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Function example

Example Result
source: LOAD A,B from A table with A and B as measures is loaded. A second table with the
filel.csv; same fields is loaded separately by using the Noconcatenate
CopyofSource: ariable

v .

NoConcatenate LOAD A,B
resident Source;

Example 1-Implicit concatenation

Load script and results

Overview

In this example, you will add two load scripts in sequential order.
Open the Data load editor and add the load script below to a new tab.
The load script contains:

* Aninitial dataset with dates and amounts that is sent to a table named Transactions.

Script syntax and chart functions - Qlik Sense, May 2024 90

3 Script statements and keywords

First loa

Transact
LOAD

Inline [
id, date
1, 08/30
, 09/07
, 09/16
, 09/22
, 09/22
, 09/22
, 09/23

—_ N OV WN

Results

d script

jons:

, amount
/2018, 23.56
/2018, 556.31
/2018, 5.75
/2018, 125.00
/2018, 484.21
/2018, 59.18
/2018, 177.42

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e id

e date

e amount

id
1

N O g B~ W DN

Second

First results table

date

08/30/2018
09/07/2018
09/16/2018
09/22/2018
09/22/2018
09/22/2018
09/23/2018

load script

amount
23.56
556.31
5.75
125.00
484.21
59.18
177.42

Open the Data load editor and add the load script below to a new tab.

The load script contains:

* A second dataset with identical fields is sent to a table named sales.

Sales:
LOAD

Inline [
id, date

, amount

8, 10/01/2018, 164.27

Script syntax and chart functions - Qlik Sense, May 2024 91

3 Script statements and keywords

9, 10/03/2018,
10/06/2018, 25.82
10/09/2018, 312.00
10/15/2018, 4.56
10/16/2018, 90.24
10/18/2018, 19.32

10,
11,
12,
13,
14,
1;

Results

384.00

Load the data and go to the table.

id

© 0 N O g b~ W N -

S N G
w N = O

14

date
08/30/2018
09/07/2018
09/16/2018
09/22/2018
09/22/2018
09/22/2018
09/23/2018
10/01/2018
10/03/2018
10/06/2018
10/09/2018
10/15/2018
10/16/2018
10/18/2018

Second results table

amount
23.56
556.31
5.75
125.00
484.21
59.18
177.42
164.27
384.00
25.82
312.00
4.56
90.24
19.32

When the script runs, the sales table is implicitly concatenated onto the existing Transactions table
due to the two datasets sharing an identical number of fields, with identical field names. This
happens despite the second table name tag attempting to name the result set ‘sales’.

You can see that the Sales dataset is implicitly concatenated by looking at the Data load progress

log.

Script syntax and chart functions - Qlik Sense, May 2024 92

3 Script statements and keywords

Data load progress log showing Transactions data being implicitly concatenated.

Data load progress

Data load is complete.

Started loading data

App saved
Finished successfully

~lose when successfully finished Close

Example 2 — Use case scenario

Load script and results

Overview

In this use case scenario you have:

< Atransactions dataset with:

e id

e date

* amount (in GBP)
» A currency table with:

» Conversion rates for USD to GBP
» A second transactions dataset with:

e id

Script syntax and chart functions - Qlik Sense, May 2024 93

3 Script statements and keywords

date
amount (in USD)

You will load five scripts in sequential order.

The first load script contains an initial dataset with dates and amounts in GBP that is sentto a
table named Transactions.
The second load script contains:
« A second dataset with dates and amounts in USD that is sent to a table named
Transactions_in_usD.
* The noconcatenate prefix which is placed before the load statement of the
Transactions_in_usb dataset to prevent implicit concatenation.
The third load script contains the join prefix which will be used create a currency exchange
rate between GBP and USD in the Transactions_in_usp table.
The fourth load script contains the concatenate prefix which will add the Transactions_in_usp
to the initial Transactions table.

The fifth load script contains the drop table statement which will remove the Transactions_
in_usb table its data has been concatenated to the Transactions table.

First load script

Transactions:

Load * Inline [

id, date, amount

1, 12/30/2018, 23.56

2, 12/07/2018, 556.31
12/16/2018, 5.75
12/22/2018, 125.00
12/22/2018, 484.21

12/23/2018, 177.42

3,
4,
5,
6, 12/22/2018, 59.18
7,
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

id
1
2

id
date

amount

First load script results
date amount

12/30/2018 23.56
12/07/2018 556.31

Script syntax and chart functions - Qlik Sense, May 2024 94

3 Script statements and keywords

id date amount
3 12/16/2018 5.75

4 12/22/2018 125.00
5 12/22/2018 484.21
6 12/22/2018 59.18

7 12/23/2018 177.42

The table shows the initial dataset with amounts in GBP.
Second load script

Transactions_in_uUsD:
NoConcatenate

Load * InTline [

id, date, amount

8, 01/01/2019, 164.27
9, 01/03/2019, 384.00
10, 01/06/2019, 25.82
11, 01/09/2019, 312.00
12, 01/15/2019, 4.56
13, 01/16/2019, 90.24
14, 01/18/2019, 19.32
1;

Results

Load the data and go to the table.

Second load script results
id date amount

12/30/2018 23.56

—_

2 12/07/2018 556.31
3 12/16/2018 5.75

4 12/22/2018 125.00
5 12/22/2018 484.21
6 12/22/2018 59.18
7 12/23/2018 177.42
8 01/01/2019 164.27
9 01/03/2019 384.00
10 01/06/2019 25.82
1" 01/09/2019 312.00

Script syntax and chart functions - Qlik Sense, May 2024 95

3 Script statements and keywords

id date amount
12 01/15/2019 4.56

13 01/16/2019 90.24
14 01/18/2019 19.32

You will see that the second dataset from the Transactions_in_usb table has been added.

Third load script

This load script joins a currency exchange rate from USD to GBP to the Transactions_in_usp table.

Join (Transactions_in_usD)
Load * InTline [

rate

0.7

1;

Results

Load the data and go to the Data model viewer. Select the Transactions_in_usb table and you will
see that every existing record has a 'rate' field value of 0.7.

Fourth load script

Using resident load, this load script will concatenate the Transactions_in_usp table to the
Transactions table after converting the amounts into USD.

Concatenate (Transactions)
LOAD

id,

date,

amount * rate as amount
Resident Transactions_in_USD;

o

Results

Load the data and go to the table. You will see new entries with amounts in GBP from lines eight to
fourteen.

Fourth load script results
id date amount
12/30/2018 23.56
12/07/2018 556.31
12/16/2018 5.75
12/22/2018 125.00

—_

A W N

Script syntax and chart functions - Qlik Sense, May 2024 96

3 Script statements and keywords

id date amount
5 12/22/2018 484.21

6 12/22/2018 59.18

7 12/23/2018 177.42

8 01/01/2019 114.989
8 01/01/2019 164.27

9 01/03/2019 268.80

9 01/03/2019 384.00

10 01/06/2019 18.074
10 01/06/2019 25.82
1" 01/09/2019 218.40
1 01/09/2019 312.00
12 01/15/2019 3.192
12 01/15/2019 4.56
13 01/16/2019 63.168
13 01/16/2019 90.24
14 01/18/2019 13.524
14 01/18/2019 19.32

Fifth load script

This load script will drop the duplicate entries from the fourth load script results table, leaving only
entries with amounts in GBP.

drop tables Transactions_in_USD;

Results

Load the data and go to the table.

Fifth load script results

id date amount
1 12/30/2018 23.56

2 12/07/2018 556.31
3 12/16/2018 5.75

4 12/22/2018 125.00
5 12/22/2018 484.21

Script syntax and chart functions - Qlik Sense, May 2024 97

3 Script statements and keywords

id date amount
6 12/22/2018 59.18

7 12/23/2018 177.42
8 01/01/2019 114.989

9 01/03/2019 268.80
10 01/06/2019 18.074
1 01/09/2019 218.40
12 01/15/2019 3.192

13 01/16/2019 63.168
14 01/18/2019 13.524

After loading the fifth load script, the results table shows all fourteen transactions that existed in
both transaction datasets; however, transactions 8-14 have had their amounts converted to GBP.

If we remove the Noconcatenate prefix that was used before the Transactions_in_usp in the second
load script, the script will fail with the error:“Table 'Transactions_in_usp' not found”. This is because
the Transactions_in_usp table would have been auto concatenated onto the original Transactions
table.

Only

The Only script keyword is used as an aggregation function, or as part of the syntax in partial reload
prefixes Add, Replace, and Merge.

Outer

The explicit Join prefix can be preceded by the prefix Outer to specify an outer join. In an outer join,
all combinations between the two tables are generated. The resulting table will thus contain
combinations of field values from the raw data tables where the linking field values are represented
in one or both tables. The Outer keyword is optional and is the default join type used when a join
prefix is not specified.

Syntax:
Outer Join [(tablename)] (loadstatement |selectstatement)
Arguments:
Arguments
Argument Description
tablename The named table to be compared to the loaded table.
loadstatement or selectstatement The LOAD or SELECT statement for the loaded table.

Script syntax and chart functions - Qlik Sense, May 2024 98

3 Script statements and keywords

Example

Load script

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Tablel:

Load * inTline [
columnl, Column2
A, B

1, aa

2, cc
3, ee];

Table2:
outer Join Load * inline [
columnl, Column3

A, C
1, xx
4, yy 1;
Resulting table
Column1 Column2 Column3
A B C
1 aa XX
2 cc -
3 ee -
4 - yy
Explanation

In this example, the two tables, Table1 and Table2, are merged into a single table labeled Table1. In
cases like this, the outer prefix is often used to join several tables into a single table to perform
aggregations over the values of a single table.

Partial reload

A full reload always starts by deleting all tables in the existing data model, and then
runs the load script.

A partial reload will not do this. Instead it keeps all tables in the data model and then executes only
Load and Select statements preceded by an Add, Merge, or Replace prefix. Other data tables are
not affected by the command. The only argument denotes that the statement should be executed
only during partial reloads, and should be disregarded during full reloads. The following table
summarizes statement execution for partial and full reloads.

Script syntax and chart functions - Qlik Sense, May 2024 99

3 Script statements and keywords

Partial
Statement Full reload

reload
Load ... Statement will run Statement

will not run
Add/Replace/Merge Load ... Statement will run Statement

will run
Add/Replace/Merge Only Load ... Statement will not run Statement

will run

Partial reloads have several benefits compared to full reloads:

» Faster, because only data recently changed needs to be loaded. With large data sets the
difference is significant.

* Less memory is consumed, because less data is loaded.

» More reliable, because queries to source data run faster, reducing the risk of network
problems.

For partial reload to work properly, the app must be opened with data before a partial
reload is triggered.

Perform a partial reload using the Reload button. You can also use the Qlik Engine JSON API.

Limitations

A partial reload will fail if there are commands with references to tables that existed during full
reload, but not during partial reload.

Example

Example commands

LEFT JOIN(<Table_removed_after_full_reload>)
CONCATENATE (<Table_removed_after_full_reload>)

Where <Table_removed_after_full_reload> is a table that existed in full reload, but not in partial
reload.

Workaround

As a workaround you can surround the command with following if-statement:

IF NOT IsPartialReload() THEN ... ENDIF.

A partial reload can remove values from the data. However, this will not be reflected in the list of
distinct values, which is a table maintained internally. So, after a partial reload, the list will contain all
distinct values that have existed in the field since the last full reload, which may be more than what
currently exists after the partial reload. This affects the output of the FieldValueCount() and the
FieldValue() functions. The FieldValueCount() could potentially return a number greater than the
current number of field values.

Script syntax and chart functions - Qlik Sense, May 2024 100

3 Script statements and keywords

Example
Example 1

Load script
Add the example script to your app and do a partial reload. To see the result, add the fields listed in
the results column to a sheet in your app.

T1:
Add only Load distinct recno()+10 as Num autogenerate 10;

Result
Resulting table

Num Count(Num)

L 1

12 1

13 1

14 1

15 1

16 1

17 1

18 1

19 1

20 1
Explanation

The statement is only executed during a partial reload. If the "distinct" prefix is omitted, the count of
the Num field will increase with each subsequent partial reload.

Example 2

Load script

Add the example script to your app. Do a full reload and view the result. Next, do a partial reload
and view the result. To see the results, add the fields listed in the results column to a sheet in your
app.

T1:
Load recno() as ID, recno() as Value autogenerate 10;

T1:
Replace only Load recno() as ID, repeat(recno(),3) as value autogenerate 10;

Script syntax and chart functions - Qlik Sense, May 2024 101

3 Script statements and keywords

Result
Output table after full reload
ID Value

—_

1

© 00 N o o b w N
© 00 N o o b w N

—_
o
_
o

Output table after partial reload
ID Value

—_

m
222
333
444
555
666
777
888
999
101010

© 00 N o g b w N

—_
o

Explanation

The first table is loaded during a full reload and the second table simply replaces the first table
during a partial reload.

Replace

The Replace script keyword is used as a string function, or as a prefix in partial reload.

Script syntax and chart functions - Qlik Sense, May 2024 102

3 Script statements and keywords

Replace

The Replace prefix can be added to any LOAD or SELECT statement in the script to specify that the
loaded table should replace another table. It also specifies that this statement should be runin a
partial reload. The Replace prefix can also be used in a Map statement.

For partial reload to work properly, the app must be opened with data before a partial
reload is triggered.

Perform a partial reload using the Reload button. You can also use the Qlik Engine JSON API.

Syntax:
Replace [only] [Concatenate[(tablename)]] (loadstatement | selectstatement)

Replace [only] mapstatement

During a normal (non-partial) reload, the Replace LOAD construction will work as a normal LOAD
statement but be preceded by a Drop Table. First the old table will be dropped, then records will be
generated and stored as a new table.

If the Concatenate prefix is used, or if there exists a table with the same set of fields, this will be the
relevant table to drop. Otherwise, there is no table to drop and the Replace LOAD construction will
be identical to a normal LOAD.

A partial reload will do the same. The only difference is that there is always a table from the
previous script execution to drop. The Replace LOAD construction will always first drop the old
table, then create a new one.

The Replace Map...Using statement causes mapping to take place also during partial script
execution.

Arguments:
Arguments
Argument Description
only An optional qualifier denoting that the statement should be executed only during

partial reloads. It should be disregarded during normal (non-partial) reloads.

Examples and results:
Example Result

Tabl: During both normal and partial reload, the Qlik Sense table Tab1 is initially

Replace LOAD ™ y105ned. Thereafter new data is loaded from Filel.csv and stored in Tab1.
from Filel.csv;

Script syntax and chart functions - Qlik Sense, May 2024 103

3 Script statements and keywords

Example

Tabl:
Replace only
LOAD * from
Filel.csv;

Tabl:

LOAD a,b,c from
Filel.csv;
Replace LOAD
a,b,c from
File2.csv;

Tabl:

LOAD a,b,c from
Filel.csv;
Replace only
LOAD a,b,c from
File2.csv;

Right

Result

During normal reload, this statement is disregarded.

During partial reload, any Qlik Sense table previously named Tab1 is initially
dropped. Thereafter new data is loaded from File1.csv and stored in Tab1.

During normal reload, the file File1.csv is first read into the Qlik Sense table
Tab1, but then immediately dropped and replaced by new data loaded from
File2.csv. All data from File1.csv is lost.

During partial reload, the entire Qlik Sense table Tab1 is initially dropped.
Thereafteritis replaced by new data loaded from File2.csv.

During normal reload, data is loaded from File1l.csv and stored in the Qlik
Sense table Tab1. File2.csv is disregarded.

During partial reload, the entire Qlik Sense table Tab1 is initially dropped.
Thereafteritis replaced by new data loaded from File2.csv. All data from
Filel.csv is lost.

The Join and Keep prefixes can be preceded by the prefix right.

If used before join it specifies that a right join should be used. The resulting table will only contain
combinations of field values from the raw data tables where the linking field values are represented
in the second table. If used before keep, it specifies that the first raw data table should be reduced
to its common intersection with the second table, before being stored in Qlik Sense.

Were you looking for the string function by the same name? See: Right (page 1473)

Syntax:
Right

Arguments:

Argument

tablename

loadstatement or selectstatement

(Join | Keep)

[(tablename)] (loadstatement |selectstatement)

Arguments

Description
The named table to be compared to the loaded table.

The LOAD or SELECT statement for the loaded table.

Script syntax and chart functions - Qlik Sense, May 2024

104

3 Script statements and keywords

Example

Load script

Add the example script to your app and run it. To see the result, add the fields listed in the results
column to a sheet in your app.

Tablel:

Load * inTline [
columnl, Column2
A, B

1, aa

2, cc
3, ee];

Table2:
Right Join Load * inline [
columnl, Column3

A, C
1, xx
4, yy 1;
Result

Resulting table
Column1 Column2 Column3
A B C
1 aa XX
4 - yy
Explanation

This example demonstrates the Right Join output where only values present in the second (right)
table are joined.

Sample

The sample prefix to a LOAD or SELECT statement is used for loading a random
sample of records from the data source.

Syntax:

Sample p (loadstatement | selectstatement)

The expression that is evaluated does not define the percentage of records from the dataset that
will be loaded into the Qlik Sense application, but the probability of each record that is read to be
loaded into the application. In other words, specifying a value p = 0.5 does not mean that 50% of
the total number of records will be loaded, but instead that for each record there will be a 50%
chance that it is loaded into the Qlik Sense application.

Script syntax and chart functions - Qlik Sense, May 2024 105

3 Script statements and keywords

Arguments

Argument Description

p An arbitrary expression which valuates to a number larger than 0 and lower or
equal to 1. The number indicates the probability for a given record to be read.

All records will be read but only some of them will be loaded into Qlik Sense.

When to use it

Sample is useful when you would like to sample data coming from a large table, to understand the
nature of data, distribution or field contents. As it brings a subset of data, the data loads are faster,
allowing faster testing of scripts. Unlike First, the sample function brings data from the whole table,
instead of being limited to the first few rows. This can provide a more accurate representation of
the data in some cases.

The following examples show two possible uses of the sample script prefix:

SampTle 0.15 SQL SELECT * from Longtable;
SampTle(0.15) LOAD * from Longtab.csv;

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the seT pateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1-Sample from an inline table

Load script and results

Overview

In this example, the script loads a sample set of data from a dataset containing seven records into a
table named Transactions from an inline table.

Load script

Transactions:
SAMPLE 0.3
LOAD

o

Inline [

Script syntax and chart functions - Qlik Sense, May 2024 106

3 Script statements and keywords

id, date, amount
1, 08/30/2018, 23.56
2, 09/07/2018, 556.31
3, 09/16/2018, 5.75
4, 09/22/2018, 125.00
5, 09/22/2018, 484.21
6, 09/22/2018, 59.18
7, 09/23/2018, 177.42
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:
e id
e amount
Add the following the measure:
=sum(amount) 8
Results table
id date =Sum(amount)
2 09/07/2018 556.31
4 09/22/2018 125
1 08/30/2018 23.56
3 09/16/2018 5.75

In the iteration of the load used in this example, all seven records were read, but only four records
were loaded into the data table. Any re-run load could result in a different number, and a different
set of records being loaded into the application.

Example 2 — Sample from an autogenerated table

Load script and results

Overview

In this example, using Autogenerate, a dataset of 100 records is created with the fields date, id, and
amount. However, the sample prefix is used, with a value of 0.1.

Load script

SampleData:

Sample 0.1

LOAD

RecNo() AS 1id,

MakeDate (2013, Ceil(Rand() * 12), cCeil(Rand() * 29)) as date,
Rand() * 1000 AS amount

Script syntax and chart functions - Qlik Sense, May 2024 107

3 Script statements and keywords

Autogenerate(100);

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:
e id

e amount

Add the following the measure:
Results table
id date =Sum(amount)
48 9/28/2013 763
20 5/15/2013 752
19 11/8/2013 657
25 3/24/2013 522
27 8/23/2013 389
81 6/1/2013 53
100 8/15/2013 17

In the iteration of the load used in this example, seven records were loaded from the created
dataset. Once again, any re-run load could result in a different number, and a different set of
records being loaded into the application.

Semantic

The semantic load prefix creates a special type of field that can be used in Qlik Sense to
connect and manage relational data, such as tree structures, self-referencing parent-
child structured data and/or data that can be described as a graph.

Note that the semantic load can function similarly to the Hierarchy (page 63) and
HierarchyBelongsTo (page 65) prefixes. All three prefixes can be used as building
blocks in effective front-end solutions for traversing relational data.

Syntax:

Semantic (loadstatement | selectstatement)

A semantic load expects an input that is exactly three or four fields wide with a strict definition of
what each ordered field represents, as shown in the table below:

Script syntax and chart functions - Qlik Sense, May 2024 108

3 Script statements and keywords

Semantic load fields

Field
Field description

nhame

1st This tag is a representation of the first of two objects between which there is a

Field: relationship.

2nd This tag will be used to describe the “forward” relationship between the first and

Field: second object. If the first object is a child and the second object is a parent, you can
create a relationship tab that states “parent” or “parent of” as if you are following the
relationship from child to parent.

3rd This tag is a representation of the second of two objects between which there is a

Field: relationship.

4th This field is optional. This tag describes the “backward” or “inverse” relationship

Field: between the first and second object. If the first object is a child and the second object

is a parent, a relationship tab could state “child” or “child of” as if you are following the
relationship from parent to child. If you do not add a fourth field, then the second field
tag will be used to describe the relationship in either direction. In that case, an arrow
symbol is automatically added as part of the tag.

The following code is an example of the semantic prefix.

Semantic

Load

Object,

‘Parent’ AS Relationship,
Neighbouringobject AS Object,
‘Child’ AS Relationship

from graphdata.csv;

It is allowed and typical practice to label the third field the same as the first field. This
creates a self-referencing lookup, so that you can follow object(s) to the related object
(s) one relationship step away at a time. If the 3rd field does not carry the same name,
then the end result will be a simple lookup from an object(s) to its direct relational
neighbor(s) one step away only, which is an output of little practical use.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the seT pateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the

Script syntax and chart functions - Qlik Sense, May 2024 109

3 Script statements and keywords

Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Related functions

Functions Interaction

Hierarchy (page 63) The Hierarchy load prefix is used to divide and organize nodes in
parent-child and other graph-like data structures and transform them
into tables.

HierarchyBelongsTo The HierarchyBelongsTo load prefix is used to locate and organize the

(page 65) ancestors of parent-child and other graph-like data structures and

transform them into tables.

Example - Creating a special field for connecting relationships using the
semantic prefix

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

» A dataset representing geography relation records which is loaded into a table named
GeographyTree.

» Each entry has an ID at the beginning of the line and a ParentID at the end of the line.
* The semantic prefix which will add one special behavior field labeled, rReTation.

Load script

GeographyTree:
LOAD
D,
Geography,
if(ParentID="",nul1(),ParentID) AS ParentID

INLINE [
ID,Geography,ParentID
1,world
2,Europe,1
3,Asia,l

4,North America,l
5,South America,l
6,UK,2
7,Germany, 2
8,Sweden, 2
9,South Korea,3
10,North Korea,3

Script syntax and chart functions - Qlik Sense, May 2024 110

3 Script statements and keywords

11,china,3
12,London, 6
13,Birmingham, 6
1;

SemanticTable:
Semantic Load
ID as ID,
'Parent' as Relation,
ParentID as ID,
'Child' as Relation
resident GeographyTree;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions.

e Id

e Geography

Then, create a filter pane with relation as a dimension. Click Done editing.

Results table

Id Geography

1 World

2 Europe

3 Asia

4 North America

5 South America

6 UK

7 Germany

8 Sweden

9 South Korea

10 North Korea

1 China

12 London

13 Birmingham
Filter pane

Relation

Child

Parent

Script syntax and chart functions - Qlik Sense, May 2024 M

3 Script statements and keywords

Click Europe from the Geography dimension in the table and click Child from the relation dimension
in the filter pane. Note the expected result in the table:

Results table showing
“children" of Europe

Id Geography

6 UK
7 Germany
8 Sweden

Clicking Child again will show places that are "children" of the UK, one step further down.

Results table showing
“children" of UK

Id Geography
12 London

13 Birmingham

Unless

The unless prefix and suffix is used for creating a conditional clause which determines
whether a statement or exit clause should be evaluated or not. It may be seen as a
compact alternative to the full if..end if statement.

Syntax:
(Unless condition statement | exitstatement Unless condition)
The statement or the exitstatement will only be executed if condition is evaluated to False.

The unless prefix may be used on statements which already have one or several other statements,
including additional when or unless prefixes.

Arguments
Argument Description
condition A logical expression evaluating to True or False.
statement Any Qlik Sense script statement except control statements.

exitstatement An exit for, exit do or exit sub clause or an exit script statement.

When to use it

The unless statement returns a Boolean result. Typically, this type of function will be used as a
condition when the user would like to conditionally load or exclude parts of the script.

The following lines show three examples of how the unless function may be used:

exit script unless A=1;
unless A=1 LOAD * from myfile.csv;

Script syntax and chart functions - Qlik Sense, May 2024 12

3 Script statements and keywords

unless A=1 when B=2 drop table Tabl;

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the seT pateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1-Unless prefix

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

» The creation of variable A, which is given a value of 1.
+ A dataset which is loaded into a table named Transactions, unless the variable A = 2.

Load script
LET A = 1;
UNLESS A = 2

Transactions:
LOAD

Inline [

id, date, amount

1, 08/30/2018, 23.56
, 09/07/2018, 556.31
, 09/16/2018, 5.75

, 09/22/2018, 125.00
, 09/22/2018, 484.21
, 09/22/2018, 59.18
, 09/23/2018, 177.42

—_ g OV WN

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 113

3 Script statements and keywords

e id
e date

e amount

Results table

id date

08/30/2018
09/07/2018
09/16/2018
09/22/2018
09/22/2018
09/22/2018
09/23/2018

—_

N o o b~ w N

amount
23.56
556.31
5.75
125.00
484.21
59.18
177.42

Because the variable A is assigned the value of 1 at the start of the script, the condition following
the unless prefix is evaluated, returning a result of FALSE. As a result, the script continues to run the
Load statement. In the results table, all the records from the Transactions table can be seen.

If this variable value is set to equal to 2, no data will be loaded into the data model.

Example 2 — Unless suffix

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script starts by loading an initial dataset into a table named Transactions. The script is then
terminated unless there are less than 10 records in the Transactions table.

If this condition does not result in a termination of the script, a further set of transactions is
concatenated into the Transactions table and this process is repeated.

Load script

Transactions:

LOAD

Inline [

id, date, amount

1, 08/30/2018, 23.56
2, 09/07/2018, 556.31
3, 09/16/2018, 5.75
4, 09/22/2018, 125.00
5, 09/22/2018, 484.21

Script syntax and chart functions - Qlik Sense, May 2024 114

3 Script statements and keywords

6, 09/22/2018, 59.18
7, 09/23/2018, 177.42
1;

exit script unless NoOfRows('Transactions') < 10 ;

Concatenate

LOAD

Inline [

id, date, amount

8, 10/01/2018, 164.27
9, 10/03/2018, 384.00
10, 10/06/2018, 25.82
11, 10/09/2018, 312.00
12, 10/15/2018, 4.56
13, 10/16/2018, 90.24
14, 10/18/2018, 19.32
1;

exit script unless NoOfRows('Transactions') < 10 ;

Concatenate

LOAD

Inline [

id, date, amount

15, 10/01/2018, 164.27
16, 10/03/2018, 384.00
17, 10/06/2018, 25.82
18, 10/09/2018, 312.00
19, 10/15/2018, 4.56
20, 10/16/2018, 90.24
21, 10/18/2018, 19.32
1;

exit script unless NoOfRows('Transactions') < 10 ;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e id
e date
e amount
Results table
id date amount
1 08/30/2018 23.56

Script syntax and chart functions - Qlik Sense, May 2024 115

3 Script statements and keywords

id date amount
2 09/07/2018 556.31
3 09/16/2018 5.75

4 09/22/2018 125.00
5 09/22/2018 484.21
6 09/22/2018 59.18
7 09/23/2018 177.42
8 10/01/2018 164.27
9 10/03/2018 384.00
10 10/06/2018 25.82
1 10/09/2018 312.00
12 10/15/2018 4.56
13 10/16/2018 90.24

14 10/18/2018 19.32

There are seven records in each of the three datasets of the load script.

The first dataset (with transaction id 1 through 7) is loaded into the application. The unless
condition evaluates whether there are less than 10 rows in the Transactions table. This evaluates to
TRUE, and therefore the second dataset (with transaction id 8 through 14) is loaded into the
application. The second unless condition evaluates if there are less than 10 records in the
Transactions table. This evaluates to FALSE, and so the script terminates.

Example 3 — Multiple Unless prefixes

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

In this example, a dataset containing one transaction is created as a table called Transactions. A 'for'
loop is then triggered, in which two nested unless statements evaluate:

1. Unless there are more than 100 records in the Transactions table
2. Unless the number of records in the Transactions table is a multiple of 6

If these conditions are FALSE, a further seven records are generated and concatenated onto the
existing Transactions table. This process is repeated until one of the two transactions returns a
value of TRUE.

Script syntax and chart functions - Qlik Sense, May 2024 116

3 Script statements and keywords

Load script

Transactions:
Load

0 as id
Autogenerate 1;

For i = 1 to 100
unless NoOfRows('Transactions') > 100 unless mod(NoOfRows('Transactions'),6) = 0
Concatenate
Load
if(isnull(Peek(id)),1,peek(id)+1) as id
Autogenerate 7;
next i

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:id.

Results table
id
0
1

2
3
4
5
+30 more rows

The nested unless statements that occur in the 'for' loop evaluate the following:

1. Are there more than 100 rows in the Transactions table?
2. lIs the total number of records in the Transactions table a multiple of 6?

Whenever both unless statements return a value of FaLsk, a further seven records are generated
and concatenated onto the existing Transactions table.

These statements return a value of FaLsE five times, at which point there are a total of 36 rows of
datain the Transactions table.

After this, the second unless statement returns a value of TrRuE, and therefore the load statement
following this will no longer be executed.

Script syntax and chart functions - Qlik Sense, May 2024 117

3 Script statements and keywords

When

The when prefix and suffix is used for creating a conditional clause which determines
whether a statement or exit clause should be executed or not. It may be seen as a
compact alternative to the full if..end if statement.

Syntax:
(when condition statement | exitstatement when condition)

Return data type: Boolean

In Qlik Sense, the Boolean true value is represented by -1, and the false value is represented by 0.
The statement or the exitstatement will only be executed if condition is evaluated to TRUE.

The when prefix may be used on statements which already have one or several other statements,
including additional when or unless prefixes.

When to use it

The when statement returns a Boolean result. Typically, this type of function will be used as a
condition when the user would like to load or exclude parts of a script.

Arguments
Argument Description
condition A logical expression evaluating to TRUE or FALSE
statement Any Qlik Sense script statement except control statements.

exitstatement An exit for, exit do or exit sub clause or an exit script statement.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the seT pateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Script syntax and chart functions - Qlik Sense, May 2024 118

3 Script statements and keywords

Function examples

Example Result
exit script when A=1; \When the statement a=1 is evaluated to be TRUE, the script will stop.

when A=1 LOAD * from \When the statement A=1is evaluated to be TRUE, the myfile.csv will be
myfile.csv; loaded.

when A=1 unless B=2 When the statement a=1 is evaluated to be TRUE, and if B=2 is evaluated
drop table Tabl; to be FALSE, than the Tab1 table will be dropped.

Example 1-When prefix

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

+ A dataset with dates and amounts that is sent to a table named ‘Transactions’.
* The Let statement which states that the variable a is created and has the value of 1.

» The when condition which provides the condition that if A equals 1, then the script will continue
to load.

Load script
LET A = 1;
WHEN A = 1

Transactions:

LOAD

Inline [

id, date, amount

1, 08/30/2018, 23.56
, 09/07/2018, 556.31
, 09/16/2018, 5.75

, 09/22/2018, 125.00
, 09/22/2018, 484.21
, 09/22/2018, 59.18
, 09/23/2018, 177.42

—_ N O VT A WN

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 119

3 Script statements and keywords

e id
e date

e amount

Results table

id date amount

—_

08/30/2018 23.56
09/07/2018 556.31
09/16/2018 5.75
09/22/2018 125.00
09/22/2018 484.21
09/22/2018 59.18

N o O A W DN

09/23/2018 177.42

Because the variable a is assigned the value of 1 at the start of the script, the condition following the
when prefix is evaluated and returns a result of TRUE. Because it returns a TRUE result, the script
continues to run the load statement. All the records from the results table can be seen.

If this variable value was set to any value not equal to 1, no data would be loaded into the data
model.

Example 2 — When suffix

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

e Three datasets with dates and amounts that are sent to a table named ‘Transactions’.
» The first dataset contains transactions 1-7.
« The second dataset contains transactions 8-14.
e The third dataset contains transactions 15-21.

¢ Awhen condition which determines whether the ‘Transactions’ table contains more than ten
rows. If any of the when statements are evaluated to be TRUE, the load script will stop. This
condition is placed at the end of each of the three datasets.

Load script

Transactions:
LOAD

Inline [

Script syntax and chart functions - Qlik Sense, May 2024 120

3 Script statements and keywords

id, date, amount

1, 08/30/2018, 23.56
2, 09/07/2018, 556.31
3, 09/16/2018, 5.75
4, 09/22/2018, 125.00
5, 09/22/2018, 484.21
6, 09/22/2018, 59.18
7, 09/23/2018, 177.42
]

bl
exit script when NoOfRows('Transactions') > 10 ;

Concatenate

LOAD

Inline [

id, date, amount

8, 10/01/2018, 164.27
9, 10/03/2018, 384.00
10, 10/06/2018, 25.82
11, 10/09/2018, 312.00
12, 10/15/2018, 4.56
13, 10/16/2018, 90.24
14, 10/18/2018, 19.32
1;

exit script when NoOfRows('Transactions') > 10 ;

Concatenate

LOAD

Inline [

id, date, amount

15, 10/01/2018, 164.27
16, 10/03/2018, 384.00
17, 10/06/2018, 25.82
18, 10/09/2018, 312.00
19, 10/15/2018, 4.56
20, 10/16/2018, 90.24
21, 10/18/2018, 19.32
1;

exit script when NoOfRows('Transactions') > 10 ;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:
e id
e date

e amount

Script syntax and chart functions - Qlik Sense, May 2024 121

3 Script statements and keywords

Results table

id date amount

08/30/2018 23.56

—_

2 09/07/2018 556.31
3 09/16/2018 5.75

4 09/22/2018 125.00
5 09/22/2018 484.21
6 09/22/2018 59.18
7 09/23/2018 177.42
8 10/01/2018 164.27
9 10/03/2018 384.00
10 10/06/2018 25.82
1" 10/09/2018 312.00
12 10/15/2018 4.56
13 10/16/2018 90.24

14 10/18/2018 19.32

There are seven transactions in each of the three datasets. The first dataset contains transaction 1-
7 and is loaded into the application. The when condition following this load statement is evaluated as
FALSE because there are less than ten rows in the ‘Transactions’ table. The load script continues to

the next dataset.

The second dataset contains transaction 8-14 and is loaded into the application. The second when
condition evaluates as TRUE because there are more than ten rows in the ‘Transactions’ table.
Therefore, the script terminates.

Example 3 — Multiple When prefixes

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

« A dataset containing a single transaction is created as a table called 'Transactions’.

» A For loop which is triggered contains two nested when conditions which evaluate whether:
1. There are less than 100 records in the 'Transactions' table.
2. The number of records in the 'Transactions' table is not a multiple of 6.

Script syntax and chart functions - Qlik Sense, May 2024 122

3 Script statements and keywords

Load script

RowsCheck = NoOfRows('Transactions') < 100 or mod(NoOfRows('Transactions'),6) <> 0;
Transactions:
Load
0 as id
Autogenerate 1;
For i = 1 to 100
when (RowsCheck)
Concatenate
Load
ifCisnull(Peek(id)),1,peek(id)+1) as id
Autogenerate 7;
next i

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:
e id

The results table only shows the first five transaction IDs but the load script creates 36 rows and
then terminates once the when condition is fulfilled.

Results table
id
0
1

2
3
4
5
+30 more rows

The nested when conditions in the For loop evaluate the following questions:

e Are there less than 100 rows in the 'Transactions' table?
* Is the total number of records in the 'Transactions' table not a multiple of six?

Whenever both when conditions return a value of TRUE, a further seven records are generated and
concatenated onto the existing ‘Transactions’ table.

The when conditions return a TRUE value five times. At that point there are a total of 36 rows of data
in the ‘Transactions’ table.

When 36 rows of data are created in the 'Transactions' table, the second when statement returns a
value of FALSE and therefore the load statement following this will no longer be executed.

Script syntax and chart functions - Qlik Sense, May 2024 123

3 Script statements and keywords

3.3 Scriptregular statements

Regular statements are typically used for manipulating data in one way or another. These
statements may be written over any number of lines in the script and must always be terminated by
a semicolon, ";".

All script keywords can be typed with any combination of lower case and upper case characters.
Field and variable names used in the statements are however case sensitive.

Script regular statements overview

Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

Alias
The alias statement is used for setting an alias according to which a field will be renamed whenever
it occurs in the script that follows.

Alias fieldname as aliasname {,fieldname as aliasname}

Autonumber
This statement creates a unique integer value for each distinct evaluated value in a field
encountered during the script execution.

AutoNumber fields [Using namespace]]

Binary
The binary statement is used for loading the data from another QlikView document, including
section access data.

Binary [path] filename

comment

Provides a way of displaying the field comments (metadata) from databases and spreadsheets.
Field names not present in the app will be ignored. If multiple occurrences of a field name are found,
the last value is used.

Comment field *fieldlist using mapname
Comment field fieldname with comment

comment table
Provides a way of displaying the table comments (metadata) from databases or spreadsheets.

Comment table tablelist using mapname
Comment table tablename with comment

Script syntax and chart functions - Qlik Sense, May 2024 124

3 Script statements and keywords

Connect

This functionality is not available in Qlik Sense SaaSs.

The CONNECT statement is used to define Qlik Sense access to a general database through the
OLE DB/ODBC interface. For ODBC, the data source first needs to be specified using the ODBC
administrator.

ODBC Connect TO connect-string [(access_info)]
OLEDB CONNECT TO connect-string [(access info)]
CUSTOM CONNECT TO connect-string [(access info)]
LIB CONNECT TO connection

Declare

The Declare statement is used to create field definitions, where you can define relations between
fields or functions. A set of field definitions can be used to automatically generate derived fields,
which can be used as dimensions. For example, you can create a calendar definition, and use that
to generate related dimensions, such as year, month, week and day, from a date field.

definition name:

Declare [Field[s]] Definition [Tagged tag list]
[Parameters parameter list]

Fields field list

[Groups group list]

<definition name>:

Declare [Field][s] Definition
Using <existing definition>
[With <parameter assignment>]

Derive

The Derive statement is used to generate derived fields based on a field definition created with a
Declare statement. You can either specify which data fields to derive fields for, or derive them
explicitly or implicitly based on field tags.

Derive [Field[s]] From [Field[s]] field list Using definition
Derive [Field[s]] From Explicit [Tag[s]] (tag list) Using definition
Derive [Field[s]] From Implicit [Tag[s]] Using definition

Direct Query
The DIRECT QUERY statement allows you to access tables through an ODBC or OLE DB connection
using the Direct Discovery function.

Direct Query [path]

Directory
The Directory statement defines which directory to look in for data files in subsequent LOAD
statements, until a new Directory statement is made.

Script syntax and chart functions - Qlik Sense, May 2024 125

3 Script statements and keywords

Directory [path]

Disconnect
The Disconnect statement terminates the current ODBC/OLE DB/Custom connection. This
statement is optional.

Disconnect

drop field

One or several Qlik Sense fields can be dropped from the data model, and thus from memory, at any
time during script execution, by means of a drop field statement. The "distinct" property of a table
is removed after a drop field statement.

Both drop field and drop fields are allowed forms with no difference in effect. If no table
is specified, the field will be dropped from all tables where it occurs.

Drop field fieldname [, fieldname2 ...] [from tablenamel [, tablename2
.11

drop fields fieldname [, fieldname2 ...] [from tablenamel [, tablename2
.11

drop table

One or several Qlik Sense internal tables can be dropped from the data model, and thus from
memory, at any time during script execution, by means of a drop table statement.

The forms drop table and drop tables are both accepted.

Drop table tablename [, tablename2 ...]
drop tables|[tablename [, tablename2 ...]

Execute
The Execute statement is used to run other programs while Qlik Sense is loading data. For example,
to make conversions that are necessary.

Execute commandline

FlushLog
The FlushLog statement forces Qlik Sense to write the content of the script buffer to the script log
file.

FlushLog

Force

The force statement forces Qlik Sense to interpret field values of subsequent LOAD and SELECT
statements as written with only upper case letters, with only lower case letters, as always
capitalized or as they appear (mixed). This statement makes it possible to associate field values
from tables made according to different conventions.

Script syntax and chart functions - Qlik Sense, May 2024 126

3 Script statements and keywords

Force (capitalization | case upper | case lower | case mixed)

LOAD

The LOAD statement loads fields from a file, from data defined in the script, from a previously
loaded table, from a web page, from the result of a subsequent SELECT statement or by generating
data automatically. It is also possible to load data from analytic connections.

Load [distinct] *fieldlist

[(from file [format-spec] |

from field fieldassource [format-spec]

inline data [format-spec] |

resident table-label |

autogenerate size)]

[where criterion | while criterion]

[group by groupbyfieldlist]

[order by orderbyfieldlist]

[extension pluginname.functionname (tabledescription)]

Let

The let statement is a complement to the set statement, used for defining script variables. The let
statement, in opposition to the set statement, evaluates the expression on the right side of the ' ='
at script run time before it is assigned to the variable.

Let variablename=expression

Loosen Table

One or more Qlik Sense internal data tables can be explicitly declared loosely coupled during script
execution by using a Loosen Table statement. When a table is loosely coupled, all associations
between field values in the table are removed. A similar effect could be achieved by loading each
field of the loosely coupled table as independent, unconnected tables. Loosely coupled can be
useful during testing to temporarily isolate different parts of the data structure. A loosely coupled
table can be identified in the table viewer by the dotted lines. The use of one or more Loosen Table
statements in the script will make Qlik Sense disregard any setting of tables as loosely coupled
made before the script execution.

tablename [, tablename2 ...]
Loosen Tables tablename [, tablename2 ...]

Map ... using
The map ... using statement is used for mapping a certain field value or expression to the values of
a specific mapping table. The mapping table is created through the Mapping statement.

Map *fieldlist Using mapname

NullAsNull
The NullAsNull statement turns off the conversion of NULL values to string values previously set by
a NullAsValue statement.

NullAsNull *fieldlist

Script syntax and chart functions - Qlik Sense, May 2024 127

3 Script statements and keywords

NullAsValue
The NullAsValue statement specifies for which fields that NULL should be converted to a value.

NullAsValue *fieldlist

Qualify
The Qualify statement is used for switching on the qualification of field names, i.e. field names will
get the table name as a prefix.

Qualify *fieldlist

Rem

The rem statement is used for inserting remarks, or comments, into the script, or to temporarily
deactivate script statements without removing them.

Rem string

Rename Field
This script function renames one or more existing Qlik Sense field(s) after they have been loaded.

Rename field (usingnapname|oldnanwstonewname{ , oldname to newname })
Rename Fields (using mapname | oldname to newname{ , oldname to newname })

Rename Table

This script function renames one or more existing Qlik Sense internal table(s) after they have been
loaded.

Rename table (using mapname | oldname to newname{ , oldname to newname })
Rename Tables (using mapname | oldname to newname{ , oldname to newname })
Section

With the section statement, it is possible to define whether the subsequent LOAD and SELECT
statements should be considered as data or as a definition of the access rights.

Section (access | application)

Select

The selection of fields from an ODBC data source or OLE DB provider is made through standard SQL
SELECT statements. However, whether the SELECT statements are accepted depends on the
ODBC driver or OLE DB provider used.

Select [all | distinct | distinctrow | top n [percent]] *fieldlist
From tablelist

[Where criterion]

[Group by fieldlist [having criterion]]

[Order by fieldlist [asc | desc]]

[(Inner | Left | Right | Full)Join tablename on fieldref = fieldref]

Script syntax and chart functions - Qlik Sense, May 2024 128

3 Script statements and keywords

Set
The set statement is used for defining script variables. These can be used for substituting strings,
paths, drives, and so on.

Set variablename=string

Sleep
The sleep statement pauses script execution for a specified time.

Sleep n

SQL
The SQL statement allows you to send an arbitrary SQL command through an ODBC or OLE DB
connection.

SQL sgl command

SQLColumns
The sqlcolumns statement returns a set of fields describing the columns of an ODBC or OLE DB
data source, to which a connect has been made.

SQLColumns

SQLTables
The sqltables statement returns a set of fields describing the tables of an ODBC or OLE DB data
source, to which a connect has been made.

SQLTables

SQLTypes
The sqltypes statement returns a set of fields describing the types of an ODBC or OLE DB data
source, to which a connect has been made.

SQLTypes

Star
The string used for representing the set of all the values of a field in the database can be set
through the star statement. It affects the subsequent LOAD and SELECT statements.

Star is [string]

Store
The Store statement creates a QVD, Parquet, CSV, or TXT file.

Store [*fieldlist from] table into filename [format-spec];

Tag

This script statement provides a way to assign tags to one or more fields or tables. If an attempt to
tag a field or table not present in the app is made, the tagging will be ignored. If conflicting
occurrences of a field or tag name are found, the last value is used.

Tag[field|fields] fieldlist with tagname

Script syntax and chart functions - Qlik Sense, May 2024 129

3 Script statements and keywords

Tag [field|fields] fieldlist using mapname
Tag table tablelist with tagname

Trace

The trace statement writes a string to the Script Execution Progress window and to the script log
file, when used. It is very useful for debugging purposes. Using $-expansions of variables that are
calculated prior to the trace statement, you can customize the message.

Trace string

Unmap
The Unmap statement disables field value mapping specified by a previous Map ... Using
statement for subsequently loaded fields.

Unmap *fieldlist

Unqualify
The Unqualify statement is used for switching off the qualification of field names that has been
previously switched on by the Qualify statement.

Unqualify *fieldlist

Untag
This script statement provides a way to remove tags from fields or tables. If an attempt to untag a
field or table not present in the app is made, the untagging will be ignored.

Untag[field|fields] fieldlist with tagname
Tag [field|fields] fieldlist using mapname
Tag table tablelist with tagname

Alias

The alias statement is used for setting an alias according to which a field will be
renamed whenever it occurs in the script that follows.

Syntax:
alias fieldname as aliasname {,fieldname as aliasname}

Arguments:

Arguments

Argument Description
fieldname The name of the fieldin your source data

aliasname An alias name you want to use instead

Script syntax and chart functions - Qlik Sense, May 2024 130

3 Script statements and keywords

Examples and results:

Example Result

Alias ID_N as

NameID;

Alias A as The name changes defined through this statement are used on all subsequent
Name, B as SELECT and LOAD statements. A new alias can be defined for a field name by a

Number, C as

Date: new alias statement at any subsequent position in the script.

AutoNumber

This statement creates a unique integer value for each distinct evaluated value in a field
encountered during the script execution.

You can also use the autonumber (page 582) function inside a LOAD statement, but this has some
limitations when you want to use an optimized load. You can create an optimized load by loading
the data from a QVD file first, and then using the AutoNumber statement to convert values to
symbol keys.

Syntax:
AutoNumber *fieldlist [Using namespace]]

Arguments:
Arguments
Argument Description
*fieldlist A comma-separated list of the fields where the values should be replaced by a

unique integer value.

You can use wildcard characters ? and * in the field names to include all fields
with matching names. You can also use * to include all fields. You need to quote
field names when wildcards are used.

namespace Using namespace is optional. You can use this option if you want to create a
namespace, where identical values in different fields share the same key.

If you do not use this option, all fields will have a separate key index.
Limitations:

When you have several LOAD statements in the script, you need to place the AutoNumber
statement after the final LOAD statement.

Script syntax and chart functions - Qlik Sense, May 2024 131

3 Script statements and keywords

Example - script with AutoNumber

Script example
In this example, the data is first loaded without the AutoNumber statement. The AutoNumber
statement is then added to show the effect.

Data used in the example

Load the following data as an inline load in the data load editor to create the script example below.
Leave the AutoNumber statement commented out for now.

RegionSales:

LOAD *,

Region &'|'& Year &'|'& Month as KeyToOtherTable
INLINE

[Region, Year, Month, Sales

North, 2014, May, 245

North, 2014, May, 347

North, 2014, June, 127
South, 2014, June, 645

South, 2013, May, 367
South, 2013, May, 221
1;

Budget:

LOAD Budget,
Region &'|'& Year &'|'& Month as KeyToOtherTable

INLINE

[Region, Year, Month, Budget
North, 2014, May, 200
North, 2014, May, 350

North, 2014, June, 150
South, 2014, June, 500
South, 2013, May, 300
South, 2013, May, 200
1;

//AutoNumber KeyToOtherTable;

Create visualizations

Create two table visualizations in a Qlik Sense sheet. Add KeyToOtherTable, Region, Year, Month,
and Sales as dimensions to the first table. Add KeyToOtherTable, Region, Year, Month, and
Budget as dimensions to the second table.

Result
RegionSales table
KeyToOtherTable Region Year Month Sales
North|2014|June North 2014 June 127

Script syntax and chart functions - Qlik Sense, May 2024 132

3 Script statements and keywords

KeyToOtherTable Region Year Month Sales
North|2014|May North 2014 May 245
North|2014|May North 2014 May 347
South|2013|May South 2013 May 221
South|2013|May South 2013 May 367
South|2014|June South 2014 June 645
Budget table
KeyToOtherTable Region Year Month Budget
North|2014|June North 2014 June 150
North|2014|May North 2014 May 200
North|2014|May North 2014 May 350
South|2013|May South 2013 May 200
South|2013|May South 2013 May 300
South|2014|June South 2014 June 500
Explanation

The example shows a composite field KeyToOtherTable that links the two tables. AutoNumber is
not used. Note the length of the KeyToOtherTable values.

Add AutoNumber statement

Uncomment the AutoNumber statement in the load script:

AutoNumber KeyToOtherTable;

Result
RegionSales table
KeyToOtherTable Region Year Month Sales
1 North 2014 June 127
1 North 2014 May 245
2 North 2014 May 347
3 South 2013 May 221
4 South 2013 May 367
4 South 2014 June 645

Script syntax and chart functions - Qlik Sense, May 2024 133

3 Script statements and keywords

Budget table
KeyToOtherTable Region Year Month Budget
1 North 2014 June 150
1 North 2014 May 200
2 North 2014 May 350
3 South 2013 May 200
4 South 2013 May 300
4 South 2014 June 500
Explanation

The KeyToOtherTable field values have been replaced with unique integer values and, as a result,
the length of the field values has been reduced, thus conserving memory. The key fields in both
tables are affected by AutoNumber and the tables remain linked. The example is brief for
demonstration purposes, but would be meaningful with a table containing a large number of rows.

Binary

The binary statement is used for loading the data from another Qlik Sense app or
QlikView document, including section access data. Other elements of the app are not
included, for example, sheets, stories, visualizations, master items or variables.

Only one binary statement is allowed in the script. The binary statement must be the first
statement of the script, even before the SET statements usually located at the beginning of the
script.

Syntax:
binary [path] filename

Script syntax and chart functions - Qlik Sense, May 2024 134

3 Script statements and keywords

Arguments:
Arguments
Argument Description
path The path to the file which should be a reference to a folder data connection. This

is required if the file is not located in the Qlik Sense working directory.

Example: 'lib://Table Files/'

In legacy scripting mode, the following path formats are also supported:

e absolute

Example: c:|datal

 relative to the app containing this script line.

Example: datal

filename The name of the file, including the file extension .qvw or .qvf.

Limitations:

You cannot use binary to load data from an app on the same Qlik Sense Enterprise deployment by
referring to the app ID. You can only load from a .gvffile.

Examples
String

Binary 1ib://DataFolder/customer.qvw;

Binary customer.qvf;

Binary c:\gv\customer.qvw;

Description

In this example, the file must be in located in the
Folder data connection. This may be, for example, a
folder that your administrator creates on the Qlik
Sense server. Click Create new connection in the
data load editor and then select Folder under File
locations.

In this example, the file must be in located in the Qlik
Sense working directory.

This example using an absolute file path will only work
in legacy scripting mode.

Script syntax and chart functions - Qlik Sense, May 2024 135

3 Script statements and keywords

Comment field

Provides a way of displaying the field comments (metadata) from databases and
spreadsheets. Field names not present in the app will be ignored. If multiple
occurrences of a field name are found, the last value is used.

Syntax:
comment [fields] *fieldlist using mapname
comment [field] fieldname with comment

The map table used should have two columns, the first containing field names and the second the
comments.

Arguments:
Arguments
Argument Description
*fieldlist A comma separated list of the fields to be commented. Using * as field list

indicates all fields. The wildcard characters * and ? are allowed in field names.
Quoting of field names may be necessary when wildcards are used.

mapname The name of a mapping table previously read in a mapping LOAD or mapping
SELECT statement.
fieldname The name of the field that should be commented.
comment The comment that should be added to the field.
Example 1:
commentmap:
mapping LOAD * inline [
a,b

Alpha,This field contains text values
Num,This field contains numeric values
1;

comment fields using commentmap;
Example 2:

comment field Alpha with AFieldContainingCharacters;
comment field Num with '*A field containing numbers';
comment Gamma with 'Mickey Mouse field';

Comment table

Provides a way of displaying the table comments (metadata) from databases or
spreadsheets.

Script syntax and chart functions - Qlik Sense, May 2024 136

3 Script statements and keywords

Table names not present in the app are ignored. If multiple occurrences of a table name are found,
the last value is used. The keyword can be used to read comments from a data source.

Syntax:
comment [tables] tablelist using mapname
comment [table] tablename with comment

Arguments:
Arguments
Argument Description
tablelist (table{,table})
mapname The name of a mapping table previously read in a mapping LOAD or mapping
SELECT statement.

tablename The name of the table that should be commented.

comment The comment that should be added to the table.
Example 1:
Ccommentmap:
mapping LOAD * inline [
a,b

Main,This is the fact table
Currencies, Currency helper table
1;

comment tables using Commentmap;
Example 2:
comment table Main with 'Main fact table';

Connect

The CONNECT statement is used to define Qlik Sense access to a general database
through the OLE DB/ODBC interface. For ODBC, the data source first needs to be
specified using the ODBC administrator.

This functionality is not available in Qlik Sense Saas.

This statement supports only folder data connections in standard mode.

Syntax:

ODBC CONNECT TO connect-string
OLEDB CONNECT TO connect-string
CUSTOM CONNECT TO connect-string

Script syntax and chart functions - Qlik Sense, May 2024 137

3 Script statements and keywords

LIB CONNECT TO connection

Arguments:
Arguments
Argument Description
connect- connect-string ::= datasourcename { ; conn-spec-item }
string The connection string is the data source name and an optional list

of one or more connection specification items. If the data source
name contains blanks, or if any connection specification items are
listed, the connection string must be enclosed by quotation marks.

datasourcename must be a defined ODBC data source or a string
that defines an OLE DB provider.

conn-spec-item ::=DBQ=database_specifier |DriverID=driver_

specifier |UID=userid |PWD=password

The possible connection specification items may differ between
different databases. For some databases, also other items than the
above are possible. For OLE DB, some of the connection specific
items are mandatory and not optional.

connection The name of a data connection stored in the data load editor.

If the ODBC is placed before CONNECT, the ODBC interface will be used; else, OLE DB will be used.

Using LIB CONNECT TO connects to a database using a stored data connection that was created in
the data load editor.

Example 1:

ODBC CONNECT TO 'Sales
DBQ=C:\Program Files\Access\Samples\Sales.mdb';

The data source defined through this statement is used by subsequent Select (SQL) statements,
until a new CONNECT statement is made.

Example 2:

LIB CONNECT TO 'DataConnection';

Connect32

This statement is used the same way as the CONNECT statement, but forces a 64-bit system to
use a 32-bit ODBC/OLE DB provider. Not applicable for custom connect.

Connect64

This statement is used the same way as the as the CONNECT statement, but forces use of a 64-bit
provider. Not applicable for custom connect.

Script syntax and chart functions - Qlik Sense, May 2024 138

3 Script statements and keywords

Declare

The Declare statement is used to create field definitions, where you can define relations between
fields or functions. A set of field definitions can be used to automatically generate derived fields,
which can be used as dimensions. For example, you can create a calendar definition, and use that
to generate related dimensions, such as year, month, week and day, from a date field.

You can use Declare to either set up a new field definition, or to create a field definition based on an
already existing definition.

Setting up a new field definition

Syntax:

definition name:

Declare [Field[s]] Definition [Tagged tag list]
[Parameters parameter list]

Fields field list

Arguments:
Argument Description
definition_ Name of the field definition, ended with a colon.
name
Do not use autoCalendar as name for field definitions, as this name is
reserved for auto-generated calendar templates.
Example:
Calendar:
tag_list A comma separated list of tags to apply to fields derived from the field definition.

Applying tags is optional, but if you do not apply tags that are used to specify
sort order, such as $date, $numeric or $text, the derived field will be sorted by
load order as default.

Example:

'$date'Thank you for bringing this to our attention, and apologies for the
inconvenience.

Script syntax and chart functions - Qlik Sense, May 2024 139

3 Script statements and keywords

Argument

parameter_
list

field_list

Example:

Calendar:

Description

A comma separated list of parameters. A parameter is defined in the form
name=value and is assigned a start value, which can be overridden when a field
definition is re-used. Optional.

Example:

first_month_of_year = 1

A comma separated list of fields to generate when the field definition is used. A
field is defined in the form <expression> As field name tagged tag. Use $1to
reference the data field from which the derived fields should be generated.

Example:

Year($1l) As Year tagged ('$numeric')

DECLARE FIELD DEFINITION TAGGED '$date’

Parameters

first_month_of_year = 1

Fields

Year($1) As Year Tagged ('$numeric'),

mMonth($1) as Month Tagged ('$numeric'),

Date($1) as Date Tagged ('$date'),

week($1) as week Tagged ('$numeric'),

weekday($1) as weekday Tagged ('$numeric'),

DayNumberofyvear($1l, first_month_of_year) as DayNumberofyear Tagged ('$numeric')

The calendar is now defined, and you can apply it to the date fields that have been loaded, in this
case OrderDate and ShippingDate, using a Derive clause.

Re-using an existing field definition

Syntax:

<definition name>:
Declare [Field][s] Definition

Using <existing definition>

[With <parameter assignment>]

Script syntax and chart functions - Qlik Sense, May 2024 140

3 Script statements and keywords

Arguments:
Argument Description
definition_ Name of the field definition, ended with a colon.
name
Example:
MyCalendar:
existing_ The field definition to re-use when creating the new field definition. The new
definition field definition will function the same way as the definition it is based on, with the
exception if you use parameter_assignment to change a value used in the field
expressions.
Example:
Using Calendar
parameter_ A comma separated list of parameter assignments. A parameter assignment is
assignment defined in the form name=value and overrides the parameter value that is setin
the base field definition. Optional.
Example:
first_month_of_year = 4
Example:

In this example we re-use the calendar definition that was created in the previous example. In this
case we want to use a fiscal year that starts in April. This is achieved by assigning the value 4 to the
first_month_of_year parameter, which will affect the DayNumberOfYear field that is defined.

The example assumes that you use the sample data and field definition from the previous example.

MyCalendar:
DECLARE FIELD DEFINITION USING Calendar WITH first_month_of_year=4;

DERIVE FIELDS FROM FIELDS OrderDate,ShippingDate USING MyCalendar;

When you have reloaded the data script, the generated fields are available in the sheet editor, with
names OrderDate.MyCalendar.* and ShippingDate.MyCalendar.*.

Derive

The Derive statement is used to generate derived fields based on a field definition created with a
Declare statement. You can either specify which data fields to derive fields for, or derive them
explicitly or implicitly based on field tags.

Syntax:
Derive [fields]] From [Field[s]] field list Using definition

Script syntax and chart functions - Qlik Sense, May 2024 141

3 Script statements and keywords

Derive [Field[s]] From Explicit [Tag[s]] tag list Using definition
Derive [Field[s]] From Implicit [Tag[s]] Using definition

Arguments:
Arguments
Argument Description
definition Name of the field definition to use when deriving fields.
Example: calendar
field_list A comma separated list of data fields from which the derived fields should be

generated, based on the field definition. The data fields should be fields you have
already loaded in the script.

Example: orderpate, shippingDate

tag_list A comma separated list of tags. Derived fields will be generated for all data fields
with any of the listed tags. The list of tags should be enclosed by round brackets.

Example: ('$date', '$timestamp')

Examples:

» Derive fields for specific data fields.

In this case we specify the OrderDate and ShippingDate fields.
DERIVE FIELDS FROM FIELDS OrderDate,ShippingDate USING Calendar;

» Derive fields for all fields with a specific tag.

In this case we derive fields based on Calendar for all fields with a $date tag.
DERIVE FIELDS FROM EXPLICIT TAGS ('$date') USING Calendar;

» Derive fields for all fields with the field definition tag.
In this case we derive fields for all data fields with the same tag as the Calendar field

definition, which in this case is $date.
DERIVE FIELDS FROM IMPLICIT TAG USING Calendar;

Direct Query

The DIRECT QUERY statement allows you to access tables through an ODBC or OLE DB connection
using the Direct Discovery function.

Syntax:

DIRECT QUERY DIMENSION fieldlist [MEASURE fieldlist] [DETAIL fieldlist] FROM
tablelist

[WHERE where clause]

The DIMENSION, MEASURE, and DETAIL keywords can be used in any order.

The DIMENSION and FROM keyword clauses are required on all DIRECT QUERY statements. The
FROM keyword must appear after the DIMENSION keyword.

Script syntax and chart functions - Qlik Sense, May 2024 142

3 Script statements and keywords

The fields specified directly after the DIMENSION keyword are loaded in memory and can be used
to create associations between in-memory and Direct Discovery data.

The DIRECT QUERY statement cannot contain DISTINCT or GROUP BY clauses.

Using the MEASURE keyword you can define fields that Qlik Sense is aware of on a “meta level”.
The actual data of a measure field resides only in the database during the data load process, and is
retrieved on an ad hoc basis driven by the chart expressions that are used in a visualization.

Typically, fields with discrete values that will be used as dimensions should be loaded with the
DIMENSION keyword, whereas numbers that will be used in aggregations only should be selected
with the MEASURE keyword.

DETAIL fields provide information or details, like comment fields, that a user may want to display in
a drill-to-details table box. DETAIL fields cannot be used in chart expressions.

By design, the DIRECT QUERY statement is data-source neutral for data sources that support SQL.
For that reason, the same DIRECT QUERY statement can be used for different SQL databases
without change. Direct Discovery generates database-appropriate queries as needed.

Native data-source syntax can be used when the user knows the database to be queried and wants
to exploit database-specific extensions to SQL. Native data-source syntax is supported:

» As field expressions in DIMENSION and MEASURE clauses
» As the content of the WHERE clause

Examples:

DIRECT QUERY

DIMENSION Diml, Dim2
MEASURE

NATIVE ('X % Y') AS X_MOD_Y

FROM TableName
DIRECT QUERY

DIMENSION Diml, Dim2

MEASURE X, Y

FROM TableName

WHERE NATIVE ('EMAIL MATCHES "*.EDU"')

The following terms are used as keywords and so cannot be used as column or field
names without being quoted: and, as, detach, detail, dimension, distinct, from, in, is, like,
measure, native, not, or, where

Script syntax and chart functions - Qlik Sense, May 2024 143

3 Script statements and keywords

Arguments:

Argument Description

fieldlist A comma-separated list of field specifications, fieldname {, fieldname}. A field
specification can be a field name, in which case the same name is used for the
database column name and the Qlik Sense field name. Or a field specification can
be a "field alias," in which case a database expression or column name is given a
Qlik Sense field name.

tablelist A list of the names of tables or views in the database from which data will be
loaded. Typically, it will be views that contain a JOIN performed on the database.

where_ The full syntax of database WHERE clauses is not defined here, but most SQL

clause “relational expressions" are allowed, including the use of function calls, the LIKE
operator for strings, IS NULL and IS NOT NULL, and IN. BETWEEN is not
included.

NOT is a unary operator, as opposed to a modifier on certain keywords.

Examples:

WHERE x > 100 AND "Region Code" IN ('south', 'west')
WHERE Code IS NOT NULL and Code LIKE '%prospect'
WHERE NOT X in (1,2,3)

The last example can not be written as:

WHERE X NOT in (1,2,3)

Example:

In this example, a database table called TableName, containing fields Dim1, Dim2, Num1, Num2 and
Num3, is used.Dim1 and Dim2 will be loaded into the Qlik Sense dataset.

DIRECT QUERY DIMENSTION Diml, Dim2 MEASURE Numl, Num2, Num3 FROM TableName ;

Dim1 and Dim2 will be available for use as dimensions. Num1, Num2 and Num3 will be available for
aggregations. Dim1 and Dim2 are also available for aggregations. The type of aggregations for
which Dim1 and Dim2 can be used depends on their data types. For example, in many cases
DIMENSION fields contain string data such as names or account numbers.Those fields cannot be
summed, but they can be counted: count(piml).

Script syntax and chart functions - Qlik Sense, May 2024 144

3 Script statements and keywords

DIRECT QUERY statements are written directly in the script editor. To simplify
construction of DIRECT QUERY statements, you can generate a SELECT statement from
a data connection, and then edit the generated script to change it into a DIRECT QUERY
statement.

For example, the SELECT statement:

SQL SELECT
SalesorderID,
RevisionNumber,
orderbDate,
SubTotal,
TaxAmt
FROM MyDB.Sales.SalesOrderHeader;

could be changed to the following DIRECT QUERY statement:

DIRECT QUERY
DIMENSION

SalesorderID,

RevisionNumber

MEASURE
SubTotal,
TaxAmt

DETAIL
orderbate

FROM MyDB.Sales.SalesOrderHeader;

Direct Discovery field lists

A field list is a comma-separated list of field specifications, fieldname {, fieldname}. A
field specification can be a field name, in which case the same name is used for the

database column name and the field name. Or a field specification can be a field alias,
in which case a database expression or column name is given a Qlik Sense field name.

Field names can be either simple hames or quoted names. A simple hame begins with an alphabetic
Unicode character and is followed by any combination of alphabetic or numeric characters or
underscores. Quoted names begin with a double quotation mark and contain any sequence of
characters. If a quoted name contains double quotation marks, those quotation marks are
represented using two adjacent double quotation marks.

Script syntax and chart functions - Qlik Sense, May 2024 145

3 Script statements and keywords

Qlik Sense field names are case-sensitive. Database field names may or may not be case-sensitive,
depending on the database. A Direct Discovery query preserves the case of all field identifiers and
aliases. In the following example, the alias "MyState" is used internally to store the data from the
database column "STATEID".

DIRECT QUERY Dimension STATEID as MyState Measure AMOUNT from SALES_TABLE;

This differs from the result of an SQL Select statement with an alias. If the alias is not explicitly
quoted, the result contains the default case of column returned by the target database. In the
following example, the SQL Select statement to an Oracle database creates "MYSTATE," with all
upper case letters, as the internal Qlik Sense alias even though the alias is specified as mixed case.
The SQL Select statement uses the column name returned by the database, which in the case of
Oracle is all upper case.

SQL Select STATEID as MyState, STATENAME from STATE_TABLE;

To avoid this behavior, use the LOAD statement to specify the alias.

Load STATEID as MyState, STATENAME;
SQL Select STATEID, STATEMENT from STATE_TABLE;

In this example, the "STATEID" column is stored internally byQlik Sense as "MyState".

Most database scalar expressions are allowed as field specifications. Function calls can also be
used in field specifications. Expressions can contain constants that are boolean, numeric, or strings
contained in single quotation marks (embedded single quotation marks are represented by
adjacent single quotation marks).

Examples:

DIRECT QUERY
DIMENSION
SalesOrderID, RevisionNumber
MEASURE
SubTotal AS "Sub Total"

FROM AdventurewWorks.Sales.SalesOrderHeader;

DIRECT QUERY
DIMENSION
"salesorderib" AS "sales Order ID"
MEASURE
SubTotal,TaxAmt, (SubTotal-TaxAmt) AS "Net Total"

FROM AdventurewWorks.Sales.SalesOrderHeader;

Script syntax and chart functions - Qlik Sense, May 2024 146

3 Script statements and keywords

DIRECT QUERY
DIMENSION
(2*Radius*3.14159) As Circumference,
Molecules/6.02e23 AS Moles
MEASURE
Numl AS numA

FROM TableName;

DIRECT QUERY
DIMENSION
concat(region, 'code') AS region_code
MEASURE
Numl AS NumA
FROM TableName;

Direct Discovery does not support using aggregations in LOAD statements. If aggregations are
used, the results are unpredictable. A LOAD statement such as the following should not be used:

DIRECT QUERY DIMENSION stateid, SUM(amount*7) AS MultiFirst MEASURE amount FROM sales_table;
The SUM should not be in the LOAD statement.

Direct Discovery also does not support Qlik Sense functions in Direct Query statements. For
example, the following specification for a DIMENSION field results in a failure when the "Mth" field is
used as a dimension in a visualization:

month(ModifiedDate) as Mth

Directory
The Directory statement defines which directory to look in for data files in subsequent
LOAD statements, until a new Directory statement is made.

Syntax:
Directory[path]

If the Directory statement is issued without a path or left out, Qlik Sense will look in the Qlik Sense
working directory.

Script syntax and chart functions - Qlik Sense, May 2024 147

3 Script statements and keywords

Arguments:
Arguments
Argument Description
path A text that can be interpreted as the path to the data file.

The path is the path to the file, either:
e absolute

Example: c:|datal
« relative to the Qlik Sense app working directory.

Example: datal

» URL address (HTTP or FTP), pointing to a location on the Internet or an
intranet.

Example: http://www.qlik.com

Examples:

DIRECTORY C:\userfiles\data; // OR -> DIRECTORY data\

LOAD * FROM

[datal.csv] // ONLY THE FILE NAME CAN BE SPECIFIED HERE (WITHOUT THE FULL PATH)
(ansi, txt, delimiter 1is ',', embedded labels);

LOAD * FROM

[data2.txt] // ONLY THE FILE NAME CAN BE SPECIFIED HERE UNTIL A NEW DIRECTORY STATEMENT IS
MADE
(ansi, txt, delimiter 1is '\t', embedded labels);

Disconnect

The Disconnect statement terminates the current ODBC/OLE DB/Custom connection. This
statement is optional.

Syntax:
Disconnect

The connection will be automatically terminated when a new connect statement is executed or
when the script execution is finished.

Example:

Disconnect;

Script syntax and chart functions - Qlik Sense, May 2024 148

3 Script statements and keywords

Drop

The Drop script keyword can be used to drop tables or fields from the database.

Drop field

One or several Qlik Sense fields can be dropped from the data model, and thus from memory, at any
time during script execution, by means of a drop field statement. The "distinct" property of a table
is removed after a drop field statement.

Both drop field and drop fields are allowed forms with no difference in effect. If no table
is specified, the field will be dropped from all tables where it occurs.

Syntax:

Drop field fieldname { , fieldname2 ...} [from tablenamel { , tablename2
1]

Drop fields fieldname { , fieldname2 ...} [from tablenamel { , tablename2

.- b

Examples:

Drop field A;

prop fields A,B;

prop field A from X;

Drop fields A,B from X,Y;

Drop table

One or several Qlik Sense internal tables can be dropped from the data model, and thus
from memory, at any time during script execution, by means of a drop table statement.

Syntax:
drop table tablename {, tablename2 ...}
drop tables tablename {, tablename2 ...}

The forms drop table and drop tables are both accepted.

The following items will be lost as a result of this:

* The actual table(s).
« Allfields which are not part of remaining tables.
 Field values in remaining fields, which came exclusively from the dropped table(s).

Script syntax and chart functions - Qlik Sense, May 2024 149

3 Script statements and keywords

Examples and results:
Example Result

drop table Orders, Salesmen, T456a; This line results in three tables being
dropped from memory.

Tabl: Once the table TabZis created, the table

Load * Inlin .
oad el .) TabTis dropped.
Customer, Items, UnitPrice

Bob, 5, 1.50
1;

Tab2:

LOAD Customer, Sum(Items * UnitPrice) as Sales
resident Tabl

group by Customer;

drop table Tabl;

Drop table

One or several Qlik Sense internal tables can be dropped from the data model, and thus
from memory, at any time during script execution, by means of a drop table statement.

Syntax:
drop table tablename {, tablename2 ...}
drop tables tablename {, tablename2 ...}

The forms drop table and drop tables are both accepted.

The following items will be lost as a result of this:

* The actual table(s).
 All fields which are not part of remaining tables.
 Field values in remaining fields, which came exclusively from the dropped table(s).

Examples and results:
Example Result

drop table Orders, salesmen, T456a; This line results in three tables being
dropped from memory.

Script syntax and chart functions - Qlik Sense, May 2024 150

3 Script statements and keywords

Example

Tabl:

Load * Inline [

Customer, Items, UnitPrice
Bob, 5, 1.50

1;

Tab2:

LOAD Customer, Sum(Items *

resident Tabl
group by Customer;

drop table Tabl;

Execute

Result

Once the table TabZ2is created, the table
TabTis dropped.

UnitPrice) as Sales

The Execute statement is used to run other programs while Qlik Sense is loading data.
For example, to make conversions that are necessary.

This functionality is not available in Qlik Sense Saas.

This statement is not supported in standard mode.

Syntax:

execute commandline

Arguments:

Arguments

Argument Description

commandline A text that can be interpreted by the operating system as a
command line. You can refer to an absolute file path or a lib://
folder path.

If you want to use Execute the following conditions need to be met:

* You must run in legacy mode (applicable for Qlik Sense and Qlik Sense Desktop).

* You need to set OverrideScriptSecurity to 1in Settings.ini (applicable for Qlik Sense).
Settings.iniis located in C:|ProgramData|Qlik|Sense|Engine| and is generally an empty file.

If you set OverrideScriptSecurity to enable Execute, any user can execute files on the
server. For example, a user can attach an executable file to an app, and then execute the
file in the data load script.

Script syntax and chart functions - Qlik Sense, May 2024 151

3 Script statements and keywords

Do the following:

Make a copy of Settings.iniand open it in a text editor.
. Check that the file includes [Settings 7]in the first line.
. Insert a new line and type OverrideScriptSecurity=1.

. Save thefile.

1.

2

3

4. Insertan empty line at the end of the file.

5

6. Substitute Settings.ini with your edited file.
7

. Restart Qlik Sense Engine Service (QES).

If Qlik Sense is running as a service, some commands may not behave as expected.

Example:

Execute C:\Program Files\officel2\Excel.exe;
Execute Tib://win\notepad.exe // win is a folder connection referring to c:\windows

Field/Fields

The Field and Fields script keywords are used in Declare, Derive, Drop, Comment, Rename and
Tag/Untag statements.

FlushLog

The FlushLog statement forces Qlik Sense to write the content of the script buffer to the script log
file.

Syntax:
FlushLog

The content of the buffer is written to the log file. This command can be useful for debugging
purposes, as you will receive data that otherwise may have been lost in a failed script execution.

Example:

FlushLog;

Force

The force statement forces Qlik Sense to interpret field values of subsequent LOAD
and SELECT statements as written with only upper case letters, with only lower case
letters, as always capitalized or as they appear (mixed). This statement makes it
possible to associate field values from tables made according to different conventions.

Script syntax and chart functions - Qlik Sense, May 2024 152

3 Script statements and keywords

The force statement can also change field names during a load or select with the following data
sources:

* QVD

* CSV (text files)

 XLS

* QVX (files and ODBC connections)

The force statement only changes field names if the data is loaded in compact mode (loaded with
*),
The field names of the following data sources are not affected by the force statement:

- JSON

e Parquet

« XML
o XLSX

Syntax:
Force (capitalization | case upper | case lower | case mixed)

If nothing is specified, force case mixed is assumed. The force statement is valid until a new force
statement is made.

The force statement has no effect in the access section: all field values loaded are case insensitive.
Examples and results

Example Result

This example shows how to force The Capitalization table contains the following
capitalization. values:

FORCE Capitalization; Ab

Capitalization: cd

LOAD * InTline [Ef

ab Gh

cd All values are capitalized.

eF

GH

1;

Script syntax and chart functions - Qlik Sense, May 2024 153

3 Script statements and keywords

Example

This example shows how to force case
upper.

FORCE Case Upper;
CaseUpper:

LOAD * InTine [
ab

cd

eF

GH

1;

This example shows how to force case
lower.

FORCE Case Lower;
CaseLower:

LOAD * Inline [
ab

cd

eF

GH

1;

This example shows how to force case
mixed.

FORCE Case Mixed;
CaseMixed:

LOAD * Inline [
ab

cd

eF

GH

1;

See also:

From

Result
The CaseUpper table contains the following values:

AB
cb
EF
GH

All values are upper case.

The CaseLower table contains the following values:

ab
cd
ef
gh
All values are lower case.

The CaseMixed table contains the following values:

ab
cd
eF
GH

All values are as they appear in the script.

The From script keyword is used in Load statements to refer to a file, and in Select statements to

refer to a database table or view.

Load

The LOAD statement loads fields from a file, from data defined in the script, from a
previously loaded table, from a web page, from the result of a subsequent SELECT
statement or by generating data automatically. It is also possible to load data from

analytic connections.

Syntax:
LOAD [distinct] fieldlist

Script syntax and chart functions - Qlik Sense, May 2024 154

3 Script statements and keywords

[(from file [format-spec] |
from field fieldassource [format-spec] |
inline data [format-spec] |
resident table-label |
autogenerate size) |extension pluginname.functionname ([script]
tabledescription)]
[where criterion | while criterion]
[group by groupbyfieldlist]
[order by orderbyfieldlist]
Arguments

Argument Description

distinct You can use distinct as a predicate if you only want to load unique
records. If there are duplicate records, the first instance will be loaded.

If you are using preceding loads, you need to place distinct in the first
load statement, as distinct only affects the destination table.

Script syntax and chart functions - Qlik Sense, May 2024 155

3 Script statements and keywords

Argument

fieldlist

Description

fieldlist ::= (* [field{, * [field })
A list of the fields to be loaded. Using * as a field list indicates all fields in
the table.
field ::= (f/'e/dref| expression) [as aliasname]
The field definition must always contain a literal, a reference to an
existing field, or an expression.
fieldref ::= (fieldname |@fieldnumber |@startpos:endpos [I[U[R[B]| T])
fieldnameis a text that is identical to a field name in the table. Note that
the field name must be enclosed by straight double quotation marks or
square brackets if it contains e.g. spaces. Sometimes field names are not
explicitly available. Then a different notation is used:

@fieldnumber represents the field number in a delimited table file. It must
be a positive integer preceded by "@". The numbering is always made
from 1 and up to the number of fields.

@startpos:endpos represents the start and end positions of a field in a file
with fixed length records. The positions must both be positive integers.
The two numbers must be preceded by "@" and separated by a colon. The
numbering is always made from 1 and up to the number of positions. In the
last field, nis used as end position.

» If @startpos:endpos is immediately followed by the characters | or
U, the bytes read will be interpreted as a binary signed (1) or
unsigned (U) integer (Intel byte order). The number of positions
read must be 1, 2 or 4.

» If @startpos:endpos is immediately followed by the character R, the
bytes read will be interpreted as a binary real number (IEEE 32-bit
or 64 bit floating point). The number of positions read must be 4 or
8.

» If @startpos:endpos is immediately followed by the character B, the
bytes read will be interpreted as a BCD (Binary Coded Decimal)
numbers according to the COMP-3 standard. Any number of bytes
may be specified.

expression can be a numeric function or a string function based on one or
several other fields in the same table. For further information, see the
syntax of expressions.

as is used for assigning a new name to the field.

Script syntax and chart functions - Qlik Sense, May 2024 156

3 Script statements and keywords

Argument

from

Description

from is used if data should be loaded from a file using a folder or a web file
data connection

file ::= [path] filename

Example: 'lib://Table Files/'

If the path is omitted, Qlik Sense searches for the file in the directory
specified by the Directory statement. If there is no Directory statement,
Qlik Sense searches in the working directory, C:|Users|
{user}|Documents|Qlik|Sense|Apps.

In a Qlik Sense server installation, the working directory is
specified in Qlik Sense Repository Service, by default it is
C:\ProgramData\|Qlik|Sense|Apps.

The filename may contain the standard DOS wildcard characters (* and ?
). This will cause all the matching files in the specified directory to be
loaded.

format-spec ::= (fspec-item {, fspec-item })

The format specification consists of a list of several format specification
items, within brackets.

Legacy scripting mode

In legacy scripting mode, the following path formats are also supported:

¢ absolute

Example: c:|datal

« relative to the Qlik Sense app working directory.

Example: datal

* URL address (HTTP or FTP), pointing to a location on the Internet or
an intranet.

Example: http://www.qlik.com

Script syntax and chart functions - Qlik Sense, May 2024 157

3 Script statements and keywords

Argument Description

from_field from_field is used if data should be loaded from a previously loaded field.
fieldassource::=(tablename, fieldname)

The field is the name of the previously loaded tablename and fieldname.
format-spec ::= (fspec-item {, fspec-item })

The format specification consists of a list of several format specification
items, within brackets. For more information, see Format specification
items (page 165).

from_field only supports commas as the list delimiter in when
separating fields in tables.

inline inline is used if data should be typed within the script, and not loaded
from afile.
data ::= [text]

Data entered through an inline clause must be enclosed by specific
characters — square brackets, quotation marks, or back ticks. The text
between these is interpreted in the same way as the content of afile.
Hence, where you would insert a new line in a text file, you should also do
it in the text of an inline clause: by pressing the Enter key when typing the
script.

In a simple inline load, the number of columns are defined by the first line.
format-spec ::= (fspec-item {, fspec-item })

You can customize the inline load with many of the same format
specification items that are available for other loaded tables. These items
are listed in brackets. For more information, see Format specification
items (page 165).

For more information about inline loads, see Using inline loads to load
data.

resident resident is used if data should be loaded from a previously loaded table.
table labelis a label preceding the LOAD or SELECT statement(s) that
created the original table. The label should be given with a colon at the
end.

Script syntax and chart functions - Qlik Sense, May 2024 158

/en-US/sense/Subsystems/Hub/Content/Sense_Hub/Scripting/inline-loads-qs.htm
/en-US/sense/Subsystems/Hub/Content/Sense_Hub/Scripting/inline-loads-qs.htm

3 Script statements and keywords

Argument

autogenerate

extension

Description

autogenerate is used if data should be automatically generated by Qlik
Sense.
size ::= number

Numberis an integer indicating the number of records to be generated.

The field list must not contain expressions which require data from an
external data source or a previously loaded table, unless you refer to a
single field value in a previously loaded table with the Peek function.

You can load data from analytic connections. You need to use the
extension clause to call a function defined in the server-side extension
(SSE) plugin, or evaluate a script.

You can send a single table to the SSE plugin, and a single data table is
returned. If the plugin does not specify the names of the fields that are
returned, the fields will be named Field1, Field2, and so on.

Extension pluginname.functionname (tabledescription);

« Loading data using a function in an SSE plugin
tabledescription ::= (table { ,tablefield})
If you do not state table fields, the fields will be used in load order.
¢ Loading data by evaluating a script in an SSE plugin
tabledescription ::= (script, table { ,tablefield})

Data type handling in the table field definition

Data types are automatically detected in analytic connections. If the data
has no numeric values and at least one non-NULL text string, the field is
considered as text. In any other case it is considered as numeric.

You can force the data type by wrapping a field name with String() or
Mixed().

» String() forces the field to be text. If the field is numeric, the text
part of the dual value is extracted, there is no conversion
performed.

+ Mixed() forces the field to be dual.

String() or Mixed() cannot be used outside extension table field
definitions, and you cannot use other Qlik Sense functions in a table field
definition.

More about analytic connections

You need to configure analytic connections before you can use them.

Script syntax and chart functions - Qlik Sense, May 2024 159

3 Script statements and keywords

Argument

where

while

group by

order by

Description

where is a clause used for stating whether a record should be included in
the selection or not. The selection is included if criterionis True.
criterionis a logical expression.

while is a clause used for stating whether a record should be repeatedly
read. The same record is read as long as criterionis True. In order to be
useful, a while clause must typically include the IterNo() function.

criterionis a logical expression.

group by is a clause used for defining over which fields the data should be
aggregated (grouped). The aggregation fields should be included in some

way in the expressions loaded. No other fields than the aggregation fields

may be used outside aggregation functions in the loaded expressions.

groupbyfieldlist ::= (fieldname { ,fieldname })

order by is a clause used for sorting the records of a resident table before
they are processed by the load statement. The resident table can be
sorted by one or more fields in ascending or descending order. The sorting
is made primarily by numeric value and secondarily by national collation
order. This clause may only be used when the data source is a resident
table.

The ordering fields specify which field the resident table is sorted by. The
field can be specified by its name or by its number in the resident table
(the first field is number 1).

orderbyfieldlist ::= fieldname [sortorder] {, fieldname [sortorder]}

sortorderis either asc for ascending or desc for descending. If no
sortorderis specified, ascis assumed.

fieldname, path, filename and aliasname are text strings representing
what the respective names imply. Any field in the source table can be used
as fieldname. However, fields created through the as clause (aliasname)
are out of scope and cannot be used inside the same load statement.

If no source of data is given by means of a from, inline, resident, from_field, extension or
autogenerate clause, data will be loaded from the result of the immediately succeeding SELECT or
LOAD statement. The succeeding statement should not have a prefix.

Examples:

Loading different file formats
Load a delimited data file with default options:

LOAD * from datal.csv;

Load a delimited data file from a library connection (DataFiles):

Script syntax and chart functions - Qlik Sense, May 2024 160

3 Script statements and keywords

LOAD * from 'lib://DataFiles/datal.csv';

Load all delimited data files from a library connection (DataFiles):
LOAD * from 'lib://DataFiles/*.csv';
Load a delimited file, specifying comma as delimiter and with embedded labels:

LOAD * from 'c:\userfiles\datal.csv' (ansi, txt, delimiter is ',', embedded Tlabels);

Load a delimited file specifying tab as delimiter and with embedded labels:

LOAD * from 'c:\userfiles\data2.txt' (ansi, txt, delimiter is '\t', embedded labels);

Load a dif file with embedded headers:

LOAD * from file2.dif (ansi, dif, embedded labels);

Load three fields from a fixed record file without headers:

LOAD @1:2 as ID, @3:25 as Name, @57:80 as City from data4.fix (ansi, fix, no Tabels, header is
0, record is 80);

Load a QVX file, specifying an absolute path:

LOAD * from C:\qdssamples\xyz.qvx (qvx);

Loading web files
Load from the default URL set in the web file data connection:

LOAD * from [1ib://MyWebFile];
Load from a specific URL, and override the URL set in the web file data connection:

LOAD * from [1ib://MywWebFile] (URL is 'http://localhost:8000/foo.bar');

Load from a specific URL set in a variable using dollar-sign expansion:

SET dynamicURL = 'http://localhost/foo.bar';
LOAD * from [1ib://MywebFile] (URL is '$(dynamicURL)');

Selecting certain fields, renaming and calculating fields
Load only three specific fields from a delimited file:

LOAD FirstName, LastName, Number from datal.csv;

Rename first field as A and second field as B when loading a file without labels:

LOAD @1 as A, @ as B from data3.txt (ansi, txt, delimiter is '\t', no Tlabels);

Load Name as a concatenation of FirstName, a space character, and LastName:

LOAD FirstName&' '&LastName as Name from datal.csv;

Load Quantity, Price and Value (the product of Quantity and Price):

LOAD Quantity, Price, Quantity*Price as value from datal.csv;

Script syntax and chart functions - Qlik Sense, May 2024 161

3 Script statements and keywords

Selecting certain records
Load only unique records, duplicate records will be discarded:

LOAD distinct FirstName, LastName, Number from datal.csv;

Load only records where the field Litres has a value above zero:

LOAD * from Consumption.csv where Litres>0;

Loading data not on file and auto-generated data
Load a table with inline data, two fields named CatID and Category:

LOAD * Inline
[catID, category
0,Regular
1,0ccasional
2,Permanent];

Load a table with inline data, three fields named UserID, Password and Access:

LOAD * Inline [UserID, Password, Access
A, ABC456, User
B, VIP789, Admin];

Load a table with 10 000 rows. Field A will contain the number of the read record (1,2,3,4,5...) and
field B will contain a random number between 0 and 1:

LOAD RecNo() as A, rand() as B autogenerate(10000);

The parenthesis after autogenerate is allowed but not required.

Loading data from a previously loaded table
First we load a delimited table file and name it tab1:

tabl:
SELECT A,B,C,D from 'lib://DataFiles/datal.csv';

Load fields from the already loaded tab1 table as tab2:

tab2:
LOAD A,B,month(C),A*B+D as E resident tabl;

Load fields from already loaded table tab1 but only records where A is larger than B:

tab3:
LOAD A,A+B+C resident tabl where A>B;

Load fields from already loaded table tab1 ordered by A:

LOAD A,B*C as E resident tabl order by A;

Load fields from already loaded table tab1, ordered by the first field, then the second field:

LOAD A,B*C as E resident tabl order by 1,2;

Script syntax and chart functions - Qlik Sense, May 2024 162

3 Script statements and keywords

Load fields from already loaded table tab1 ordered by C descending, then B in ascending order, and
then the first field in descending order:

LOAD A,B*C as E resident tabl order by C desc, B asc, 1 desc;

Loading data from previously loaded fields
Load field Types from previously loaded table Characters as A:

LOAD A from_field (Characters, Types);

Loading data from a succeeding table (preceding load)
Load A, B and calculated fields X and Y from Table1 that is loaded in succeeding SELECT statement:

LOAD A, B, if(c>0, 'positive', 'negative') as X, weekday(D) as Y;
SELECT A,B,C,D from Tablel;

Grouping data
Load fields grouped (aggregated) by ArtNo:

LOAD ArtNo, round(Sum(TransAmount),0.05) as ArtNoTotal from table.csv group by ArtNo;

Load fields grouped (aggregated) by Week and ArtNo:

LOAD Week, ArtNo, round(Avg(TransAmount),0.05) as weekArtNoAverages from table.csv group by
week, ArtNo;

Reading one record repeatedly
In this example we have a input file Grades.csv containing the grades for each student condensed
in one field:

Student,Grades
Mike,5234
John, 3345
Pete,1234
Paul, 3352

The grades, in a 1-5 scale, represent subjects Math, English, Science and History. We can separate
the grades into separate values by reading each record several times with a while clause, using the
IterNo() function as a counter. In each read, the grade is extracted with the Mid function and
stored in Grade, and the subject is selected using the pick function and stored in Subject. The final
while clause contains the test to check if all grades have been read (four per student in this case),
which means next student record should be read.

MyTab:

LOAD Student,

mid(Grades,IterNo(),1) as Grade,

pick(IterNo(), 'Math', 'English', 'Science', 'History') as Subject from Grades.csv
while IsNum(mid(Grades,IterNo(),1));

The result is a table containing this data:

Script syntax and chart functions - Qlik Sense, May 2024 163

3 Script statements and keywords

Student Subject Grade

John English 3
John History 5
John Math 3
John Scence 4
Mike English 2
Mike History 4
Mike Math 5
Mike Scence 3
Paul English 3
Paul History 2
Paul Math 3
Paul Scence 5§
Pete English 2
Pete History 4
Pete Math 1
Pete Sdence 3

Loading from analytic connections
The following sample data is used.

values:

Load
Rand() as A,
Rand() as B,
Rand() as C

AutoGenerate(50);

Loading data using a function

In these examples, we assume that we have an analytic connection plugin named P that contains a
custom function Calculate(Parameteri1, Parameter2). The function returns the table Results that
contains the fields Field7and Field2.

Load * Extension P.Calculate(values{A, C});
Load all fields that are returned when sending the fields A and C to the function.

Load Fieldl Extension P.Calculate(values{A, C});
Load only the Field1 field when sending the fields A and C to the function.

Load * Extension P.Calculate(values);
Load all fields that are returned when sending the fields A and B to the function. As fields are not
specified, A and B are used as they are the first in order in the table.

Load * Extension P.Calculate(values {C, C});
Load all fields that are returned when sending the field C to both parameters of the function.

Load * Extension P.Calculate(values {String(A), Mixed(B)});
Load all fields that are returned when sending the field A forced as a string and B forced as a
numeric to the function.

Script syntax and chart functions - Qlik Sense, May 2024 164

3 Script statements and keywords

Loading data by evaluating a script

Load A as A_echo, B as B_echo Extension R.ScripteEval('q;', values{A, B});
Load the table returned by the script g when sending the values of A and B.

Load * Extension R.ScriptEval('$(My_R_Script)', values{A, B});
Load the table returned by the script stored in the My_R_Script variable when sending the values of
A and B.

Load * Extension R.ScriptEval('$(My_R_Script)', values{B as D, *});
Load the table returned by the script stored in the My_R_Script variable when sending the values of
B renamed to D, A and C. Using * sends the remaining unreferenced fields.

The file extension of DataFiles connections is case sensitive. For example: .qvd.

Format specification items

Each format specification item defines a certain property of the table file:

fspec-item ::=[ansi|oem | mac | UTF-8 | Unicode | txt | fix | dif | biff | ooxml | html | xml |
kml | qvd | qvx | parquet | delimiter is char | no eof | embedded labels | explicit labels | no
labels | table is [tablename] | header is n | header is 1ine | header is n lines | comment

is string | record is n | record is 1ine | record is n lines | no quotes [msq | URL is string |
userAgent is string]

Character set

Character set is a file specifier for the LOAD statement that defines the character set
used in the file.

The ansi, oem and mac specifiers were used in QlikView and will still work. However, they will not
be generated when creating the LOAD statement with Qlik Sense.

Syntax:
utf8 | unicode | ansi | oem | mac | codepage is

Arguments:
Arguments
Argument Description
utf8 UTF-8 character set
unicode Unicode character set
ansi Windows, codepage 1252
oem DOS, 0S/2, AS400 and others
mac Codepage 10000

codepage is With the codepage specifier, it is possible to use any Windows codepage as N.

Script syntax and chart functions - Qlik Sense, May 2024 165

3 Script statements and keywords

Limitations:

Conversion from the oem character set is not implemented for macOS. If nothing is specified,
codepage 1252 is assumed under Windows.

Example:

LOAD * from a.txt (utf8, txt, delimiter is ',' , embedded Tabels)

LOAD * from a.txt (unicode, txt, delimiter is ',' , embedded Tlabels)
LOAD * from a.txt (codepage is 10000, txt, delimiter is ',' , no labels)
See also:

[Load (page 154)

Table format

The table format is a file specifier for the LOAD statement that defines the file type. If
nothing is specified, a .txt file is assumed.

Table format types

Type Description

txt In a delimited text file the columns in the table are separated by a delimiter
character.

fix In a fixed record file, each field is exactly a certain number of characters.

Typically, many fixed record length files contains records separated by a
linefeed, but there are more advanced options to specify record size in
bytes or to span over more than one line with Record is.

If the data contains multi-byte characters, field breaks can
become misaligned as the format is based on a fixed length in

bytes.
dif In a .diffile, (Data Interchange Format) a special format for defining the
table is used.
biff Qlik Sense can also interpret data in standard Excel files by means of the

biff format (Binary Interchange File Format).

ooxml Excel 2007 and later versions use the ooxml .xs/x format.

The Table is specifier can be used to define the sheet name to be loaded as
atable.

Table is (page 170)

Script syntax and chart functions - Qlik Sense, May 2024 166

3 Script statements and keywords

Type Description
html If the table is part of an html page or file, html should be used.
xml xml (Extensible Markup Language) is a common markup language that is

used to represent data structures in a textual format.

The Table is specifier can be used to define the path of the XML to be
loaded as a table.

Table is (page 170)

qvd The format qvdis the proprietary QVD files format, exported from a Qlik
Sense app.
qvXx qvxis a file/stream format for high performance output to Qlik Sense.

parquet Apache Parquet is a columnar storage format, highly efficient for storing
and querying large datasets.

With Parquet files containing nested data, you can specify the table from

the Parquet file to load using Table is specifier. For example: LoAaD * FRoM
[1ib://DataFiles/company.parquet] (parquet, table is

[company:salesrep.salesrep]);.

Table is (page 170)

Delimiter is

For delimited table files, an arbitrary delimiter can be specified through the delimiter is
specifier. This specifier is relevant only for delimited .txt files.

Syntax:
delimiter is char

Arguments:
Arguments
Argument Description
char Specifies a single character from the 127 ASCII characters.

Additionally, the following values can be used:

Optional values

Value Description
t' representing a tab sign, with or without quotation marks.
1\ representing a backslash (\) character.

Script syntax and chart functions - Qlik Sense, May 2024 167

3 Script statements and keywords

Value Description
'spaces’ representing all combinations of one or more spaces. Non-
printable characters with an ASClI-value below 32, with the
exception of CR and LF, will be interpreted as spaces.
If nothing is specified, delimiter is ',' is assumed.

Example:

LOAD * from a.txt (utf8, txt, delimiter is ',' , embedded labels);

See also:
) Load (page 154)

No eof

The no eof specifier is used to disregard end-of-file character when loading delimited .txt files.

Syntax:

no eof

If the no eof specifier is used, characters with code point 26, which otherwise denotes end-of-file,
are disregarded and can be part of a field value.

It is relevant only for delimited text files.
Example:

LOAD * from a.txt (txt, utf8, embedded labels, delimiter is ' ', no eof);

See also:
[Load (page 154)

Labels

Labels is a file specifier for the LOAD statement that defines where in a file the field names can be
found.

Syntax:
embedded labels|explicit labels|no labels

The field names can be found in different places of the file. If the first record contains the field
names, embedded labels should be used. If there are no field names to be found, no labels should
be used. In diffiles, a separate header section with explicit field names is sometimes used. In such a
case, explicit labels should be used. If nothing is specified, embedded labels is assumed, also for
dif files.

Script syntax and chart functions - Qlik Sense, May 2024 168

3 Script statements and keywords

Example 1:

LOAD * from a.txt (unicode, txt, delimiter is ',' , embedded labels
Example 2:

LOAD * from a.txt (codePage is 1252, txt, delimiter is ',' , no labels)
See also:

) Load (page 154)

Headeris

Specifies the header size in table files. An arbitrary header length can be specified through the
header is specifier. A header is a text section not used by Qlik Sense.

Syntax:

header is n
header is line
header is n lines

The header length can be given in bytes (header is n), or in lines (header is line or header is n
lines). n must be a positive integer, representing the header length. If not specified, header is 0 is
assumed. The header is specifier is only relevant for table files.

Example:

This is an example of a data source table containing a header text line that should not be
interpreted as data by Qlik Sense.

*Header Tine
coll,col2
a,B

c,D

Using the header is 1 lines specifier, the first line will not be loaded as data. In the example, the
embedded labels specifier tells Qlik Sense to interpret the first non-excluded line as containing
field labels.

LOAD Coll, cCol2

FROM 'Tib://files/header.txt’'
(txt, embedded Tabels, delimiter is ',', msq, header is 1 Tines);

The result is a table with two fields, Col1 and Col2.

See also:
() Load (page 154)

Script syntax and chart functions - Qlik Sense, May 2024 169

3 Script statements and keywords

Record is

For fixed record length files, the record length must be specified through the record is
specifier.

Syntax:

Record is n
Record is line
Record is n lines

Arguments:
Arguments
Argument Description
n Specifies the record length in bytes.
line Specifies the record length as one line.
nlines Specifies the record length in lines where n is a positive integer representing the

record length.

Limitations:

The record is specifier is only relevant for fix files.

See also:
) Load (page 154)

Table is

For Excel, XML, or Parquet files, you can specify the table you are loading data from in
the table format specifier.

Syntax:
Table is table name

Script syntax and chart functions - Qlik Sense, May 2024 170

3 Script statements and keywords

Arguments:

Arguments

Argument Description

table name Specifies the name of the table. The value depends on the table format:

e Excel: The sheet name.
« XML: The path that specifies the part of the XML to be loaded.

» Parquet: The path that specifies the table, with the format
<node>.<node>.<node>.
Use Table is when specifying a table within a nested structure.
For example, you have Parquet data in the following schema:
Schema:
Field(name: "Name", datatype: String),
Field(name: "Age", datatype: Float),
Field(name: "Phone", datatype: List(
Field(name: "Item", datatype: Struct[
Field(name: "Number", datatype: String)
You could load Phone and its nested fields as a table with the argument
Table is [Schema:Phone.1tem]. This will generate the key field %Key_Phone

with the table.

Example: Excel

LOAD

"Item Number",

"Product Group",

"Product Line",

"Product Sub Group",

"Product Type"
FROM [Tib://AttachedFiles/Item master.x1sx]
(ooxml, embedded labels, table is [Item master]);

Example: XML

LOAD

city%Table,

%Key_row_7FAC1F878ECOL1ECB
FROM [Tib://AttachedFiles/cities.xml]
(Xmlsimple, table 1is [root/row/country/city]);

Example: Parquet

The file company.parquet contains the following schema:

company (String)
contact (String)
company:salesrep (List)
salesrep (Group)
salesrep (String)

Script syntax and chart functions - Qlik Sense, May 2024 171

3 Script statements and keywords

company:headquarter (List)
headquarter (Group)
country (String)
city (String)
city:region (List)
region (Group)
region (String)
The following would load the contents from the file into tables. The first load statement loads the
root group. The second load statement loads the contents of the salesrep group as a table. The

third loads the headquarter group as a table. The fourth loads the region group in as a table.

LOAD * FROM [..] (parquet);

LOAD * FROM [..] (parquet, table is [company:salesrep.salesrep]);

LOAD * FROM [..] (parquet, table is [company:headquarter.headquarter]

LOAD * FROM [..] (parquet, table 1is [company:headquarter.headquarter.city:region.region]
Limitations:

The Table is specifier is only relevant for Excel, XML, or Parquet files.

Quotes

Quotes is a file specifier for the LOAD statement that defines whether quotes can be used and the
precedence between quotes and separators. For text files only.

Syntax:

no quotes

msq

If the specifier is omitted, standard quoting is used, that is, the quotes " " or ' ' can be used, but only
if they are the first and last non blank character of a field value.

Arguments:
Arguments
Argument Description
no quotes Used if quotation marks are not to be accepted in a text file.
msq Used to specify modern style quoting, allowing multi-line content in fields. Fields

containing end-of-line characters must be enclosed within double quotes.

One limitation of the msq option is that single double-quote (") characters
appearing as first or last character in field content will be interpreted as start or
end of multi-line content, which may lead to unpredicted results in the data set
loaded. In this case you should use standard quoting instead, omitting the
specifier.

XML

This script specifier is used when loading xml files. Valid options for the XML specifier
are listed in syntax.

Script syntax and chart functions - Qlik Sense, May 2024 172

3 Script statements and keywords

You cannot load DTD files in Qlik Sense.

Syntax:

xmlsimple

See also:
) Load (page 154)

KML

This script specifier is used when loading KML files to use in a map visualization.

Syntax:
kml

The KML file can represent either area data (for example, countries or regions) represented by
polygons, line data (for example tracks or roads), or point data (for example, cities or places)
represented by points in the form [long, lat].

URL is

This script specifier is used to set the URL of a web file data connection when loading a
web file.

Syntax:
URL is string

Arguments:
Arguments
Argument Description
string Specifies the URL of the file to load. This will override the URL set in the web file

connection that is used.

Limitations:
The URL is specifier is only relevant for web files. You need to use an existing web file data

connection.

See also:
) Load (page 154)

Script syntax and chart functions - Qlik Sense, May 2024 173

3 Script statements and keywords

userAgentis
This script specifier is used to set the browser user agent when loading a web file.

Syntax:
userAgent is string

Arguments:
Arguments
Argument Description
string Specifies the browser user agent string. This will override the default browser

user agent "Mozilla/5.0".

Limitations:

The userAgent is specifier is only relevant for web files.

See also:
) Load (page 154)

Let

The let statement is a complement to the set statement, used for defining script
variables. The let statement, in opposition to the set statement, evaluates the
expression on the right side of the ' =" at script run time before it is assigned to the
variable.

Syntax:

Let variablename=expression

Examples and results:

Example Result

Set x=3+4; $(x) will be evaluated as ' 3+4 "
Let y=3+4;

z=$(y)+1; $(y) will be evaluatedas'7'

$(2) will be evaluated as'8"'

Note the difference between the Set and Let statements. The Set
statement assigns the string '3+4' to the variable whereas the Let
statement evaluates the string and assigns 7 to the variable.

Let T=now(); $ (1) will be given the value of the current time.

Script syntax and chart functions - Qlik Sense, May 2024 174

3 Script statements and keywords

Loosen Table

One or more Qlik Sense internal data tables can be explicitly declared loosely coupled during script
execution by using a Loosen Table statement. When a table is loosely coupled, all associations
between field values in the table are removed. A similar effect could be achieved by loading each
field of the loosely coupled table as independent, unconnected tables. Loosely coupled can be
useful during testing to temporarily isolate different parts of the data structure. A loosely coupled
table can be identified in the table viewer by the dotted lines. The use of one or more Loosen Table
statements in the script will make Qlik Sense disregard any setting of tables as loosely coupled
made before the script execution.

Syntax:
Loosen Tabletablename [, tablename2 ...]
Loosen Tablestablename [, tablename2 ...]

Either syntax: Loosen Table or Loosen Tables can be used.

Should Qlik Sense find circular references in the data structure which cannot be broken
by tables declared loosely coupled interactively or explicitly in the script, one or more
additional tables will be forced loosely coupled until no circular references remain. When
this happens, the Loop Warning dialog, gives a warning.

Example:

Tabl:
SELECT * from Trans;
Loosen Table Tabl;

Map

The map ... using statement is used for mapping a certain field value or expression to
the values of a specific mapping table. The mapping table is created through the
Mapping statement.

Syntax:
Map fieldlist Using mapname

The automatic mapping is done for fields loaded after the Map ... Using statement until the end of
the script or until an Unmap statement is encountered.

The mapping is done last in the chain of events leading up to the field being stored in the internal
table in Qlik Sense. This means that mapping is not done every time a field name is encountered as
part of an expression, but rather when the value is stored under the field name in the internal table.
If mapping on the expression level is required, the Applymap() function has to be used instead.

Script syntax and chart functions - Qlik Sense, May 2024 175

3 Script statements and keywords

Arguments:

Argument

fieldlist

mapname

Example

Arguments
Description
A comma separated list of the fields that should be mapped from this point in the
script. Using * as field list indicates all fields. The wildcard characters * and ? are

allowed in field names. Quoting of field names may be necessary when wildcards
are used.

The name of a mapping table previously read in a mapping load or mapping
select statement.

Examples and results:

Result

Map Country Using Enables mapping of the field Country using the map Cmap.

Cmap;

Map A, B, C Using X; Enables mapping of the fields A, B and C using the map X.

Map * Using GenMap; Enables mapping of all fields using GenMap.

NullAsNull

The NullAsNull statement turns off the conversion of NULL values to string values
previously set by a NullAsValue statement.

Syntax:

NullAsNull *fieldlist

The NullAsValue statement operates as a switch and can be turned on or off several times in the
script, using either a NullAsValue or a NullAsNull statement.

Arguments:

Argument

*fieldlist

Example:

NuTTAsNul1l A,B;

Arguments

Description

A comma separated list of the fields for which NullAsNull should be turned on.
Using * as field list indicates all fields. The wildcard characters * and ? are allowed
in field names. Quoting of field names may be necessary when wildcards are
used.

Script syntax and chart functions - Qlik Sense, May 2024 176

3 Script statements and keywords

LOAD A,B from x.csv;

NullAsValue

The NullAsValue statement specifies for which fields that NULL should be converted
to a value.

Syntax:
NullAsValue *fieldlist

By default, Qlik Sense considers NULL values to be missing or undefined entities. However, certain

database contexts imply that NULL values are to be considered as special values rather than simply
missing values. The fact that NULL values are normally not allowed to link to other NULL values can
be suspended by means of the NullAsValue statement.

The NullAsValue statement operates as a switch and will operate on subsequent loading
statements. It can be switched off again by means of the NullAsNull statement.

Arguments:
Arguments
Argument Description
*fieldlist A comma separated list of the fields for which NullAsValue should be turned on.

Using * as field list indicates all fields. The wildcard characters * and ? are allowed
in field names. Quoting of field names may be necessary when wildcards are
used.

Example:

NuTlTAsvalue A,B;
Set Nullvalue = 'NULL';
LOAD A,B from x.csv;

Qualify

The Qualify statement is used for switching on the qualification of field names, i.e. field
names will get the table name as a prefix.

Syntax:
Qualify *fieldlist

The automatic join between fields with the same name in different tables can be suspended by
means of the qualify statement, which qualifies the field name with its table name. If qualified, the
field name(s) will be renamed when found in a table. The new name will be in the form of
tablename.fieldname. Tablename is equivalent to the label of the current table, or, if no label exists,
to the name appearing after from in LOAD and SELECT statements.

The qualification will be made for all fields loaded after the qualify statement.

Script syntax and chart functions - Qlik Sense, May 2024 177

3 Script statements and keywords

Qualification is always turned off by default at the beginning of script execution. Qualification of a
field name can be activated at any time using a qualify statement. Qualification can be turned off at
any time using an Unqualify statement.

The qualify statement should not be used in conjunction with partial reload.

Arguments:
Arguments
Argument Description
*fieldlist A comma separated list of the fields for which qualification should be turned on.

Using * as field list indicates all fields. The wildcard characters * and ? are allowed
in field names. Quoting of field names may be necessary when wildcards are
used.

Example 1:

Qualify B;
LOAD A,B from x.csv;
LOAD A,B from y.csv;

The two tables x.csv and y.csv are associated only through A. Three fields will result: A, x.B, y.B.

Example 2:

In an unfamiliar database, it is often useful to start out by making sure that only one or a few fields
are associated, as illustrated in this example:

qualify *;

unqualify TransiD;

SQL SELECT * from tabl;
SQL SELECT * from tab2;
SQL SELECT * from tab3;

Only TransID will be used for associations between the tables tab7, tab2 and tab3.

Rem

The rem statement is used for inserting remarks, or comments, into the script, or to
temporarily deactivate script statements without removing them.

Syntax:

Rem string

Everything between the rem and the next semicolon ; is considered to be a comment.

There are two alternative methods available for making comments in the script:

Script syntax and chart functions - Qlik Sense, May 2024 178

3 Script statements and keywords

1. Itis possible to create a comment anywhere in the script - except between two quotes - by
placing the section in question between [* and */.

2. When typing // in the script, all text that follows to the right on the same row becomes a
comment. (Note the exception //: that may be used as part of an Internet address.)

Arguments:

Arguments

Argument Description

string An arbitrary text.
Example:
Rem ** This is a comment **;

/* This is also a comment */
// This is a comment as well

Rename

The Rename script keyword can be used to rename tables or fields that are already loaded.

Rename field

This script function renames one or more existing Qlik Sense field(s) after they have
been loaded.

It is not recommended to name a variable identically to a field or a function in Qlik Sense.

Either syntax: rename field or rename fields can be used.

Syntax:
Rename Field (using mapname | oldname to newname{ , oldname to newname })
Rename Fields (using mapname | oldname to newname{ , oldname to newname })

Arguments:

Argument Description

mapname The name of a previously loaded mapping table containing one or more pairs of
old and new field names.

oldname The old field name.
newname The new field name.
Limitations:

You cannot rename two fields to having the same name.

Script syntax and chart functions - Qlik Sense, May 2024 179

3 Script statements and keywords

Example 1:
Rename Field XAz0007 to Sales;
Example 2:

Fieldmap:
Mapping SQL SELECT oldnames, newnames from datadictionary;
Rename Fields using Fieldmap;

Rename table
This script function renames one or more existing Qlik Sense internal table(s) after they
have been loaded.

Either syntax: rename table or rename tables can be used.

Syntax:
Rename Table (using mapname | oldname to newname{ , oldname to newname })
Rename Tables (using mapname | oldname to newname{ , oldname to newname })

Arguments:
Arguments
Argument Description
mapname The name of a previously loaded mapping table containing one or more pairs of

old and new table names.

oldname The old table name.
newname The new table name.
Limitations:

Two differently named tables cannot be renamed to having the same name. The script will generate
an error if you try to rename a table to the same name as an existing table.

Example 1:

Tabl:
SELECT * from Trans;
Rename Table Tabl to Xyz;

Example 2:

TabMap:
Mapping LOAD oldnames, newnames from tabnames.csv;
Rename Tables using TabMap;

Script syntax and chart functions - Qlik Sense, May 2024 180

3 Script statements and keywords

Search

The Search statement is used for including or excluding fields in smart search.

Syntax:
Search Include *fieldlist
Search Exclude *fieldlist

You can use several Search statements to refine your selection of fields to include. The statements
are evaluated from top to bottom.

Arguments:
Arguments
Argument Description
*fieldlist A comma separated list of the fields to include or exclude from searches in smart

search. Using * as field list indicates all fields. The wildcard characters * and ? are
allowed in field names. Quoting of field names may be necessary when wildcards

are used.
Example:
Search examples
Statement Description
Search Include *; Include all fields in searches in smart search.
Search Exclude [*ID]; Exclude all fields ending with ID from searches in smart search.
Search Exclude '*ID'; Exclude all fields ending with ID from searches in smart search.
Search Include ProductID; Include the field ProductID in searches in smart search.

The combined result of these three statements, in this sequence, is that all fields ending with ID
except ProductID are excluded from searches in smart search.

Section

With the section statement, it is possible to define whether the subsequent LOAD and SELECT
statements should be considered as data or as a definition of the access rights.

Syntax:

Section (access | application)

If nothing is specified, section application is assumed. The section definition is valid until a new
section statement is made.

Script syntax and chart functions - Qlik Sense, May 2024 181

3 Script statements and keywords

Example:

Section access;
Section application;

Select

The selection of fields from an ODBC data source or OLE DB provider is made through
standard SQL SELECT statements. However, whether the SELECT statements are
accepted depends on the ODBC driver or OLE DB provider used. Use of the

SELECT statement requires an open data connection to the source.

Syntax:
Select [all | distinct | distinctrow | top n [percent]] fieldlist

From tablelist

[where criterion]

[group by fieldlist [having criterion]]
[order by fieldlist [asc | desc]]

[(Inner | Left | Right | Full) join tablename on fieldref = fieldref]

Furthermore, several SELECT statements can sometimes be concatenated into one through the
use of a union operator:

selectstatement Union selectstatement

The SELECT statement is interpreted by the ODBC driver or OLE DB provider, so deviations from

the general SQL syntax might occur depending on the capabilities of the ODBC drivers or OLE DB
provider, for example:.

» asis sometimes not allowed, i.e. aliasname must follow immediately after fieldname.

e asis sometimes compulsory if an aliasnameis used.

« distinct, as, where, group by, order by, or union is sometimes not supported.

» The ODBC driver sometimes does not accept all the different quotation marks listed above.

This is not a complete description of the SQL SELECT statement! E.g. SELECT
statements can be nested, several joins can be made in one SELECT statement, the
number of functions allowed in expressions is sometimes very large, etc.

Script syntax and chart functions - Qlik Sense, May 2024 182

3 Script statements and keywords

Arguments:

Argument

distinct

distinctrow

fieldlist

from

where

group by

Arguments

Description

distinct is a predicate used if duplicate combinations of values in the selected
fields only should be loaded once.

distinctrow is a predicate used if duplicate records in the source table only
should be loaded once.

fieldlist ::= (*| field) {, field }

A list of the fields to be selected. Using * as field list indicates all fields in the
table.

fieldlist ::= field {, field }

A list of one or more fields, separated by commas.

field ::= (fieldref| expression) [as aliasname]

The expression can e.g. be a numeric or string function based on one or several
other fields. Some of the operators and functions usually accepted are: +, -, *, /,
& (string concatenation), sum(fieldname), count(fieldname), avg(fieldname)
(average), month(fieldname), etc. See the documentation of the ODBC driver for

more information.
fieldref ::= [tablename.] fieldname

The tablename and the fieldname are text strings identical to what they imply.
They must be enclosed by straight double quotation marks if they contain e.g.
spaces.

The as clause is used for assigning a new name to the field.

tablelist ::= table {, table }

The list of tables that the fields are to be selected from.

table ::= tablename [[as] aliasname]

The tablename may or may not be put within quotes.

where is a clause used for stating whether a record should be included in the
selection or not.

criterion is a logical expression that can sometimes be very complex. Some of
the operators accepted are: numeric operators and functions, =, <> or #(not
equal), >, >=, <, <=, and, or, not, exists, some, all, in and also new SELECT
statements. See the documentation of the ODBC driver or OLE DB providerfor
more information.

group by is a clause used for aggregating (group) several records into one.
Within one group, for a certain field, all the records must either have the same
value, or the field can only be used from within an expression, e.g. as a sum or an
average. The expression based on one or several fields is defined in the
expression of the field symbol.

Script syntax and chart functions - Qlik Sense, May 2024 183

3 Script statements and keywords

Argument

having

order by

join

Example 1:

Description

having is a clause used for qualifying groups in a similar manner to how the
where clause is used for qualifying records.

order by is a clause used for stating the sort order of the resulting table of the
SELECT statement.

join is a qualifier stating if several tables are to be joined together into one. Field
names and table names must be put within quotes if they contain blank spaces
or letters from the national character sets. When the script is automatically
generated by Qlik Sense, the quotation mark used is the one preferred by the
ODBC driver or OLE DB provider specified in the data source definition of the
data source in the Connect statement.

SELECT * FROM Categories ;

Example 2:

SELECT "Category ID , Category Name FROM "Categories ;

Example 3:

SELECT "Order ID , "Product ID ,
‘Unit Price’ * Quantity * (1-Discount) as NetSales
FROM "Order Details ;

Example 4:

SELECT "Order Details . Order ID,

sum(Order Details . Unit Price’

*

‘order Details .Quantity) as "Result’

FROM "Order Details , orders
where orders. order ID = "Order Details . Order ID’
group by “order Details . order ID;

Set

The set statement is used for defining script variables. These can be used for substituting strings,
paths, drives, and so on.

Syntax:

Set variablename=string

Example 1:

Set FileToUse=Datal.csv;

Example 2:

Set Constant="My string";

Script syntax and chart functions - Qlik Sense, May 2024 184

3 Script statements and keywords

Example 3:

Set BudgetYear=2012;

Sleep

The sleep statement pauses script execution for a specified time.

Syntax:
Sleep n

Arguments:

Argument Description

n Stated in milliseconds, where nis a positive integer no larger than 3600000 (i.e. 1
hour). The value may be an expression.

Example 1:

Sleep 10000;

Example 2:

Sleep t*1000;

SQL
The SQL statement allows you to send an arbitrary SQL command through an ODBC or OLE DB
connection.

Syntax:
SQL sgl command

Sending SQL statements which update the database will return an error if Qlik Sense has opened
the ODBC connection in read-only mode.

The syntax:

SQL SELECT * from tabl;
is allowed, and is the preferred syntax for SELECT, for reasons of consistency. The SQL prefix will,
however, remain optional for SELECT statements.

Arguments:
Argument Description
sql_command A valid SQL command.

Script syntax and chart functions - Qlik Sense, May 2024 185

3 Script statements and keywords

Example 1:
SQL leave;
Example 2:

SQL Execute <storedProc>;

SQLColumns

The sqglcolumns statement returns a set of fields describing the columns of an ODBC or OLE DB
data source, to which a connect has been made.

Syntax:
SQLcolumns

The fields can be combined with the fields generated by the sqltables and sqltypes commands in
order to give a good overview of a given database. The twelve standard fields are:

TABLE_QUALIFIER
TABLE_OWNER
TABLE_NAME
COLUMN_NAME
DATA_TYPE
TYPE_NAME
PRECISION
LENGTH
SCALE
RADIX
NULLABLE
REMARKS

For a detailed description of these fields, see an ODBC reference handbook.

Example:

Connect to 'MS Access 7.0 Database; DBQ=C:\Course3\DataSrc\QWT.mbd"';
SQLcolumns;

Script syntax and chart functions - Qlik Sense, May 2024 186

3 Script statements and keywords

Some ODBC drivers may not support this command. Some ODBC drivers may produce
additional fields.

SQLTables

The sqltables statement returns a set of fields describing the tables of an ODBC or OLE DB data
source, to which a connect has been made.

Syntax:
SQLTables

The fields can be combined with the fields generated by the sqlcolumns and sqltypes commands
in order to give a good overview of a given database. The five standard fields are:

TABLE_QUALIFIER
TABLE_OWNER
TABLE_NAME
TABLE_TYPE
REMARKS
For a detailed description of these fields, see an ODBC reference handbook.

Example:

Connect to 'MS Access 7.0 Database; DBQ=C:\Course3\DataSrc\QwT.mbd";
SQLTables;

Some ODBC drivers may not support this command. Some ODBC drivers may produce
additional fields.

SQLTypes

The sqltypes statement returns a set of fields describing the types of an ODBC or OLE DB data
source, to which a connect has been made.

Syntax:
SQLTypes

The fields can be combined with the fields generated by the sqglcolumns and sqltables commands
in order to give a good overview of a given database. The fifteen standard fields are:

TYPE_NAME

DATA_TYPE

Script syntax and chart functions - Qlik Sense, May 2024 187

3 Script statements and keywords

PRECISION
LITERAL_PREFIX
LITERAL_SUFFIX
CREATE_PARAMS
NULLABLE
CASE_SENSITIVE
SEARCHABLE
UNSIGNED_ATTRIBUTE
MONEY
AUTO_INCREMENT
LOCAL_TYPE_NAME
MINIMUM_SCALE
MAXIMUM_SCALE

For a detailed description of these fields, see an ODBC reference handbook.
Example:

connect to 'MS Access 7.0 Database; DBQ=C:\Course3\DataSrc\QWT.mbd"';
SQLTypes;

Some ODBC drivers may not support this command. Some ODBC drivers may produce
additional fields.

Star

The string used for representing the set of all the values of a field in the database can
be set through the star statement. It affects the subsequent LOAD and SELECT
statements.

Syntax:
Star is[string]

Script syntax and chart functions - Qlik Sense, May 2024 188

3 Script statements and keywords

Arguments:
Arguments
Argument Description
string An arbitrary text. Note that the string must be enclosed by quotation marks if it

contains blanks.

If nothing is specified, star is; is assumed, i.e. there is no star symbol available
unless explicitly specified. This definition is valid until a new star statement is
made.

The Star is statement is not recommended for use in the data part of the script (under Section
Application) if section access is used. The star character is however fully supported for the
protected fields in the Section Access part of the script. In this case you do not need to use the
explicit Star is statement since this is always implicit in section access.

Limitations

You cannot use the star character with key fields; that is, fields that link tables.

You cannot use the star character with any fields affected by the Unqualify statement as this
can affect fields that link tables.

You cannot use the star character with non-logical tables, for example, info-load tables or
mapping-load tables.

When the star character is used in a reducing field (a field that links to the data) in section
access, it represents the values listed in this field in section access. It does not represent
other values that may exist in the data but are not listed in section access.

You cannot use the star character with fields affected by any form of data reduction outside
the Section Access area.

Example

The example below is an extract of a data load script featuring section access.

Star is *;

o8

Section Access;

LOAD *

INLINE [

ACCESS, USERID, OMIT
ADMIN, ADMIN,

USER,
USER,
USER,
USER,
USER,
USER,
1;

USER1, SALES
USER2, WAREHOUSE
USER3, EMPLOYEES
USER4, SALES
USER4, WAREHOUSE
USER5, *

Section Application;
LOAD * INLINE [
SALES, WAREHOUSE, EMPLOYEES, ORDERS

1, 2,

3, 4

Script syntax and chart functions - Qlik Sense, May 2024 189

3 Script statements and keywords

The following applies:

e The Starsignis *.

» The user ADMIN sees all fields. Nothing is omitted.

e The user USERTis not able to see the field SALES.

e Theuser USERZ2is not able to see the field WAREHOUSE .
e The user USER3 cannot see the field EMPLOYEES.

* The user USER4 is added twice to the solution to OMIT two fields for this user, SALES and
WAREHOUSE.

* The USER5 has a “*” added which means that all listed fields in OMIT are unavailable, that is,
user USER5 cannot see the fields SALES, WAREHOUSE and EMPLOYEES but this user can
see the field ORDERS.

Store
The Store statement creates a QVD, Parquet, CSV, or TXT file.

Syntax:
Store [fieldlist from] table into filename [format-spec 1];
The statement will create an explicitly named QVD, Parquet, or text file.

The statement can only export fields from one data table, unless you are storing to Parquet. If fields
from several tables are to be exported into a QVD, CSV, or TXT file, an explicit join must be made
previously in the script to create the data table that should be exported. You can store multiple
tables in a single Parquet by nesting the data in the Parquet files.

The text values are exported to the CSV file in UTF-8 with BOM format. A delimiter can be specified,
see LOAD. The store statement to a CSV file does not support BIFF export.

In some cases with data that is not well-formed, fields will be surrounded by double
quotes to ensure that the data is interpreted correctly. This can happen, for example,
when the field contains characters such as quotes, comma, space or line breaks.

Script syntax and chart functions - Qlik Sense, May 2024 190

3 Script statements and keywords

Arguments:

Store command arguments

Argument Description

fieldlist:: = (*/ﬁe/d) {, field }) A list of the fields to be selected. Using * as field list
indicates all fields.

field::= fieldname [as aliasname]

fieldname s a text that is identical to a field name in
table. (Note that the field name must be enclosed b
straight double quotation marks or square brackets if it
contains spaces or other non-standard characters.)

aliasname s an alternate name for the field to be used in
the resulting QVD or CSV file.

table A script label representing an already loaded table to be
used as source for data.

filename The name of the target file including a valid path to an
existing folder data connection.

Example: 'lib://Table Files/target.qvd'

In legacy scripting mode, the following path formats are
also supported:

¢ absolute

Example: c:|datalsales.qvd

¢ relative to the Qlik Sense app working directory.

Example: datalsales.qvd

If the path is omitted, Qlik Sense stores the file in
the directory specified by the Directory
statement. If there is no Directory statement, Qlik
Sense stores the file in the working directory,
C:\Usersl{user}|Documents|Qlik|Sensel|Apps.

Script syntax and chart functions - Qlik Sense, May 2024 191

3 Script statements and keywords

Argument Description

format-spec ::=((txt | qvd | You can set the format specification to either of these

parquet), compression is codec) file formats. If the format specification is omitted, qvd is
assumed.

o txtfor CSV and TXT files.
e qvd for QVD files.
* parquet for Parquet files.

If you use parquet, you can also set which compression
codec to use with compression is. If you do not specify
the compression codec with compression is, snappy is

used. The following compression settings are available:

e uncompressed
e snappy

e gzip

o 124

e brotli

e zstd

e 1z4_hadoop

Example:

Store mytable into
[Tib://AttachedFiles/myfile.parquet] (parquet,
compression is 1z4);

Examples:

Store
Store
Store
Store
Store
Store
Store
Store

mytable into xyz.qvd (qvd);

* from mytable into 'lib://FoldercConnection/myfile.qvd";

Name, RegNo from mytable into xyz.qvd;

Name as a, RegNo as b from mytable into 'lib://FolderConnection/myfile.qvd';
mytable into myfile.txt (txt);

mytable into [Tib://FoldercConnection/myfile.csv] (txt);

mytable into myfile.parquet (parquet);

* from mytable into 'Tlib://FoldercConnection/myfile.qvd"';

Storing in Parquet files

Parquet is a strongly typed file format, where each field contains a single specific type of data (such
as in32, double, timestamp, or text). Qlik Sense stores internal data as a loosely typed dual, where
data from difference sources can be mixed into the same fields. As only one part of the dual can be
stored in each field in Parquet, it is important to know what each field contains. By default, Qlik
Sense uses the field type to determine how the field should be stored. When storing data in Parquet
files in a specific format, you must specify what type of data your fields are when loading them. If
you try to store data into incompatible fields in a Parquet file, such as numbers in a text field or text
in a timestamp field, you will end up with null values.

Script syntax and chart functions - Qlik Sense, May 2024 192

3 Script statements and keywords

When loading data you intend to store in Parquet, it is possible to change the default behavior. You
can either format it to change your data type or tag it to force specific column types in Parquet.

Formatting data for storage in Parquet

You can use Qlik Sense formatting functions to classify your data. For example, Text(), Num(),
Interval(), or Timestamp() can enforce data formats when storing data in Parquet. Qlik Sense can
store data into almost 20 data types depending on field attributes and automatic field tags. For
more information, see Interpretation functions (page 1265)

Example: Formatting data with Num() and Text()

The following example demonstrates preparing data for storage in Parquet. Num() is applied to the
num field. Text() is applied to both text and mixed. In the case of mixed, Text() prevents it from
being treated like a number field in Parquet and having the text values changed to null values.

Data:

LOAD * INLINE [
num, text, mixed
123.321, abc, 123
456.654, def, xyz
789.987, ghi, 321
1;

Format:

NoConcatenate

LOAD num, text, Text(mixed) as mixed RESIDENT Data;

STORE Format INTO [Tib://AttachedFiles/Tmp.parquet] (parquet);

Tagging data for storage in Parquet

You tag your data with $parquet tags to force specific column types when storing data in Parquet.
Each data type can be enforced by adding the corresponding control tag. For example, to store a

field as INT32 in Parquet, tag it with $parquet-int32 in the load script. Depending on the data type,
either the string or the numerical representation of the dual data will be stored.

The following Pargeut control tags can be used to tag fields for storing in Parquet files.

Parquet control tags

Control tag Dual Physical type Logical type Converted type
$parquet-boolean Number BOOLEAN NONE NONE
$parquet-int32 Number INT32 NONE NONE
$parquet-int64 Number INT64 NONE NONE
$parquet-float Number FLOAT NONE NONE
$parquet-double Number DOUBLE NONE NONE
$parquet-bytearray String BYTE_ARRAY NONE UTF8

$parquet- Number FIXED_LEN_BYTE_ NONE DECIMAL
bytearrayfix

Script syntax and chart functions - Qlik Sense, May 2024 193

3 Script statements and keywords

Control tag

$parquet-decimal
$parquet-date
$parquet-time

$parquet-timestamp

$parquet-string
$parquet-enum

$parquet-interval

$parquet-json
$parquet-bson

$parquet-uuid

Dual

Number
Number
Number

Number

String
String

Number

String
String
String

Physical type
ARRAY

INT64

INT32

INT64

INT64

BYTE_ARRAY
BYTE_ARRAY

FIXED_LEN_BYTE_
ARRAY

BYTE_ARRAY
BYTE_ARRAY

FIXED_LEN_BYTE_
ARRAY

Example: Tagging data for storage in Parquet

Logical type

DECIMAL
DATE

TIME
TIMESTAMP

STRING
ENUM
INTERVAL

JSON
BSON
uulib

Converted type

DECIMAL
DATE
TIME_MICROS

TIMESTAMP_
MICROS

UTF8
ENUM
INTERVAL

JSON
BSON
NONE

In this example, two tags are used to define the data for Parquet. The field numis tagged with

$parquet-int32 to define it as a number field that will be set as INT32 in Parquet.

Data:

LOAD * INLINE [
num, text,
123.321, abc
456.654, def
789.987, ghi

1;

TAG num WITH 'S$parquet-int32';
STORE Format INTO [1ib://AttachedFiles/Tmp.parquet] (parquet);

Storing nested data in Parquet files

You can store multiple tables in a Parquet files by nesting them into structured data. Store supports
structured nodes and list nodes in a star schema. Single tables can also be stored in nested mode

by using the Delimiter is specifier.

When storing tables, specify the tables you want to include separated by commas. For

example: STORE Tablel, Table2, Table3 INTO [1ib://<file location>/<file name>.parquet]
(parquet) ;. You can control which fields are stored by using a field list in the Store statement. For
example STORE Fieldl, Field2, FROM Tablel, Table2 INTO [1ib://<file Tlocation>/<file
name>.parquet] (parquet);. All fields in the field list must be in one or more of the listed tables. The
first table in the Store statement will be used as the fact table in the star schema.

Script syntax and chart functions - Qlik Sense, May 2024

194

3 Script statements and keywords

Field names are used to control how groups will be created and nested. By default, field names are
split into nodes with a period (.). The delimiter can be changed by setting the system variable
FieldNameDelimiter or by using the specifier Delimiter is. The specifier will override the system
variable..

Field names are split by the delimiter and the parts are used to create the schema with nested
groups. For example, sTORE Fieldl, Fieldl.Field2, Fieldl.Field3, Fieldl.Field4 FROM Tablel
INTO [nested.parquet] (parquet, delimiter is '.'); will create two groups (Group7and Group2)
with Fields1, Field2 and Field3, Field4.

Groups and fields may not have the same name in a node in the schema. For example,
STORE Address, Address.Street INTO [nested.parquet] (parquet, delimiter is '.'');
will fail because Address is ambiguous and is both a data field and a group.

When storing nested data in Parquet, keys between tables are transformed into link nodes in the
schema. Tables are transformed into structured nodes in the schema. You can override the default
transformation using field names.

Example: Storing nested data in a Parquet file

company:
LOAD * INLINE [
company, contact

A&G, Amanda Honda
Cabro, cary Frank
Fenwick, Dennis Fisher
Camros, Molly McKenzie

1;

salesrep:

LOAD * INLINE [
company, salesrep
A&G, Bob Park

Cabro, Cezar Sandu
Fenwick, Ken Roberts
camros, Max Smith

1;

headquarter:

LOAD * INLINE [
company, country, city
A&G, USA, Los Angeles
Cabro, USA, Albuquerque
Fenwick, USA, Baltimore
camros, USA, Omaha

1;

region:

LOAD * INLINE [
region, city

west, Los Angeles
Southwest, Albuquerque

Script syntax and chart functions - Qlik Sense, May 2024 195

3 Script statements and keywords

East, Baltimore
Central, Omaha

1;

STORE company, salesrep, headquarter, region INTO [1ib://AttachedFiles/company.parquet]

(parquet)
DROP TABLES company, salesrep, headquarter, region;

The resulting Parquet file has the following schema:

company (String)
contact (String)
company:salesrep (List)
salesrep (Group)
salesrep (String)
company:headquarter (List)
headquarter (Group)
country (String)
city (String)
city:region (List)
region (Group)
region (String)
Limitations

Storing nested data in Parquet has the following limitations:

» Store does not support map nodes.
» Storing does not include key fields generated from loading nested parquet files.
* You cannot store data from tables together that are not linked with key fields.

* The nested file denormalizes the data model. Non-referenced values will not be saved and
values referenced multiple times will be copied.

Table/Tables

The Table and Tables script keywords are used in Drop, Comment and Rename
statements, as well as a format specifier in Load statements.

Tag

This script statement provides a way to assign tags to one or more fields or tables. If an
attempt to tag a field or table not present in the app is made, the tagging will be
ignored. If conflicting occurrences of a field or tag name are found, the last value is
used.

Syntax:
Tag [field|fields] fieldlist with tagname

Tag [field|fields] fieldlist using mapname

Tag table tablelist with tagname

Script syntax and chart functions - Qlik Sense, May 2024 196

3 Script statements and keywords

Arguments
Argument Description
fieldlist One or several fields that should be tagged, in a comma separated list.
mapname The name of a mapping table previously loaded in a mapping Load or mapping
Select statement.
tablelist A comma separated list of the tables that should be tagged.
tagname The name of the tag that should be applied to the field.
Example 1:
tagmap:
mapping LOAD * inline [
a,b
Alpha,MyTag
Num,MyTag

1;
tag fields using tagmap;

Example 2:

tag field Alpha with 'mMyTag2';

Trace

The trace statement writes a string to the Script Execution Progress window and to the script log
file, when used. It is very useful for debugging purposes. Using $-expansions of variables that are
calculated prior to the trace statement, you can customize the message.

Syntax:
Trace string

Example 1:

The following statement can be used right after the Load statement that loads the 'Main' table.

Trace Main table Tloaded;
This will display the text ‘Main table loaded’ in the script execution dialog and in the log file.

Example 2:

The following statements can be used right after the Load statement that loads the '‘Main' table.

Let MyMessage = NoOfRows('Main') & ' rows in Main table';
Trace $(MyMessage);

This will display a text showing the number of rows in the script execution dialog and in the log file,
for example, 265,391 rows in Main table’.

Script syntax and chart functions - Qlik Sense, May 2024 197

3 Script statements and keywords

Unmap
The Unmap statement disables field value mapping specified by a previous Map ...
Using statement for subsequently loaded fields.

Syntax:
Unmap *fieldlist

Arguments:
Arguments
Argument Description
*fieldlist a comma separated list of the fields that should no longer be mapped from this

point in the script. Using * as field list indicates all fields. The wildcard characters
*and ? are allowed in field names. Quoting of field names may be necessary when
wildcards are used.

Examples and results:

Example Result

Unmap Country; Disables mapping of field Country.

Unmap A, B, C; Disables mapping of fields A, Band C.

Unmap *; Disables mapping of all fields.
Unqualify

The Unqualify statement is used for switching off the qualification of field names that
has been previously switched on by the Qualify statement.

Syntax:
Unqualify *fieldlist

Arguments:
Arguments
Argument Description
*fieldlist A comma separated list of the fields for which qualification should be turned on.

Using * as field list indicates all fields. The wildcard characters * and ? are allowed
in field names. Quoting of field names may be necessary when wildcards are
used.

Refer to the documentation for the Qualify statement for further information.

Script syntax and chart functions - Qlik Sense, May 2024 198

3 Script statements and keywords

Example 1:

In an unfamiliar database, it is often useful to start out by making sure that only one or a few fields
are associated, as illustrated in this example:

qualify *;

unqualify TransiID;

SQL SELECT * from tabl;

SQL SELECT * from tab2;
SQL SELECT * from tab3;

First, qualification is turned on for all fields.
Then qualification is turned off for TransID.
Only TransID will be used for associations between the tables tab7, tab2 and tab3. All other fields

will be qualified with the table name.

Untag

This script statement provides a way to remove tags from fields or tables. If an attempt
to untag a field or table not present in the app is made, the untagging will be ignored.

Syntax:
Untag [field|fields] fieldlist with tagname

Untag [field|fields] fieldlist using mapname

Untag table tablelist with tagname

Arguments:
Arguments
Argument Description
fieldlist One or several fields which tags should be removed, in a comma separated list.
mapname The name of a mapping table previously loaded in a mapping LOAD or mapping
SELECT statement.
tablelist A comma separated list of the tables that should be untagged.
tagname The name of the tag that should be removed from the field.
Example 1:
tagmap:
mapping LOAD * inline [
a,b
Alpha,MyTag
Num,MyTag

1;
uUntag fields using tagmap;

Script syntax and chart functions - Qlik Sense, May 2024 199

3 Script statements and keywords

Example 2:

Untag field Alpha with MyTag2;

3.4 Working directory

If you are referencing a file in a script statement and the path is omitted, Qlik Sense
searches for the file in the following order:

1. The directory specified by a Directory statement (only supported in legacy scripting mode).
2. If there is no Directory statement, Qlik Sense searches in the working directory.

Qlik Sense Desktop working directory
In Qlik Sense Desktop, the working directory is C:|Users|{user}|Documents|Qlik|Sense|Apps.

Qlik Sense working directory

In a Qlik Sense server installation, the working directory is specified in Qlik Sense Repository
Service, by default itis C:|ProgramData\|Qlik|SenselApps. See the Qlik Management Console help
for more information.

Script syntax and chart functions - Qlik Sense, May 2024 200

4 Working with variables in the data load editor

4 Working with variables in the data load
editor

A variable in Qlik Sense is a container storing a static value or a calculation, for example
a numeric or alphanumeric value. When you use the variable in the app, any change
made to the variable is applied everywhere the variable is used. You can define
variables in the variables overview, or in the script using the Data load editor. You set
the value of a variable using Let or Set statements in the data load script.

You can also work with the Qlik Sense variables from the variables overview when
editing a sheet.

4.1 Overview

If the first character of a variable value is an equals sign ' = ' Qlik Sense will try to evaluate the value
as a formula (Qlik Sense expression) and then display or return the result rather than the actual
formula text.

When used, the variable is substituted by its value. Variables can be used in the script for dollar sign
expansion and in various control statements. This is very useful if the same string is repeated many
times in the script, for example, a path.

Some special system variables will be set by Qlik Sense at the start of the script execution
regardless of their previous values.

4.2 Defining a variable

Variables provide the ability to store static values or the result of a calculation. When defining a
variable, use the following syntax:

set variablename = string
or

let variable = expression

The Set statement is used for string assignment. It assigns the text to the right of the equal sign to
the variable. The Let statement evaluates an expression to the right of the equal sign at script run
time and assigns the result of the expression to the variable.

Variables are case sensitive.

It is not recommended to name a variable identically to a field or a function in Qlik Sense.

Script syntax and chart functions - Qlik Sense, May 2024 201

4 Working with variables in the data load editor

Examples:

set x = 3 + 4; //thevariable will get the string '3 + 4' as the value.

let x = 3 + 4; //returns 7 as the value.

set x = Today(); //returns'Today()' as the value.

let x = Today(); //returnstoday's date as the value, for example, '9/27/2027'.

4.3 Deleting a variable

If you remove a variable from the script and reload the data, the variable stays in the app. If you
want to fully remove the variable from the app, you must also delete the variable from the variables
dialog.

4.4 Loading a variable value as a field value

If you want to load a variable value as a field value in a LOAD statement and the result of the dollar
expansion is text rather than numeric or an expression then you need to enclose the expanded
variable in single quotes.

Example:

This example loads the system variable containing the list of script errors to a table. You can note
that the expansion of ScriptErrorCount in the If clause does not require quotes, while the expansion
of ScriptErrorList requires quotes.

IF $(ScriptErrorCount) >= 1 THEN
LOAD '$(ScriptErrorList)' AS Error AutoGenerate 1;
END IF

4.5 Variable calculation

There are several ways to use variables with calculated values in Qlik Sense, and the result
depends on how you define it and how you call it in an expression.

In this example, we load some inline data:

LOAD * INLINE [
Dim, Sales

, 150

, 200

, 240

, 230

, 410

, 330

NN ww > >

1;
Let's define two variables:

Let vSales = 'sum(Sales)' ;

Script syntax and chart functions - Qlik Sense, May 2024 202

4 Working with variables in the data load editor

Let vSales2 = '=Ssum(Sales)' ;
In the second variable, we add an equal sign before the expression. This will cause the variable to
be calculated before it is expanded and the expression is evaluated.

If you use the vSales variable as it is, for example in a measure, the result will be the string Sum
(Sales), that is, no calculation is performed.

If you add a dollar-sign expansion and call $(vSales) in the expression, the variable is expanded,
and the sum of Sales is displayed.

Finally, if you call $(vSales2), the variable will be calculated before it is expanded. This means that
the result displayed is the total sum of Sales. The difference between using =$(vSales) and
=$(vSales2) as measure expressions is seen in this chart showing the results:

Results
Dim $(vSales) $(vSales2)

A 350 1560
470 1560
C 740 1560

As you can see, $(vSales) results in the partial sum for a dimension value, while $(vSales2) results in
the total sum.

The following script variables are available:

» Error variables (page 275)

» Number interpretation variables (page 211)
e System variables (page 203)

» Value handling variables (page 209)

4.6 System variables

System variables, some of which are system-defined, provide information about the
system and the Qlik Sense app.

System variables overview

Some of the functions are described further after the overview. For those functions, you can click
the function name in the syntax to immediately access the details for that specific function.

CreateSearchindexOnReload

This variable defines if search index files should be created during data reload.

CreateSearchIndexOnReload

Floppy
Returns the drive letter of the first floppy drive found, normally a.. This is a system-defined variable.

Script syntax and chart functions - Qlik Sense, May 2024 203

4 Working with variables in the data load editor

Floppy

This variable is not supported in standard mode.

CD
Returns the drive letter of the first CD-ROM drive found. If no CD-ROM is found, then c:is returned.
This is a system-defined variable.

CD

This variable is not supported in standard mode.

HidePrefix
All field names beginning with this text string will be hidden in the same manner as the system
fields. This is a user-defined variable.

HidePrefix

HideSuffix

All field names ending with this text string will be hidden in the same manner as the system fields.
This is a user-defined variable.

HideSuffix

Include

The Include/Must_Include variable specifies a file that contains text that should be included in the
script and evaluated as script code. It is hot used to add data. You can store parts of your script
code in a separate text file and reuse it in several apps. This is a user-defined variable.

$ (Include=filename)
$ (Must Include=filename)

OpenUriTimeout
This variable defines the timeout in seconds that Qlik Sense should respect when getting data from
URL sources (e.g. HTML pages). If omitted, the timeout is about 20 minutes.

OpenUrlTimeout

QvPath
Returns the browse string to the Qlik Sense executable. This is a system-defined variable.

QvPath

This variable is not supported in standard mode.

QvRoot
Returns the root directory of the Qlik Sense executable. This is a system-defined variable.

Script syntax and chart functions - Qlik Sense, May 2024 204

4 Working with variables in the data load editor

QvRoot

This variable is not supported in standard mode.

QvWorkPath
Returns the browse string to the current Qlik Sense app. This is a system-defined variable.

QvWorkPath

This variable is not supported in standard mode.

QvWorkRoot
Returns the root directory of the current Qlik Sense app. This is a system-defined variable.

QvWorkRoot

This variable is not supported in standard mode.

StripComments
If this variable is set to 0, stripping of /*..*/ and // comments in the script will be inhibited. If this
variable is not defined, stripping of comments will always be performed.

StripComments

Verbatim

Normally all field values are automatically stripped of leading and trailing blanks (ASCIl 32) before
being loaded into the Qlik Sense database. Setting this variable to 1 suspends the stripping of
blanks. Tab (ASCII 9) and hard space (ANSI 160) characters are never stripped.

Verbatim

WinPath
Returns the browse string to Windows. This is a system-defined variable.

WinPath

This variable is not supported in standard mode.

WinRoot
Returns the root directory of Windows. This is a system-defined variable.

WinRoot

This variable is not supported in standard mode.

Script syntax and chart functions - Qlik Sense, May 2024 205

4 Working with variables in the data load editor

CollationLocale
Specifies which locale to use for sort order and search matching. The value is the culture name of a
locale, for example 'en-US'.This is a system-defined variable.

CollationLocale

CreateSearchindexOnReload

This variable defines if search index files should be created during data reload.

Syntax:

CreateSearchIndexOnReload

You can define if search index files should be created during data reload, or if they should be
created after the first search request of the user. The benefit of creating search index files during
data reload is that you avoid the waiting time experienced by the first user making a search. This
needs to be weighed against the longer data reload time required by search index creation.

If this variable is omitted, search index files will not be created during data reload.

For session apps, search index files will not be created during data reload, regardless of
the setting of this variable.

Example 1: Create search index fields during data reload

set CreateSearchIndexonReload=1;

Example 2: Create search index fields after first search request

set CreateSearchIndexOnReload=0;

HidePrefix

All field names beginning with this text string will be hidden in the same manner as the
system fields. This is a user-defined variable.

Syntax:
HidePrefix

Example:
set HidePrefix='_" ;

If this statement is used, the field names beginning with an underscore will not be shown in the field
name lists when the system fields are hidden.

Script syntax and chart functions - Qlik Sense, May 2024 206

4 Working with variables in the data load editor

HideSuffix

All field names ending with this text string will be hidden in the same manner as the
system fields. This is a user-defined variable.

Syntax:
HideSuffix

Example:

set HideSuffix='%";

If this statement is used, the field names ending with a percentage sign will not be shown in the field
name lists when the system fields are hidden.

Include

The Include/Must_Include variable specifies a file that contains text that should be
included in the script and evaluated as script code. It is not used to add data. You can
store parts of your script code in a separate text file and reuse it in several apps. This is
a user-defined variable.

This variable supports only folder data connections in standard mode.

Syntax:
$ (Include=filename)

$ (Must_Include=filename)
There are two versions of the variable:

* Include does not generate an error if the file cannot be found, it will fail silently.
e Must_Include generates an error if the file cannot be found.

If you don't specify a path, the filename will be relative to the Qlik Sense app working directory. You
can also specify an absolute file path, or a path to a lib:// folder connection. Do not put a space
character before or after the equal sign.

The construction set Include =filename is not applicable.

Examples:

S (Include=abc.txt) ;

$ (Must Include=lib://DataFiles/abc.txt);

Script syntax and chart functions - Qlik Sense, May 2024 207

4 Working with variables in the data load editor

Limitations

Limited cross-compatibility between UTF-8 encoded files under Windows versus
Linux.

Itis optional to use UTF-8 with BOM (Byte Order Mark). BOM can interfere with the use of UTF-8in
software that does not expect non-ASCII bytes at the start of a file, but that could otherwise handle
the text stream.

» Windows systems use BOM in UTF-8 to identify that a file is UTF-8 encoded, despite the fact
that there is no ambiguity in the byte storage.

» Unix/Linux use UTF-8 for Unicode, but does not use the BOM as this interferes with the
syntax for command files.

This has some implications for Qlik Sense.

» In Windows any file that begins with an UTF-8 BOM is considered a UTF-8 script file.
Otherwise ANSI encoding is assumed.

 InLinux, the system default 8 bit code page is UTF-8. This is why the UTF-8 works although
it does not contain a BOM.

As a result, portability cannot be guaranteed. It is not always possible to create a file on Windows
that can be interpreted by Linux and vice versa. There is no cross compatibility between the two
systems regarding UTF-8 encoded files due to different handling of the BOM.

OpenUrITimeout

This variable defines the timeout in seconds that Qlik Sense should respect when
getting data from URL sources (e.g. HTML pages). If omitted, the timeout is about 20
minutes.

Syntax:
OpenUrlTimeout

Example:
set OpenuUrlTimeout=10;

StripComments

If this variable is set to O, stripping of /*..*/ and // comments in the script will be
inhibited. If this variable is not defined, stripping of comments will always be
performed.

Syntax:
StripComments

Script syntax and chart functions - Qlik Sense, May 2024 208

4 Working with variables in the data load editor

Certain database drivers use /*..*/ as optimization hints in SELECT statements. If this is the case,
the comments should not be stripped before sending the SELECT statement to the database driver.

It is recommended that this variable be reset to 1immediately after the statement(s)
where it is needed.

Example:

set StripComments=0;
SQL SELECT * /* <optimization directive> */ FROM Table ;
set StripComments=1;

Verbatim

Normally all field values are automatically stripped of leading and trailing blanks (ASCII
32) before being loaded into the Qlik Sense database. Setting this variable to 1
suspends the stripping of blanks. Tab (ASCII 9) and hard space (ANSI 160) characters
are never stripped.

Syntax:
Verbatim

Example:

set Verbatim = 1;

4.7 Value handling variables

This section describes variables that are used for handling NULL and other values.

Value handling variables overview

Each function is described further after the overview. You can also click the function name in the
syntax to immediately access the details for that specific function.

NullDisplay
The defined symbol will substitute all NULL values from ODBC, and connectors, on the lowest level
of data. This is a user-defined variable.

NullDisplay

Nullinterpret
The defined symbol will be interpreted as NULL when it occurs in a text file, Excel file or an inline
statement. This is a user-defined variable.

NullInterpret

Script syntax and chart functions - Qlik Sense, May 2024 209

4 Working with variables in the data load editor

NullValue
If the NullAsValue statement is used, the defined symbol will substitute all NULL values in the
NullAsValue specified fields with the specified string.

NullValue

OtherSymbol
Defines a symbol to be treated as 'all other values' before a LOAD/SELECT statement. This is a
user-defined variable.

OtherSymbol

NullDisplay
The defined symbol will substitute all NULL values from ODBC, and connectors, on the

lowest level of data. This is a user-defined variable.

Syntax:
NullDisplay

Example:

set NullDisplay="<NULL>";

Nullinterpret

The defined symbol will be interpreted as NULL when it occurs in a text file, Excel file or
an inline statement. This is a user-defined variable.

Syntax:
NullInterpret

Examples:

set NullInterpret= ;
set NullInterpret =;

will not return NULL values for blank values in Excel, but it will for a CSV text file.

set NullInterpret ='";

will return NULL values for blank values in Excel.

NullValue

If the NullAsValue statement is used, the defined symbol will substitute all NULL
values in the NullAsValue specified fields with the specified string.

Syntax:
NullValue

Script syntax and chart functions - Qlik Sense, May 2024 210

4 Working with variables in the data load editor

Example:

NullAsvalue Fieldl, Field2;
set Nullvalue='<NULL>";

OtherSymbol

Defines a symbol to be treated as 'all other values' before a LOAD/SELECT statement.
This is a user-defined variable.

Syntax:
OtherSymbol

Example:

set Othersymbol="+";

LOAD * 1inline

[x, Y

a, a

b, bl;

LOAD * 1inline

X, z

a, a

+, cl;

The field value Y="b' will now link to Z="c' through the other symbol.

4.8 Number interpretation variables

Number interpretation variables are system defined. The variables are included at the
top of the load script and apply number formatting settings at the time of the script
execution. They can be deleted, edited, or duplicated.

Number interpretation variables are automatically generated according to the current regional
settings of the operating system when a new app is created. In Qlik Sense Desktop, this is
according to the settings of the computer operating system. In Qlik Sense, it is according to the
operating system of the server where Qlik Sense is installed. If the Qlik Sense server you are
accessing is set to Sweden, the Data load editor will use Swedish regional settings for dates, time,
and currency. These regional format settings are not related to the language displayed in the Qlik
Sense user interface. Qlik Sense will be displayed in the same language as the browser you are
using.

Currency formatting

MoneyDecimalSep
The decimal separator defined replaces the decimal symbol for currency set by your regional
settings.

MoneyDecimalSep

Script syntax and chart functions - Qlik Sense, May 2024 211

4 Working with variables in the data load editor

MoneyFormat
The symbol defined replaces the currency symbol set by your regional settings.

MoneyFormat

MoneyThousandSep
The thousands separator defined replaces the digit grouping symbol for currency set by your
regional settings.

MoneyThousandSep

Number formatting

DecimalSep
The decimal separator defined replaces the decimal symbol set by your regional settings.

DecimalSep

ThousandSep
The thousands separator defined replaces the digit grouping symbol of the operating system
(regional settings).

ThousandSep

NumericalAbbreviation
The numerical abbreviation sets which abbreviation to use for scale prefixes of numerals, for
example M for mega or a million (106), and p for micro (107%).

NumericalAbbreviation

Time formatting

DateFormat

This environment variable defines the date format used as the default in the app. The format is used
both to interpret and format dates. If the variable is not defined, the date format of the regional
settings of the operating system will be fetched when the script runs.

DateFormat

TimeFormat
The format defined replaces the time format of the operating system (regional settings).

TimeFormat

TimestampFormat
The format defined replaces the date and time formats of the operating system (regional settings).

TimestampFormat

MonthNames
The format defined replaces the month names convention of the regional settings.

Script syntax and chart functions - Qlik Sense, May 2024 212

4 Working with variables in the data load editor

MonthNames

LongMonthNames
The format defined replaces the long month names convention in the regional settings.

LongMonthNames

DayNames
The format defined replaces the weekday names convention set by your regional settings.

DayNames

LongDayNames
The format defined replaces the long weekday names convention in the regional settings.

LongDayNames

FirstWeekDay
Integer that defines which day to use as the first day of the week.

FirstWeekDay

BrokenWeeks
This setting defines if weeks are broken or not.

BrokenWeeks

ReferenceDay
The setting defines which day in January to set as reference day to define week 1.

ReferenceDay

FirstMonthOfYear
The setting defines which month to use as first month of the year, which can be used to define
financial years that use a monthly offset, for example starting April 1.

This setting is currently unused but reserved for future use.

Valid settings are 1 (January) to 12 (December). Default setting is 1.

Syntax:
FirstMonthOfYear

Example:

Set FirstMonthofYear=4; //Sets the year to start in April

BrokenWeeks

This setting defines if weeks are broken or not.

Script syntax and chart functions - Qlik Sense, May 2024 213

4 Working with variables in the data load editor

Syntax:

BrokenWeeks

In Qlik Sense, the regional settings are fetched when the app is created, and the corresponding
settings are stored in the script as environment variables.

A North American app developer often gets set Brokenweeks=1; in the script, corresponding to
broken weeks. A European app developer often gets set Brokenweeks=0; in the script,
corresponding to unbroken weeks.

Unbroken weeks means that:

* In some years, week 1 starts in December, and in other years, the last week of previous year
continues into January.

e According to ISO 8601, week 1 always has at least 4 days in January. In Qlik Sense, this can
be configured using the referencepay variable.

Broken weeks means that:

» The last week of the year never continues into January.
* Week 1starts on January 1and is, in most cases, not a full week.

The following values can be used:

¢ 0 (=use unbroken weeks)
e 1 (= use broken weeks)

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the seT pateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Examples:

If you want ISO settings for weeks and week numbers, make sure to have the following in the script:

Set FirstWeekbDay=0;
Set Brokenweeks=0; //(use unbroken weeks)
Set ReferencebDay=4;

If you want US settings, make sure to have the following in the script:

Script syntax and chart functions - Qlik Sense, May 2024 214

4 Working with variables in the data load editor

Set FirstWeekDay=6;
Set Brokenweeks=1; //(use broken weeks)
Set Referencebay=1;

DateFormat

This environment variable defines the date format used as the default in the app and

by date returning functions like date() and date#(). The format is used to interpret and
format dates. If the variable is not defined, the date format set by your regional settings
is fetched when the script runs.

Syntax:
DateFormat
DateFormat Function examples
Example Result
Set DateFormat='M/D/YY'; //(US This use of the pateFormat function defines the date as the
format)

US format, month/day/year.

Set DateFormat='DD/MM/YY'; //(UK Thijs use of the pateFormat function defines the date as the
date format) UK format, day/month/year.

Set DateFormat='YYYY/MM/DD'; // This use of the pateFormat function defines the date as the
(1s0 date format) ISO format, year/month/day.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the seT pateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1- System variables default

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

Script syntax and chart functions - Qlik Sense, May 2024 215

4 Working with variables in the data load editor

» Adataset of dates.
* The pateFormat function, which will use the US date format.

In this example, a dataset is loaded into a table named 'Transactions'. It includes a date field. The US
pateFormat definition is used. This pattern will be used for implicit text to date conversion when the
text dates are loaded.

Load script
Set DateFormat='MM/DD/YYYY';

Transactions:
LOAD

date,

month(date) as month,
id,

amount

INLINE

[

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e month

Create this measure:

=sum(amount)
Results table
date month =sum(amount)
01/01/2022 Jan 1000
02/01/2022 Feb 2123
03/01/2022 Mar 4124
04/01/2022 Apr 2431

The pateFormat definition MM/DD/YYYY is used for implicit conversion of text to dates, which is why
the date field is properly interpreted as a date. The same format is used to display the date, as
shown in the results table.

Script syntax and chart functions - Qlik Sense, May 2024 216

4 Working with variables in the data load editor

Example 2 — Change system variable

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

* The same dataset from the previous example.
* The pateFormat function, which will use the ‘DD/MM/YYYY’ format.

Load script

SET DateFormat='DD/MM/YYYY';
Transactions:

LOAD

date,

month(date) as month,
id,

amount

INLINE

[

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431

1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e month

Create this measure:

=sum(amount)
Results table
date month =sum(amount)
01/01/2022 Jan 1000
02/01/2022 Jan 2123
03/01/2022 Jan 4124
04/01/2022 Jan 2431

Script syntax and chart functions - Qlik Sense, May 2024 217

4 Working with variables in the data load editor

Because the pateFormat definition was set to ‘DD/MM/YYYY’, you can see that the two digits after
the first “/” symbol have been interpreted as the month, resulting in all records being from the
month of January.

Example 3 — Date interpretation

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

« A dataset with dates in numerical format.
* The pateFormat variable, which will use the ‘DD/MM/YYYY’ format.
e The date() variable.

Load script

SET DateFormat='MM/DD/YYYY';

Transactions:

Load
date(numerical_date),
month(date(numerical_date)) as month,
id,

amount

Inline

[
numerical_date,id,amount
43254,1,1000
43255,2,2123
43256,3,4124
43258,4,2431

1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e month

Create this measure:

=sum(amount)

Script syntax and chart functions - Qlik Sense, May 2024 218

4 Working with variables in the data load editor

Results table

date month =sum(amount)
06/03/2022 Jun 1000
06/04/2022 Jun 2123
06/05/2022 Jun 4124
06/07/2022 Jun 2431

In the load script, you use the date() function to convert the numerical date into a date format.
Because you do not provide a specified format as a second argument in the function, the pateFormat
is used. This results in the date field using the format ‘MM/DD/YYYY’.

Example 4 — Foreign date formatting

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

« A dataset of dates.

* The pateFormat variable, which uses the ‘DD/MM/YYYY' format but is uncommented by
forward slashes.

Load script

// SET DateFormat='DD/MM/YYYY';

Transactions:
Load

date,

month(date) as month,
id,

amount

Inline

[

date,id,amount
22-05-2022,1,1000
23-05-2022,2,2123
24-05-2022,3,4124
25-05-2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 219

4 Working with variables in the data load editor

e date

e month

Create this measure:

=sum(amount)
Results table
date month =sum(amount)
22-05-2022 - 1000
23-05-2022 - 2123
24-05-2022 - 4124
25-05-2022 - 2431

In the initial load script, the pateFormat being used is the default ‘MM/DD/YYYY’. Because the date
field in the transactions dataset is not in this format, the field is not interpreted as a date. This is
shown in the results table where the month field values are null.

You can verify the interpreted data types in the Data model viewer by inspecting the date field’s
“Tags” properties.

Preview of the Transactions table. Note the “Tags” for the date field indicating that the textual input data
has not been implicitly converted to a date/timestamp.

date Transactions

Density 100% date month id amount
Subset ratio 100% 22-05-2022 - 1 1000
Has duplicates false 23-05-2022 - 2 2123
Total distinct values 4 24-05-2022 - 3 4124
Present distinct values 4 25-05-2022 - 4 2431

This can be solved by enabling the pateFormat system variable:
// SET DateFormat='DD/MM/YYYY';

Remove the double forward slashes and reload the data.

Script syntax and chart functions - Qlik Sense, May 2024 220

4 Working with variables in the data load editor

Preview of the Transactions table. Note the “Tags” for the date field indicating that the textual input data
has been implicitly converted to a date/timestamp.

date Transactions
Density 100% date month id amount
Subset ratio 10 2-05-2022 a (
Has duplicates als 23-05-2022 3 2 2123
Total distinct values 4 24-05-2022 May 3 4124
Present distinct values 4 25-05-2022 May 4 2431
Mon-null values
dg5 neric sinteger stimesta o Sdate
DayNames

The format defined replaces the weekday names convention set by your regional
settings.

Syntax:
DayNames
When modifying the variable, a semicolon ; is required to separate the individual values.

DayName Function examples

Function example Result definition

Set This use of the DayNames function defines day
DayNames="'Mon;Tue;wed;Thu;Fri;Sat;Sun'; names in their abbreviated form

Set DayNames='M;Tu;W;Th;F;sa;su’; This use of the DayNames function defines day

names by their first letters.

The payNnames function is often used in combination with the following functions:

Related functions

Function Interaction
weekday (page 1074) Script function to return paynames as field values .
Date (page 1233) Script function to return paynames as field values.

LongDayNames (page 232) Long form values of baynames.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the seT pateFormat statement in your data load script. The default

Script syntax and chart functions - Qlik Sense, May 2024 221

4 Working with variables in the data load editor

date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 - System variables default

Load script and results

Overview

In this example, the dates in the dataset are set in the MM/DD/YYYY format.
Open the Data load editor and add the load script below to a new tab.
The load script contains:

+ A dataset with dates, which will be loaded into a table named, Transactions.
e A date field.
» The default paynames definition.

Load script
SET DayNames='Mon;Tue;wWed;Thu;Fri;Sat;sun’;

Transactions:
LOAD

date,
weekDay(date) as dayname,
id,

amount

INLINE

[

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e dayname

Script syntax and chart functions - Qlik Sense, May 2024 222

4 Working with variables in the data load editor

Create this measure:

sum(amount)
Results table
date dayname sum(amount)
01/01/2022 Sat 1000
02/01/2022 Tue 2123
03/01/2022 Tue 4124
04/01/2022 Fri 2431

In the load script, the weekpay function is used with the date field as the provided argument. In the
results table, the output of this weekpay function displays the days of the week in the format of the
DayNames definition.

Example 2 - Change system variable

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab. The same dataset and
scenario from the first example are used.

However, at the start of the script, the paynames definition is modified to use the abbreviated days of
the week in Afrikaans.

Load script
SET DayNames='Ma;Di;Wo;Do;Vr;Sa;So';

Transactions:
Load

date,
weekDay(date) as dayname,
id,

amount

Inline

[

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 223

4 Working with variables in the data load editor

e date

e dayname

Create this measure:

sum(amount)
Results table
date dayname sum(amount)
01/01/2022 Sa 1000
02/01/2022 Di 2123
03/01/2022 Di 4124
04/01/2022 Vr 2431

In the results table, the output of this weekpay function displays the days of the week in the format of
the payNames definition.

It is important to remember that if the language for the paynames is modified like it has been in this
example, the LongbayNnames would still contain the days of the week in English. This would need to be
modified as well if both variables are used in the application.

Example 3 — Date function

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

+ A dataset with dates, which will be loaded into a table named, Transactions.
* A date field.
¢ The default payNames definition.

Load script
SET DayNames='Mon;Tue;wWed;Thu;Fri;Sat;sun’;

Transactions:

Load

date,

Date(date, 'www') as dayname,
id,

amount

Inline

[

date,id,amount
01/01/2022,1,1000

Script syntax and chart functions - Qlik Sense, May 2024 224

4 Working with variables in the data load editor

02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e dayname

Create this measure:

sum(amount)
Results table
date dayname sum(amount)
01/01/2022 Sat 1000
02/01/2022 Tue 2123
03/01/2022 Tue 4124
04/01/2022 Fri 2431

The default paynamesdefinition is used. In the load script, the pate function is used with the date field
as the first argument. The second argument is www. This formatting converts the result into the
values stored in the payNames definition. This is displayed in the output of the results table.

DecimalSep

The decimal separator defined replaces the decimal symbol set by your regional
settings.

Qlik Sense automatically interprets text as numbers whenever a recognizable number patternis
encountered. The Thousandsep and pecimalsep system variables determine the makeup of the
patterns applied when parsing text as numbers. The Thousandsep and pecimalsep variables set the
default number format pattern when visualizing numeric content in front-end charts and tables.
That is, it directly impacts the Number formatting options for any front end expression.

Assuming a thousand separator of comma‘,’ and a decimal separator of *.’, these are examples of
patterns that would be implicitly converted to numeric equivalent values:

0,000.00
0000.00

0,000

These are examples of patterns that would remain unchanged as text; that is, not converted to
numeric:

0.000,00

Script syntax and chart functions - Qlik Sense, May 2024 225

4 Working with variables in the data load editor

0,00
Syntax:
Decimalsep
Function examples
Example Result
Set Decimalsep='."; Sets‘’as the decimal separator.
Set Decimalsep=',"; Sets’, asthe decimal separator.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the seT pateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example — Effect of setting number separator variables on different input
data

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

« A dataset of sums and dates with the sums set in different format patterns.

* Atable named Transactions.

¢ The pecimalsep variable which is setto ..

¢ The Thousandsep variable whichis setto',".

« The delimiter variable that is set as the '|' character to separate the different fields in a line.

Load script

Set Thousandsep=',"';
Set Decimalsep=".";

Transactions:

Script syntax and chart functions - Qlik Sense, May 2024 226

4 Working with variables in the data load editor

Load date,

id,

amount as amount
Inline

[

date|id|amount
01/01/2022|1|1.000-45
01/02/202212|23.344
01/03/202213|4124,35
01/04/202214|2431.36
01/05/202215|4,787
01/06/202216|2431.84
01/07/2022|7|4132.5246
01/08/2022|8|3554.284
01/09/202219|3.756,178
01/10/2022110]3,454.356
] (deTimiter is "[");

Results

Load the data and open a sheet. Create a new table and add this field as a dimension amount.

Create this measure:

=sum(amount)
Results table
Amount =Sum(amount)

Totals 20814.7086
1.000-45
3.756,178

4124,35

23.344 23.344

2431.36 2431.36

2431.84 2431.84

3,454.356 3454.356

3554.284 3554.284

4132.5246 4132.5246

4,787 4787

Any value not interpreted as number remains as text and is aligned to the left by default. Any
successfully converted values are aligned to the right, retaining the original input format.

The expression column shows the numeric equivalent, which is by default formatted with only a
decimal separator “.". This can be overridden with the Number formatting drop down setting in the
expression configuration.

Script syntax and chart functions - Qlik Sense, May 2024 227

4 Working with variables in the data load editor

FirstWeekDay

Integer that defines which day to use as the first day of the week.

Syntax:

FirstWeekDay

Monday is the first day of the week according to ISO 8601, the international standard for the
representation of dates and times. Monday is also used as the first day of the week in a number of
countries, for example on the UK, France, Germany and Sweden.

But in other countries, like in the United States and Canada, Sunday is considered to be the start of
the week.

In Qlik Sense, the regional settings are fetched when the app is created, and the corresponding
settings are stored in the script as environment variables.

A North American app developer often gets set Firstweekbay=6; in the script, corresponding to
Sunday. A European app developer often gets set Firstweekpay=0; in the script, corresponding to
Monday.

Values that can be set for
FirstWeekDay

Value Day

0 Monday

1 Tuesday

2 Wednesday
3 Thursday
4 Friday

5 Saturday

6 Sunday

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the seT pateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Script syntax and chart functions - Qlik Sense, May 2024 228

4 Working with variables in the data load editor

Examples:

If you want ISO settings for weeks and week numbers, make sure to have the following in the script:

Set Firstweekbay=0; // Monday as first week day
Set Brokenweeks=0;
Set Referencebay=4;

If you want US settings, make sure to have the following in the script:

Set FirstWeekbay=6; // Sunday as first week day
Set Brokenweeks=1;
Set Referencebay=1;

Example 1-Using default value (script)

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

In this example, the load script uses the default Qlik Sense system variable value, Firstweekbay=6.
This data contains data for the first 14 days in 2020.

Load script

// Example 1: Load Script using the default value of FirstweekDay=6, 1i.e. Sunday
SET FirstWeekbDay = 6;

Sales:
LOAD
date,
sales,
week(date) as week,
weekday(date) as weekday
Inline [
date,sales
01/01/2021,6000
01/02/2021,3000
01/03/2021,6000
01/04/2021,8000
01/05/2021,5000
01/06/2020,7000
01/07/2020,3000
01/08/2020,5000
01/09/2020,9000
01/10/2020,5000
01/11/2020,7000
01/12/2020,7000
01/13/2020,7000
01/14/2020,7000
1;

Script syntax and chart functions - Qlik Sense, May 2024 229

4 Working with variables in the data load editor

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

* date

* week

o weekday

Results table

Date week weekday
01/01/2021 1 Wed
01/02/2021 1 Thu
01/03/2021 1 Fri
01/04/2021 1 Sat
01/05/2021 2 Sun
01/06/2020 2 Mon
01/07/2020 2 Tue
01/08/2020 2 Wed
01/09/2020 2 Thu
01/10/2020 2 Fri
01/11/2020 2 Sat
01/12/2020 3 Sun
01/13/2020 3 Mon
01/14/2020 3 Tue

Because the default settings are being used, the Firstweekpay system variable is set to 6. In the
results table, each new week can be seen beginning on Sunday (the 5th and 12th of January).

Example 2 — Changing the FirstWeekDay variable (script)

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

In this example, the data contains the first 14 days in 2020. At the start of the script, we set the
Firstweekbay variable to 3.

Script syntax and chart functions - Qlik Sense, May 2024 230

4 Working with variables in the data load editor

Load script
// Example 2: Load Script setting the value of Firstweekbay=3, i.e. Thursday
SET Firstweekbay = 3;

Sales:
LOAD
date,
sales,
week(date) as week,
weekday(date) as weekday
Inline [
date,sales
01/01/2021,6000
01/02/2021,3000
01/03/2021,6000
01/04/2021,8000
01/05/2021,5000
01/06/2020,7000
01/07/2020, 3000
01/08/2020,5000
01/09/2020,9000
01/10/2020, 5000
01/11/2020,7000
01/12/2020,7000
01/13/2020,7000
01/14/2020,7000
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

* date

e week

« weekday

Results table

Date week weekday
01/01/2021 52 Wed
01/02/2021 1 Thu
01/03/2021 1 Fri
01/04/2021 1 Sat
01/05/2021 1 Sun
01/06/2020 1 Mon

Script syntax and chart functions - Qlik Sense, May 2024 231

4 Working with variables in the data load editor

Date week weekday
01/07/2020 1 Tue
01/08/2020 1 Wed
01/09/2020 2 Thu
01/10/2020 2 Fri
01/11/2020 2 Sat
01/12/2020 2 Sun
01/13/2020 2 Mon
01/14/2020 2 Tue

Because the Firstweekpay system variable is set to 3, the first day of each week will be a Thursday.
In the results table, each new week can be seen beginning on Thursday (the 2nd and 9th of
January).

LongDayNames

The format defined replaces the long weekday names convention in the regional
settings.

Syntax:
LongDayNames
The following example of the LongbayNames function defines day names in full:

Set LongDayNames='Monday;Tuesday;Wednesday;Thursday;Friday;Saturday;Sunday’;
When modifying the variable, a semicolon ; is required to separate the individual values.

The Longbaynames function can be used in combination with the Date (page 1233) function which
returns payNnames as field values.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the seT pateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 - System variable default

Load script and results

Script syntax and chart functions - Qlik Sense, May 2024 232

4 Working with variables in the data load editor

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

+ A dataset with dates, which will be loaded into a table named, Transactions.
* A date field.
e The default LongpayNames definition.

Load script
SET LongDayNames='Monday;Tuesday;wednesday;Thursday;Friday;Saturday;Sunday';

Transactions:
LOAD

date,

Date(date, "wwww') as dayname,
id,

amount

INLINE

[

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

o dayname

Create this measure:

=sum(amount)
Results table
date dayname =sum(amount)
01/01/2022 Saturday 1000
02/01/2022 Tuesday 2123
03/01/2022 Tuesday 4124
04/01/2022 Friday 2431

In the load script, to create a field called, dayname, the pate function is used with the date field as the
first argument. The second argument in the function is the formatting wwww.

Script syntax and chart functions - Qlik Sense, May 2024 233

4 Working with variables in the data load editor

Using this formatting converts the values from the first argument into the corresponding full day
name that is set in the variable LongbayNames. In the results table, the field values of our created field
dayname display this

Example 2 — Change system variable

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The same dataset and scenario from the first example are used. However, at the start of the script,
the LongpayNames definition is modified to use the days of the week in Spanish.

Load Script
SET LongDayNames='Lunes;Martes;Miércoles;Jueves;Viernes;Sabado;bomingo';

Transactions:
LOAD

date,

Date(date, 'wwww') as dayname,
id,

amount

INLINE

[

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e dayname

Create this measure:

=sum(amount)
Results table
date dayname =sum(amount)
01/01/2022 Sabado 1000
02/01/2022 Martes 2123

Script syntax and chart functions - Qlik Sense, May 2024 234

4 Working with variables in the data load editor

date dayname =sum(amount)
03/01/2022 Martes 4124
04/01/2022 Viernes 2431

In the load script, the LongbayNames variable is modified to list the days of the week in Spanish.

Then, you create a field called, dayname, which is the pate function used with the date field as the first
argument.

The second argument in the function is the formatting wwww. By using this formatting Qlik Sense
converts the values from the first argument into the corresponding full day name set in the variable

LongDayNames.

In the results table, the field values of our created field dayname displays the days of the week
written in Spanish and in full.

LongMonthNames

The format defined replaces the long month names convention in the regional settings.

Syntax:
LongMonthNames
When modifying the variable, the ; needs to be used to separate the individual values.

The following example of the LongMonthNames function defines month names in full:

Set
LongMonthNames="'3January;February;March;April;May;June;July;August;September;0October;November;D
ecember';

The LongMonthNnames function is often used in combination with the following functions:

Related functions
Function Interaction

Date (page 1233) Script function to return paynamesas field values.

LongDayNames (page 232) Long form values of baynames.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the seT pateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the

Script syntax and chart functions - Qlik Sense, May 2024 235

4 Working with variables in the data load editor

Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 - System variables default

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains:

« A datasetof dates that is loaded into a table named Transactions.

e A date field.

* The default LongmMonthNames definition.

Load script

SET

LongMonthNames="January;February;March;April;May;June;July;August;September;0October;November;D

ecember’';

Transactions:
Load

date,

Date(date, ’MMMM’)
id,

amount

Inline

[

date,id,amount

01/01/2022,1,1000.
01/02/2022,2,2123.
01/03/2022,3,4124.
01/04/2022,4,2431.
01/05/2022,5,4787.
01/06/2022,6,2431.
01/07/2022,7,2854.
01/08/2022,8,3554.
01/09/2022,9,3756.

as monthname,

45
34
35
36
78
84
83
28
17

01/10/2022,10,3454.35

1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions.

e date

e« monthname

Create this measure

Script syntax and chart functions - Qlik Sense, May 2024 236

4 Working with variables in the data load editor

=sum(amount)
Results table
date monthname sum(amount)
01/01/2022 January 1000.45
01/02/2022 January 2123.34
01/03/2022 January 4124.35
01/04/2022 January 2431.36
01/05/2022 January 4787.78
01/06/2022 January 2431.84
01/07/2022 January 2854.83
01/08/2022 January 3554.28
01/09/2022 January 3756.17
01/10/2022 January 3454.35

The default LongvonthNames definition is used. In the load script, to create a field called, month, the
pate function is used with the date field as the first argument. The second argument in the function
is the formatting Mvmm.

Using this formatting Qlik Sense converts the values from the first argument into the corresponding
full month name set in the variable LongvonthNnames. In the results table, the field values of our
created field month display this.

Example 2 - Change system variable

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

* A dataset of dates that is loaded into a table named Transactions.
¢ A date field.

» The LongMonthNames variable that is modified to use the abbreviated days of the week in
Spanish.

Load script
SET
LongMonthNames="'Enero;Febrero;Marzo;Abril;Mayo;Junio;Julio;Agosto;Septiembre;0OctubreNoviembre;

Diciembre';

Transactions:
LOAD

Script syntax and chart functions - Qlik Sense, May 2024 237

4 Working with variables in the data load editor

date,

Date(date, 'MMMM') as monthname,
id,

amount

INLINE

[

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add sum(amount) as a measure and these
fields as dimensions:
e date

e« monthname

Create this measure:

=sum(amount)
Results table
date monthname sum(amount)
01/01/2022 Enero 1000.45
01/02/2022 Enero 2123.34
01/03/2022 Enero 4124.35
01/04/2022 Enero 2431.36
01/05/2022 Enero 4787.78
01/06/2022 Enero 2431.84
01/07/2022 Enero 2854.83
01/08/2022 Enero 3554.28
01/09/2022 Enero 3756.17
01/10/2022 Enero 3454.35

In the load script, the LongMonthNames variable is modified to list the months of the year in Spanish.
Then, to create a field called, monthname, thebate function is used with the date field as the first
argument. The second argument in the function is the formatting mmmm.

Using this formatting Qlik Sense converts the values from the first argument into the corresponding
full month name set in the variable Longvonthnames. In the results table, the field values of our
created field monthname display the month name written in Spanish.

Script syntax and chart functions - Qlik Sense, May 2024 238

4 Working with variables in the data load editor

MoneyDecimalSep

The decimal separator defined replaces the decimal symbol for currency set by your
regional settings.

By default, Qlik Sense displays numbers and text differently in table charts. Numbers are
right-aligned, and text is left-aligned. This makes it easy to find text-to-number
conversion issues. Any tables on this page that show Qlik Sense results will use this
formatting.

Syntax:

MoneyDecimalSep

Qlik Sense applications will interpret text fields that conform to this formatting as monetary values.
The text field must contain the currency symbol that is defined in the MmoneyFormat system variable.
MoneyDecimalsep is particularly helpful when handling data sources received from multiple different
regional settings.

The following example shows a possible use of the Mmoneybecimalsep system variable:

Set MoneyDecimalSep=".";
This function is often used together with the following functions:

Related functions

Function Interaction

MoneyFormat In instances of text field interpretation, the moneyFormat symbol will be used
as part of the interpretation. For Number Formatting, the MmoneyFormat
formatting will be used by Qlik Sense in Chart Objects.

MoneyThousandsep In instances of text field interpretation, the MmoneyThousandsep function must
also be adhered to.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the seT pateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Script syntax and chart functions - Qlik Sense, May 2024 239

4 Working with variables in the data load editor

Example 1 - MoneyDecimalSep dot (.) notation

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

+ A dataset thatis loaded into a table named Transactions.

» Provided data that has its monetary field in text format with a dot "’ used as the decimal
separator. Each record is also prefixed by a ‘$’ symbol, except for the last record, which is
prefixed by a ‘£’ symbol.

Keep in mind that the moneyFormat system variable defines dollar ‘$’ as the default currency.

Load script

SET MoneyThousandSep=",";
SET MoneyDecimalSep=".";
SET MoneyFormat="'$###0.00;-$###0.00";

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount
01/01/2022,1, '$14.41"
01/02/2022,2,'$2,814.32"
01/03/2022,3, '$249.36"
01/04/2022,4,'$24.37"
01/05/2022,5,'$7.54"
01/06/2022,6, '$243.63"
01/07/2022,7,'$545.36"
01/08/2022,8, '$3.55"
01/09/2022,9, '$3.436"'
01/10/2022,10, '£345.66"'
1;

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:amount.

Add the following measures:

e isNum(amount)

e sum(amount)

Script syntax and chart functions - Qlik Sense, May 2024 240

4 Working with variables in the data load editor

Review the results below, demonstrating the correct interpretation of all dollar ‘$’ values only.

Results table

amount =isNum(amount) =Sum(amount)
Totals 0 $3905.98
£345.66 0 $0.00
$3.436 -1 $3.44
$3.55 -1 $3.55
$7.54 -1 $7.54
$14.41 -1 $14.41
$24.37 -1 $24.37
243.63 -1 $243.63
$249.36 -1 $249.36
$545.36 -1 $545.36
$2,814.32 -1 $2814.32

The results table above shows how the amount field has been interpreted correctly for all dollar ($)
prefixed values, whilst the pound (£) prefixed amount has not been converted to a monetary value.

Example 2 - MoneyDecimalSep comma (,) notation

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

* A dataset which is loaded into a table named Transactions.

» Provided data that has its monetary field in text format with a comma ‘,’ used as the decimal
separator. Each record is also prefixed by a ‘$’ symbol, except for the last record, which
erroneously uses the dot decimal separator'.".

Keep in mind that the moneyFormat system variable defines dollar ‘$’ as the default currency.
Load script

SET MoneyThousandSep=".";

SET MoneyDecimalSep="',";

SET MoneyFormat="'$###0.00;-$###0.00";

Transactions:
Load

Script syntax and chart functions - Qlik Sense, May 2024 241

4 Working with variables in the data load editor

date,

id,

amount

Inline

[

date,id,amount
01/01/2022,1, '$14,41"
01/02/2022,2,'$2.814,32"
01/03/2022,3, '$249,36'
01/04/2022,4,'%$24,37"
01/05/2022,5,'%$7,54"'
01/06/2022,6, '$243,63"
01/07/2022,7,'$545,36"
01/08/2022,8,'$3,55"
01/09/2022,9, '$3,436"
01/10/2022,10, '$345.66"
1;

Results

Paragraph text for Results.
Load the data and open a sheet. Create a new table and add this field as a dimension:amount.

Add the following measures:
e isNum(amount)

e sum(amount)

Review the results below, demonstrating the correct interpretation of all values, except for the
amount in which the decimal separator uses dot ".' notation. In that case, a comma should have
been used instead.

Results table

amount =isNum(amount) =Sum(amount)
Totals 0 $3905.98
$345.66 0 $0.00
$3,436 -1 $3.44
$3,55 -1 $3.55
$7,54 -1 $7.54
$14,41 -1 $14.41
$24,37 -1 $24.37
$243,63 -1 $243.63
$249,36 -1 $249.36
$545,36 -1 $545.36
$2.814,32 -1 $2814.32

Script syntax and chart functions - Qlik Sense, May 2024 242

4 Working with variables in the data load editor

MoneyFormat

This system variable defines the format pattern used by Qlik for automatic translation
of text to number where the number is prefixed by a monetary symbol. It also defines
how measures whose Number Formatting properties are set to ‘Money’ will be
displayed in chart objects.

The symbol defined as part of the format pattern in the MmoneyFormat system variable replaces the
currency symbol set by your regional settings.

By default, Qlik Sense displays numbers and text differently in table charts. Numbers are
right-aligned, and text is left-aligned. This makes it easy to find text-to-number
conversion issues. Any tables on this page that show Qlik Sense results will use this
formatting.

Syntax:
MoneyFormat
Set MoneyFormat='$ #,##0.00; ($ #,##0.00)';

This formatting will be displayed in chart objects when a numerical field's Number Formatting
property is set to money. Further, when numerical text fields are interpreted by Qlik Sense, if the
currency symbol of the text field matches that of the symbol defined in the moneyFormat variable,
Qlik Sense will interpret this field as a monetary value.

This function is often used together with the following functions:

Related functions

Function Interaction

MoneyDecimalSep (page For Number Formatting, Moneypecimalsep will be used in field

239) formatting of objects.
MoneyThousandSep For Number Formatting, MmoneyThousandsep will be used in field
(page 247) formatting of objects.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the seT pateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Script syntax and chart functions - Qlik Sense, May 2024 243

4 Working with variables in the data load editor

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 - MoneyFormat

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

The load script contains a dataset which is loaded into a table named Transactions. The default
MoneyFormat variable definition is used.

Load script

SET MoneyThousandSep=",";
SET MoneyDecimalSep=".";
SET MoneyFormat="'$###0.00;-$###0.00";

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount
01/01/2022,1,$10000000441
01/02/2022,2,$21237492432
01/03/2022,3,%$249475336
01/04/2022,4,%$24313369837
01/05/2022,5,%$7873578754
01/06/2022,6,%$24313884663
01/07/2022,7,$545883436
01/08/2022,8,%$35545828255
01/09/2022,9,%$37565817436
01/10/2022,10,$3454343566
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e amount

Add this measure:

=Sum(amount)

Script syntax and chart functions - Qlik Sense, May 2024 244

4 Working with variables in the data load editor

Under Number formatting, select Money to configure sum(amount) as a monetary value.
Results table
date Amount =Sum(amount)
Totals $165099674156.00
01/01/2022 $10000000441 $10000000441.00
01/02/2022 $21237492432 $21237492432.00

01/03/2022 $249475336 $249475336.00
01/04/2022 $24313369837 $24313369837.00
01/05/2022 $7873578754 $7873578754.00
01/06/2022 $24313884663 $24313884663.00
01/07/2022 $545883436 $545883436.00

01/08/2022 $35545828255 $35545828255.00
01/09/2022 $37565817436 $37565817436.00
01/10/2022 $3454343566 $3454343566.00

The default moneyFormat definition is used. This looks as follows: $###0.00; -$###0.00. In the results
table, the format of the amount field displays the currency symbol and the decimal point and decimal
places have been included.

Example 2 - MoneyFormat with thousands separator and mixed input

formats

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

* A mixed-input format dataset, which is loaded into a table named Transactions with
thousands separators and decimal separators interspersed.

* A modification of the MmoneyFormat definition is modified to include a comma as the thousands
separator.

» One of the rows of data erroneously delimited with thousands separator commas in the
wrong places. Note how this amount is left as text and not interpretable as a number.

Load script
SET MoneyThousandSep="',";

SET MoneyDecimalSep="'.";
SET MoneyFormat = '$#,##0.00;-$#,##0.00";

Script syntax and chart functions - Qlik Sense, May 2024 245

4 Working with variables in the data load editor

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount

01/01/2022,1, '$10,000,000,441.45"
01/02/2022,2,'$212,3749,24,32.23"
01/03/2022,3,$249475336.45
01/04/2022,4,%$24,313,369,837
01/05/2022,5,%$7873578754
01/06/2022,6,$24313884663
01/07/2022,7,$545883436
01/08/2022,8,$35545828255
01/09/2022,9,$37565817436
01/10/2022,10,$3454343566

1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e amount
Add this measure:
=Sum(amount)
Under Number formatting, select Money to configure sum(amount) as a monetary value.

Results table

date Amount =Sum(amount)
Totals $119,548,811,911.90
01/01/2022 $10,000,000,441.45 $10,000,000,441.45
01/02/2022 $212,3749,24,32.23 $0.00
01/03/2022 $249475336.45 $249,475,336.45
01/04/2022 $24 $24.00
01/05/2022 $7873578754 $7,873,578,754.00
01/06/2022 $24313884663 $24,313,884,663.00
01/07/2022 $545883436 $545,883,436.00
01/08/2022 $35545828255 $35,545,828,255.00

Script syntax and chart functions - Qlik Sense, May 2024 246

4 Working with variables in the data load editor

date Amount =Sum(amount)
01/09/2022 $37565817436 $37,565,817,436.00
01/10/2022 $3454343566 $3,454,343,566.00

At the start of the script, the MmoneyFormat system variable is modified to include a comma as a
thousands separator. In the Qlik Sense table, the formatting can be seen to include this separator.
Furthermore, the row with the erroneous separator has not been interpreted correctly and remains
as text. This is why it does not contribute towards the summation of the amount.

MoneyThousandSep

The thousands separator defined replaces the digit grouping symbol for currency set
by your regional settings.

By default, Qlik Sense displays numbers and text differently in table charts. Numbers are
right-aligned, and text is left-aligned. This makes it easy to find text-to-number
conversion issues. Any tables on this page that show Qlik Sense results will use this
formatting.

Syntax:

MoneyThousandSep

Qlik Sense applications will interpret text fields that conform to this formatting as monetary values.
The text field must contain the currency symbol that is defined in the MmoneyFormat system variable.
MoneyThousandsep is particularly helpful when handling data sources received from multiple different
regional settings.

The following example shows a possible use of the moneyThousandsep system variable:

Set MoneyDecimalSep="',";
This function is often used together with the following functions:

Related functions
Function Interaction
MoneyFormat In instances of text field interpretation, the MoneyFormat symbol will be used

as part of the interpretation. For Number Formatting, the MoneyFormat
formatting will be used by Qlik Sense in chart objects.

MoneyDecimalsep In instances of text field interpretation, the Mmoneypecimalsep function must
also be adhered to.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the seT pateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.

Script syntax and chart functions - Qlik Sense, May 2024 247

4 Working with variables in the data load editor

You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 - MoneyThousandSep comma (,) notation

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

* A dataset which is loaded into a table named Transactions.

» Provided data that has its monetary field in text format with a comma used as the thousands
separator. Each record is also prefixed by a ‘$’ symbol.

Keep in mind that the moneyFormat system variable defines dollar ‘$’ as the default currency.
Load script

SET MoneyThousandSep="',";
SET MoneyDecimalSep="'.";
SET MoneyFormat="S$###0.00;-$###0.00";

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount
01/01/2022,1,'$10,000,000,441"
01/02/2022,2,'$21,237,492,432"
01/03/2022,3, '$249,475,336"'
01/04/2022,4,'$24,313,369,837"'
01/05/2022,5,'$7,873,578,754"
01/06/2022,6, '$24,313,884,663"'
01/07/2022,7, '$545,883,436"'
01/08/2022,8, '$35,545,828,255"
01/09/2022,9, '$37,565,817,436"'
01/10/2022,10, '$3.454.343.566"
1;

Script syntax and chart functions - Qlik Sense, May 2024 248

4 Working with variables in the data load editor

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:amount.

Add the following measures:

e isNum(amount)

e sum(amount)

Review the results below. The table demonstrates the correct interpretation of all values using
comma ‘, notation as the thousands separator.

The amount field has been interpreted correctly for all values, with the exception of one value which
used a dot " as the thousands separator.

Results table

amount =isNum(amount) =Sum(amount)
Totals 0 $161645330590.00
$3.454.343.566 0 $0.00
$249,475,336 -1 $249475336.00
$545,883,436 -1 $545883436.00
$7,873,578,754 -1 $7873578754.00

$10,000,000,441
$21,237,492,432
$24,313,369,837

$24,33,884,663
$35,545,828,255
$37,565,817,436

$10000000441.00
$21237492432.00
$24313369837.00
$24313884663.00
$35545828255.00
$37565817436.00

Example 2 - MoneyThousandSep dot (.) notation

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

+ A dataset which is loaded into a table named Transactions.

» Provided data that has its monetary field in text format with a dot '.' used as the thousands
separator. Each record is also prefixed by a ‘$’ symbol.

Script syntax and chart functions - Qlik Sense, May 2024 249

4 Working with variables in the data load editor

Keep in mind that the moneyFormat system variable defines dollar ‘$’ as the default currency.
Load script

SET MoneyThousandSep=".";

SET MoneyDecimalSep="',";
SET MoneyFormat="'$###0.00;-$###0.00";

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount
01/01/2022,1,'$10.000.000.441"
01/02/2022,2,"'$21.237.492.432"
01/03/2022,3,'$249.475.336"
01/04/2022,4,'$24.313.369.837"'
01/05/2022,5,'$7.873.578.754"
01/06/2022,6,'$24.313.884.663"
01/07/2022,7,'$545.883.436"
01/08/2022,8,'$35.545.828.255"
01/09/2022,9, '$37.565.817.436"
01/10/2022,10, '$3,454,343,566'
1;

Results

Load the data and open a sheet. Create a new table and add this field as a dimension:amount.

Add the following measures:

e isNum(amount)

e sum(amount)

Review the results below, demonstrating the correct interpretation of all values using dot *.’ notation
as the thousand separator.

The amount field has been interpreted correctly for all values, with the exception of one value which
used acomma',' as the thousands separator.

Results table

amount =isNum(amount) =Sum(amount)
Totals 0 $161645330590.00
$3,545,343,566 0 $0.00

$249.475.336 -1 $249475336.00

Script syntax and chart functions - Qlik Sense, May 2024 250

4 Working with variables in the data load editor

amount

$545.883.436
$7.873.578.754
$10.000.000.441
$21.237.492.432
$24.313.884.663
$24.313.884.663
$35.545.828.255
$37.565.817.436

=isNum(amount)

=Sum(amount)
545883436.00
$7873578754.00
$10000000441.00
$21237492432.00
$24313884663.00
$24313884663.00
$35545828255.00
$37565817436.00

MonthNames

The format defined replaces the month names convention of the regional settings.

Syntax:
MonthNames
When modifying the variable, the ; needs to be used to separate the individual values.

Function examples

Example Results

This use of the
MonthNames
function defines
month names in
English and their
abbreviated form.

Set MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;0ct;Nov;Dec';

set This use of the

MonthNames='Enero;Feb;Marzo;Abr;Mayo;Jun;Jul;Agosto;Set;0ct;Nov;Dic’; MonthNames
function defines
month names in
Spanish and their
abbreviated form.

The monthnames function can be used in combination with the following functions:

Related functions

Function Interaction

month (page 917) Script function to return values defined in monthNnames as field values

Date (page 1233) Script function to return values defined in monthnames as field values

based on a formatting argument provided

LongMonthNames
(page 235)

Long form values of monthNames

Script syntax and chart functions - Qlik Sense, May 2024 251

4 Working with variables in the data load editor

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the seT pateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1- System variables default

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

+ A dataset of dates that is loaded into a table named Transactions.
* A date field.

* The default monthNames definition.
Load script
SET MonthNames='Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;0ct;Nov;Dec';

Transactions:

LOAD

date,

Month(date) as monthname,
id,

amount

INLINE

[

date,id,amount
01/01/2022,1,1000.45
01/02/2022,2,2123.34
01/03/2022,3,4124.35
01/04/2022,4,2431.36
01/05/2022,5,4787.78
01/06/2022,6,2431.84
01/07/2022,7,2854.83
01/08/2022,8,3554.28
01/09/2022,9,3756.17
01/10/2022,10,3454.35
1;

Script syntax and chart functions - Qlik Sense, May 2024 252

4 Working with variables in the data load editor

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

e« monthname

Create this measure:

=sum(amount)
Results table
date monthname sum(amount)
01/01/2022 Jan 1000.45
01/02/2022 Jan 2123.34
01/03/2022 Jan 4124.35
01/04/2022 Jan 2431.36
01/05/2022 Jan 4787.78
01/06/2022 Jan 2431.84
01/07/2022 Jan 2854.83
01/08/2022 Jan 3554.28
01/09/2022 Jan 3756.17
01/10/2022 Jan 3454.35

The default monthnames definition is used. In the load script, the month function is used with the date
field as the provided argument.

In the results table, the output of this month function displays the months of the year in the format of
the monthNames definition.

Example 2 - Change system variable

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

+ A dataset of dates that is loaded into a table named Transactions.
¢ A date field.

» The monthnames variable that is modified to use the abbreviated months in Spanish.

Script syntax and chart functions - Qlik Sense, May 2024 253

4 Working with variables in the data load editor

Load script
Set MonthNames='Enero;Feb;Marzo;Abr;Mayo;Jun;Jul;Agosto;Set;0ct;Nov;Dic';

Transactions:
LOAD

date,

month(date) as month,
id,

amount

INLINE

[

date,id,amount
01/01/2022,1,1000
02/01/2022,2,2123
03/01/2022,3,4124
04/01/2022,4,2431
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

e date

¢ monthname

Create this measure:

=sum(amount)
Results table
date monthname sum(amount)
01/01/2022 Enero 1000.45
01/02/2022 Enero 2123.34
01/03/2022 Enero 4124.35
01/04/2022 Enero 2431.36
01/05/2022 Enero 4787.78
01/06/2022 Enero 2431.84
01/07/2022 Enero 2854.83
01/08/2022 Enero 3554.28
01/09/2022 Enero 3756.17
01/10/2022 Enero 3454.35

In the load script, first the monthnames variable is modified to list the months of the year abbreviated
in Spanish. The month function is used with the date field as the provided argument.

Script syntax and chart functions - Qlik Sense, May 2024 254

4 Working with variables in the data load editor

In the results table, the output of this Mmonth function displays the months of the year in the format of
the monthNames definition.

It is important to remember that if the language for the monthnames variable is modified like it has
been in this example, the LongMonthNames variable would still contain the months of the yearin
English. The LongmonthNames variable would have to be modified if both variables are used in the
application.

Example 3 — Date function

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

* A dataset of dates that is loaded into a table named Transactions.
¢ A date field.
e The default monthnames definition.

Load script
SET MonthNames='3Jan;Feb;Mar;Apr;May;Jun;Jul;Aug;Sep;0ct;Nov;Dec';

Transactions:

LOAD

date,

Month(date, ’MMM’) as monthname,
id,

amount

INLINE

[

date,id,amount
01/01/2022,1,1000.45
01/02/2022,2,2123.34
01/03/2022,3,4124.35
01/04/2022,4,2431.36
01/05/2022,5,4787.78
01/06/2022,6,2431.84
01/07/2022,7,2854.83
01/08/2022,8,3554.28
01/09/2022,9,3756.17
01/10/2022,10,3454.35
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

Script syntax and chart functions - Qlik Sense, May 2024 255

4 Working with variables in the data load editor

e date

e« monthname

Create this measure:

=sum(amount)
Results table
date monthname sum(amount)
01/01/2022 Jan 1000.45
01/02/2022 Jan 2123.34
01/03/2022 Jan 4124.35
01/04/2022 Jan 2431.36
01/05/2022 Jan 4787.78
01/06/2022 Jan 2431.84
01/07/2022 Jan 2854.83
01/08/2022 Jan 3554.28
01/09/2022 Jan 3756.17
01/10/2022 Jan 3454.35

The default monthnames definition is used. In the load script, the pate function is used with the date
field as the first argument. The second argument is mum.

Using this formatting Qlik Sense converts the values from the first argument into the corresponding
month name set in the variable Mmonthnames. In the results table, the field values of our created field
month display this.

NumericalAbbreviation

The numerical abbreviation sets which abbreviation to use for scale prefixes of numerals, for
example M for mega or a million (10°), and p for micro (1079).

Syntax:

NumericalAbbreviation

You set the NumericalAbbreviation variable to a string containing a list of abbreviation definition
pairs, delimited by semi colon. Each abbreviation definition pair should contain the scale (the
exponent in decimal base) and the abbreviation separated by a colon, for example, 6:m for a million.

The default setting is '3:k;6:M;9:6;12:T;15:P;18:E;21:2;24:Y;-3:m;-6:4;-9:n;-12:p;-15:f;-18:a;-
21:z;-24:y".

Examples:

This setting will change the prefix for a thousand to t and the prefix for a billion to B. This would be
useful for financial applications where you would expect abbreviations like t$, M$, and B$.

Script syntax and chart functions - Qlik Sense, May 2024 256

4 Working with variables in the data load editor

Set NumericalAbbreviation='3:t;6:M;9:B;12:T;15:P;18:E;21:Z;24:Y;-3:m;-6:4;-9:n;-12:p;-15:F;-
18:a;-21:z;-24:y';

ReferenceDay

The setting defines which day in January to set as reference day to define week 1. In
other words, this setting prescribes how many days in week 1 must be dates within
January.

Syntax:
ReferenceDay

Referencebay sets how many days are included in the first week of the year. rReferencepay can be set
to any value between 1 and 7. Any value outside of the 1-7 range is interpreted as the midpoint of
the week (4), which is equivalent to Referencepay being set to 4.

If you do not select a value for the referencepay setting, then the default value will show
Referencebay=0 Which will be interpreted as the midpoint of the week (4), as seen in the referencebay
values table below.

The referencebay function is often used in combination with the following functions:

Related functions

Variable Interaction
BrokenWeeks If the Qlik Sense app is operating with unbroken weeks, the rReferencebay
(page 213) variable setting will be enforced. However, if broken weeks are being used,

week 1 will begin on January 1 and terminate in conjunction with the
Firstweekpay variable setting and ignore the rReferencepay flag.

FirstWeekDay Integer that defines which day to use as the first day of the week.
(page 228)

Qlik Sense allows the following values to be set for rReferencepay:
ReferenceDay values
Value Reference day
O (default) January 4
1 January 1
January 2
January 3
January 4
January 5

January 6

N O o B~ W N

January 7

In the following example the rReferencebay = 3 defines January 3 as the reference day:

Script syntax and chart functions - Qlik Sense, May 2024 257

4 Working with variables in the data load editor

SET Referencebay=3; //(set January 3 as the reference day)

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the seT pateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Examples:

If you want ISO settings for weeks and week numbers, make sure to have the following in the script:

Set Firstweekbay=0;

Set Brokenweeks=0;

Set Referencebay=4; // Jan 4th is always in week 1

If you want US settings, make sure to have the following in the script:

Set FirstWeekDay=6;
Set Brokenweeks=1;
Set Referencebay=1; // Jan 1lst 1is always in week 1

Example 1 - Load script using the default value; ReferenceDay=0

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ The referencepay variable that is set to 0.
» The Brokenweeks variable that is set to 0 which forces the app to use unbroken weeks.
+ A dataset of dates from the end of 2019 to the start of 2020.

Load script

SET Brokenweeks = 0;
SET Referencebay = 0;

Sales:

LOAD

date,

sales,

week(date) as week,

Script syntax and chart functions - Qlik Sense, May 2024 258

4 Working with variables in the data load editor

weekday(date) as weekday
Inline [
date,sales
12/27/2019,5000
12/28/2019,6000
12/29/2019,7000
12/30/2019,4000
12/31/2019,3000
01/01/2020,6000
01/02/2020,3000
01/03/2020,6000
01/04/2020,8000
01/05/2020,5000
01/06/2020,7000
01/07/2020,3000
01/08/2020,5000
01/09/2020,9000
01/10/2020,5000
01/11/2020,7000
1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

« date

. week

« weekday

Results table

date week weekday
12/27/2019 52 Fri
12/28/2019 52 Sat
12/29/2019 1 Sun
12/30/2019 1 Mon
12/31/2019 1 Tue
01/01/2020 1 Wed
01/02/2020 1 Thu
01/03/2020 1 Fri
01/04/2020 1 Sat
01/05/2020 2 Sun
01/06/2020 2 Mon
01/07/2020 2 Tue
01/08/2020 2 Wed

Script syntax and chart functions - Qlik Sense, May 2024 259

4 Working with variables in the data load editor

date week weekday
01/09/2020 2 Thu
01/10/2020 2 Fri
01/11/2020 2 Sat

Week 52 concludes on Saturday, December 28. Because rReferencepay requires January 4 to be
included in week 1, week 1 therefore begins on December 29 and concludes on Saturday, January
4,

Example - ReferenceDay variable setto 5

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

¢ The referencepay variable that is set to 5.
» The Brokenweeks variable that is set to 0 which forces the app to use unbroken weeks.
» A dataset of dates from the end of 2019 to the start of 2020.

Load script

SET Brokenweeks = 0;
SET Referencebay = 5;

Sales:

LOAD

date,

sales,
week(date) as week,
weekday(date) as weekday
Inline [
date,sales
12/27/2019,5000
12/28/2019, 6000
12/29/2019,7000
12/30/2019, 4000
12/31/2019, 3000
01/01/2020,6000
01/02/2020, 3000
01/03/2020,6000
01/04/2020,8000
01/05/2020,5000
01/06/2020,7000
01/07/2020,3000
01/08/2020,5000
01/09/2020,9000

Script syntax and chart functions - Qlik Sense, May 2024 260

4 Working with variables in the data load editor

01/10/2020,5000
01/11/2020,7000

1;

Results

Load the data and open a sheet. Create a new table and add these fields as dimensions:

« date

« week

« weekday

date
12/27/2019
12/28/2019
12/29/2019
12/30/2019
12/31/2019
01/01/2020
01/02/2020
01/03/2020
01/04/2020
01/05/2020
01/06/2020
01/07/2020
01/08/2020
01/09/2020
01/10/2020
01/11/2020

Results table
week

52
52
53
53
53
53
53
53
53
1

1

weekday
Fri
Sat
Sun
Mon
Tue
Wed
Thu
Fri
Sat
Sun
Mon
Tue
Wed
Thu
Fri
Sat

Week 52 concludes on Saturday, December 28. The Brokenweeks variable forces the app to use
unbroken weeks. The reference day value of 5 requires January 5 to be included in week 1.

However, this is eight days after the conclusion of week 52 of the previous year. Therefore, week
53 begins on December 29 and concludes on January 4. Week 1 begins on Sunday, January 5.

ThousandSep

The thousands separator defined replaces the digit grouping symbol of the operating
system (regional settings).

Script syntax and chart functions - Qlik Sense, May 2024

261

4 Working with variables in the data load editor

Syntax:
ThousandSep
Qlik Sense object using the Thousandsep variable (with thousands separator)

max(amount)

Qlik Sense apps interpret text fields that conform to this formatting as numbers. This formatting will
be displayed in chart objects when a numerical field’s Number formatting property is set to
Number.

Thousandsep is helpful when handling data sources received from multiple regional settings.

If the Thousandsep variable is modified after objects have already been created and
formatted in the application, the user will need to re-format each relevant field by de-
selecting and then re-selecting the Number formatting property Number.

The following examples show possible uses of the Thousandsep system variable:
Set Thousandsep=','; //(for example, seven billion will be displayed as: 7,000,000,000)

Set Thousandsep=' '; //(for example, seven billion will be displayed as: 7 000 000 000)
These topics may help you work with this function:

Related topics

Topic Description
DecimalSep In instances of text field interpretation, the decimal separator settings, as
(page 225) provided by this function, must also be respected. For number formatting,

DecimalSep will be used by Qlik Sense where necessary.

Regional settings

Unless otherwise specified, the examples in this topic use the following date format: MM/DD/YYYY.
The date format is specified in the seT pateFormat statement in your data load script. The default
date formatting may be different in your system, due to your regional settings and other factors.
You can change the formats in the examples below to suit your requirements. Or you can change
the formats in your load script to match these examples.

Script syntax and chart functions - Qlik Sense, May 2024 262

4 Working with variables in the data load editor

Default regional settings in apps are based on the regional system settings of the computer or
server where Qlik Sense is installed. If the Qlik Sense server you are accessing is set to Sweden, the
Data load editor will use Swedish regional settings for dates, time, and currency. These regional
format settings are not related to the language displayed in the Qlik Sense user interface. Qlik
Sense will be displayed in the same language as the browser you are using.

Example 1 - Default system variables

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

* A dataset which is loaded into a table named Transactions.
* Use of the default Thousandsep variable definition.

Load script

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount
01/01/2022,1,10000000441
01/02/2022,2,21237492432
01/03/2022,3,41249475336
01/04/2022,4,24313369837
01/05/2022,5,47873578754
01/06/2022,6,24313884663
01/07/2022,7,28545883436
01/08/2022,8,35545828255
01/09/2022,9,37565817436
01/10/2022,10,3454343566
1;

Results
Do the following:

1. Load the data and open a sheet. Create a new table and add this field as a dimension:date.

2. Add the following measure:
=sum(amount)

3. Inthe properties panel, under Data, select the measure.
4. Under Number formatting, select Number.

Script syntax and chart functions - Qlik Sense, May 2024 263

4 Working with variables in the data load editor

Adjusting number formatting for a chart measure

Columns
I
Results table
date =sum(amount)

01/01/2022 10,000,000,441.00
01/02/2022 21,237,492,432.00
01/03/2022 41,249,475,336.00
01/04/2022 24,313,369,837.00
01/05/2022 47,873,578,754.00
01/06/2022 24,313,884,663.00
01/07/2022 28,545,883,436.00
01/08/2022 35,545,828,255.00
01/09/2022 37,565,817,436.00
01/10/2022 3,454,343,566.00

In this example, the default Thousandsep definition, which is set to comma format (,’), is used. In the
results table, the format of the amount field displays a comma between thousand groupings.

Example 2 - Changing system variable

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.

Script syntax and chart functions - Qlik Sense, May 2024 264

4 Working with variables in the data load editor

The load script contains:

+ The same dataset from the first example, which is loaded into a table named Transactions.

» Modification of the Thousandsep definition, at the start of the script, to display a '*' character
as the thousands separator. This is an extreme example, and is used solely to demonstrate
the functionality of the variable.

The modification used in this example is extreme and not commonly used, but is shown here to
demonstrate the functionality of the variable.

Load script
SET ThousandSep="*";

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount
01/01/2022,1,10000000441
01/02/2022,2,21237492432
01/03/2022,3,41249475336
01/04/2022,4,24313369837
01/05/2022,5,47873578754
01/06/2022,6,24313884663
01/07/2022,7,28545883436
01/08/2022,8,35545828255
01/09/2022,9,37565817436
01/10/2022,10,3454343566
1;

Results
Do the following:

1. Load the data and open a sheet. Create a new table and add this field as a dimension:date.

2. Add the following measure:
=sum(amount)

3. Inthe properties panel, under Data, select the measure.
4. Under Number formatting, select Custom.

Results table
date =sum(amount)
01/01/2022 10*000*000*441.00
01/02/2022 21*¥237*492*432.00

Script syntax and chart functions - Qlik Sense, May 2024 265

4 Working with variables in the data load editor

date =sum(amount)
01/03/2022 41*249*475%336.00
01/04/2022 24*313*369*837.00
01/05/2022 47%873*578*754.00
01/06/2022 24*313*884*663.00
01/07/2022 28*545*883*436.00
01/08/2022 35*545*828*255.00
01/09/2022 37*565%817*436.00
01/10/2022 3*454*343*566.00

At the start of the script, the Thousandsep system variable is modified to a '*'. In the results table, the
format of the amount field can be seen to display a ‘**' between thousand grouping.

Example 3 - Text interpretation

Load script and results

Overview

Open the Data load editor and add the load script below to a new tab.
The load script contains:

+ A dataset which is loaded into a table named Transactions.

« Data which has its numerical field in text format, with a comma used as the thousands
separator.

* Use of the default Thousandsep system variable.
Load script

Transactions:

Load

date,

id,

amount

Inline

[

date,id,amount
01/01/2022,1,'10,000,000,441"
01/02/2022,2,'21,492,432"
01/03/2022,3,'4,249,475,336"'
01/04/2022,4,'24,313,369,837"'
01/05/2022,5,'4,873,578,754"'
01/06/2022,6, '313,884,663"
01/07/2022,7,'2,545,883,436"'
01/08/2022,8,'545,828,255"

Script syntax and chart functions - Qlik Sense, May 2024 266

4 Working with variables in the data load editor

01/09/2022,9,'37,565,817,436"
01/10/2022,10, '3,454,343,566"

1;

Results

Do the following:

1. Load the data and open a sheet. Create a new table and add this field as a dimension:date.

2. Add the following measure:
=sum(amount)

3. Inthe properties panel, under Data, select the measure.

4. Under Number formatting, select Number.

5. Add the following measure to evaluate whether or not the amount field is a numerical value:
=isnum(amount)

date

01/01/2022
01/02/2022
01/03/2022
01/04/2022
01/05/2022
01/06/2022
01/07/2022
01/08/2022
01/09/2022
01/10/2022

Results table

=sum(amount) =isnum(amount)
10,000,000,441.00 -1
21,492,432.00 -1
4,249,475,336.00 -1
24,313,369,837.00 -1
4,873,578,754.00 -1
313,884,663.00 -1
2,545,883,436.00 -1
545,828,255.00 -1
37,565,817,436.00 -1

3*454*343*566.00 -1

Once the datais loaded, we can see that Qlik Sense has interpreted the amount field as a numerical
value, due to the data conforming to the Thousandsep variable. This is demonstrated by the isnumQ
function, which evaluates each entry to -1, or TRUE.

In Qlik Sense, the Boolean true value is represented by -1, and the false value is
represented by 0.

TimeFormat

The format defined replaces the time format of the operating system (regional settings).

Syntax:
TimeFormat

Script syntax and chart functions - Qlik Sense, May 2024 267

4 Working with variables in the data load editor

Example:

Set TimeFormat='hh:mm:ss';

TimestampFormat

The format defined replaces the date and time formats of the operating system
(regional settings).

Syntax:
TimestampFormat

Example:

The following examples use 71983-12-14T13:15:30Z as timestamp data to show the results of
different SET TimestampFormat statements. The date format used is YYYYMMDD and the time
format is h:mm:ss TT. The date format is specified in the SET DateFormat statement and the time
format is specified in the SET TimeFormat statement, at the top of the data load script.

Results
Example Result
SET TimestampFormat='YYYYMMDD'; 19831214
SET TimestampFormat='M/D/YY hh:mm:ss[.fff]"; 12/14/83 13:15:30
SET TimestampFormat='DD/MM/YYYY hh:mm:ss[.fff]'; 14/12/1983 13:15:30
SET TimestampFormat='DD/MM/YYYY hh:mm:ss[.fff] TT'; 14/12/1983 1:15:30 PM
SET TimestampFormat='YYYY-MM-DD hh:mm:ss[.fff] TT'; 1983-12-14 01:15:30

Examples: Load script

Example: Load script

In the first load script SET TimestampFormat="DD/MM/YYYY h:mm:ss[.fff] TT'is used. In the
second load script the timestamp format is changed to SET TimestampFormat="MM/DD/YYYY
hh:mm:ss[.fff]". The different results show how the SET TimeFormat statement works with
different time data formats.

The table below shows the data set that is used in the load scripts that follow. The second column
of the table shows the format of each timestamp in the data set. The first five timestamps follow
ISO 8601 rules but the sixth does not.

Script syntax and chart functions - Qlik Sense, May 2024 268

4 Working with variables in the data load editor

Data set

Table showing the time data used and the format for each timestamp in

the data set.
transaction_timestamp time data format
2018-08-30 YYYY-MM-DD
20180830T193614.857 YYYYMMDDhhmmss.sss

20180830T193614.857+0200 YYYYMMDDhhmmss.sssxhhmm

2018-09-16T12:30-02:00 YYYY-MM-DDhh:mm+hh:mm
2018-09-16T13:15:30Z YYYY-MM-DDhh:mmZ
9/30/18 19:36:14 M/D/YY hh:mm:ss

In the Data load editor, create a new section, and then add the example script and run it. Then add,

at least, the fields listed in the results column to a sheet in your app to see the result.
Load script

SET Firstweekbay=0;

SET Brokenweeks=1;

SET Referencebay=0;

SET DayNames='Mon;Tue;Wed;Thu;Fri;sat;Sun';

SET LongDayNames='Monday;Tuesday;wednesday;Thursday;Friday;Saturday;Sunday';
SET DateFormat='YYYYMMDD';

SET TimestampFormat='DD/MM/YYYY h:mm:ss[.fff] TT';

Transactions:
Load

¥
)

Timestamp(transaction_timestamp, 'YYYY-MM-DD hh:mm:ss[.fff]') as LogTimestamp

Load * Inline [

transaction_id, transaction_timestamp, transaction_amount, transaction_quantity, discount,

customer_id, size, color_code

3750, 2018-08-30, 12423.56, 23, 0,2038593, L, Red

3751, 20180830T193614.857, 5356.31, 6, 0.1, 203521, m, orange

3752, 20180830T193614.857+0200, 15.75, 1, 0.22, 5646471, S, blue

3753, 2018-09-16T12:30-02:00, 1251, 7, 0, 3036491, 1, Black

3754, 2018-09-16T13:15:30z, 21484.21, 1356, 75, 049681, xs, Red

3755, 9/30/18 19:36:14, -59.18, 2, 0.333333333333333, 2038593, M, Blue
1;

Script syntax and chart functions - Qlik Sense, May 2024

269

4 Working with variables in the data load editor

Results

Qlik Sense table showing results of the TimestampFormat interpretation
variable being used in the load script. The last timestamp in the data set does
not return a correct date.

transaction_id transaction_timestamp LogTimeStamp

3750 2018-08-30 2018-08-30 00:00:00
3751 20180830T193614.857 2018-08-3019:36:14
3752 20180830T193614.857+0200 2018-08-3017:36:14

3753 2018-09-16T12:30-02:00 2018-09-16 14:30:00
3754 2018-09-16T13:15:30Z 2018-09-16 13:15:30

3755 9/30/18 19:36:14 -

The next load script uses the same data set. However, it uses SET
TimestampFormat="MM/DD/YYYY hh:mm:ss[.fff]'to match the non-ISO 8601 format of the sixth
timestamp.

In the Data load editor, replace the previous example script with the one below and run it. Then
add, at least, the fields listed in the results column to a sheet in your app to see the result.

Load script

SET Firstweekbay=0;

SET Brokenweeks=1;

SET Referencebay=0;

SET DayNames='Mon;Tue;Wed;Thu;Fri;sat;Sun';

SET LongDayNames='Monday;Tuesday;wednesday;Thursday;Friday;Saturday;Sunday';
SET DateFormat='YYYYMMDD';

SET TimestampFormat='MM/DD/YYYY hh:mm:ss[.fff]"';

Transactions:
Load

¥
)

Timestamp(transaction_timestamp, 'YYYY-MM-DD hh:mm:ss[.fff]') as LogTimestamp

Load * Inline [

transaction_id, transaction_timestamp, transaction_amount, transaction_quantity, discount,
customer_id, size, color_code

3750, 2018-08-30, 12423.56, 23, 0,2038593, L, Red

3751, 20180830T193614.857, 5356.31, 6, 0.1, 203521, m, orange

3752, 20180830T193614.857+0200, 15.75, 1, 0.22, 5646471, S, blue

3753, 2018-09-16T12:30-02:00, 1251, 7, 0, 3036491, 1, Black

3754, 2018-09-16T13:15:30z, 21484.21, 1356, 75, 049681, xs, Red

3755, 9/30/18 19:36:14, -59.18, 2, 0.333333333333333, 2038593, M, Blue

1;

Script syntax and chart functions - Qlik Sense, May 2024 270

4 Working with variables in the data load editor

Results

Qlik Sense table showing results of the TimestampFormat interpretation
variable being used in the load script.

transaction_id transaction_timestamp LogTimeStamp

3750 2018-08-30 2018-08-30 00:00:00
3751 20180830T193614.857 2018-08-3019:36:14
3752 20180830T193614.857+0200 2018-08-3017:36:14

3753 2018-09-16T12:30-02:00 2018-09-16 14:30:00
3754 2018-09-16T13:15:30Z 2018-09-16 13:15:30

3755 9/30/18 19:36:14 2018-09-16 19:36:14

4.9 Direct Discovery variables

Direct Discovery system variables

DirectCacheSeconds

You can set a caching limit to the Direct Discovery query results for visualizations. Once this time
limitis reached, Qlik Sense clears the cache when new Direct Discovery queries are made. Qlik
Sense queries the source data for the selections and creates the cache again for the designated
time limit. The result for each combination of selections is cached independently. That is, the cache
is refreshed for each selection independently, so one selection refreshes the cache only for the
fields selected, and a second selection refreshes cache for its relevant fields. If the second
selection includes fields that were refreshed in the first selection, they are not updated in cache
again if the caching limit has not been reached.

The Direct Discovery cache does not apply to Table visualizations. Table selections query the data
source every time.

The limit value must be set in seconds. The default cache limit is 1800 seconds (30 minutes).

The value used for DirectCacheSeconds is the value set at the time the DIRECT QUERY statement
is executed. The value cannot be changed at runtime.

Example:

SET DirectCacheSeconds=1800;

DirectConnectionMax
You can do asynchronous, parallel calls to the database by using the connection pooling capability.
The load script syntax to set up the pooling capability is as follows:

SET DirectConnectionMax=10;

Script syntax and chart functions - Qlik Sense, May 2024 271

4 Working with variables in the data load editor

The numeric setting specifies the maximum number of database connections the Direct Discovery
code should use while updating a sheet. The default setting is 1.

This variable should be used with caution. Setting it to greater than 1is known to cause
problems when connecting to Microsoft SQL Server.

DirectUnicodeStrings

Direct Discovery can support the selection of extended Unicode data by using the SQL standard
format for extended character string literals (N'<extended string>’) as required by some databases
(notably SQL Server). The use of this syntax can be enabled for Direct Discovery with the script
variable DirectUnicodeStrings.

Setting this variable to 'true' will enable the use of the ANSI standard wide character marker “N” in
front of the string literals. Not all databases support this standard. The default setting is 'false'.

DirectDistinctSupport

When a DIMENSION field value is selected in a Qlik Sense object, a query is generated for the
source database. When the query requires grouping, Direct Discovery uses the DISTINCT keyword
to select only unique values. Some databases, however, require the GROUP BY keyword. Set
DirectDistinctSupport to 'false' to generate GROUP BY instead of DISTINCT in queries for unique
values.

SET DirectDistinctSupport='false';
If DirectDistinctSupport is set to true, then DISTINCT is used. If it is not set, the default behavior is
to use DISTINCT.

DirectEnableSubquery

In high cardinality multi-table scenarios, it is possible to generate sub queries in the SQL query
instead of generating a large IN clause. This is activated by setting DirectEnableSubquery to 'true’'.
The default value is 'false’'.

When DirectEnableSubquery is enabled, you cannot load tables that are not in Direct
Discovery mode.

SET DirectEnableSubquery="true';

Teradata query banding variables

Teradata query banding is a function that enables enterprise applications to collaborate with the
underlying Teradata database in order to provide for better accounting, prioritization, and workload
management. Using query banding you can wrap metadata, such as user credentials, around a

query.
Two variables are available, both are strings that are evaluated and sent to the database.

SQLSessionPrefix
This string is sent when a connection to the database is created.

Script syntax and chart functions - Qlik Sense, May 2024 272

4 Working with variables in the data load editor

SET SQLSessionPrefix = '"SET QUERY_BAND = ' & Chr(39) & 'who=' & oOSuser() & ";' & chr(39) & '
FOR SESSION;';

If OSuser() for example returns WA|sbt, this will be evaluated to SET QUERY_BAND = 'Who=WA\sbt;'
FOR SESSION; , Which is sent to the database when the connection is created.

SQLQueryPrefix
This string is sent for each single query.

SET SQLSessionPrefix = 'SET QUERY_BAND = ' & chr(39) & 'who=' & OSuser() & '";' & chr(39) &'
FOR TRANSACTION;';

Direct Discovery character variables

DirectFieldColumnDelimiter

You can set the character used as the field delimiter in Direct Query statements for databases that
require a character other than comma as the field delimiter. The specified character must be
surrounded by single quotation marks in the SET statement.

SET DirectFieldColumnDelimiter= '|'

DirectStringQuoteChar

You can specify a character to use to quote strings in a generated query. The default is a single
quotation mark. The specified character must be surrounded by single quotation marks in the SET
statement.

SET DirectStringQuoteChar= ""';

DirectldentifierQuoteStyle

You can specify that non-ANSI quoting of identifiers be used in generated queries. At this time, the
only non-ANSI quoting available is GoogleBQ. The default is ANSI. Uppercase, lowercase, and
mixed case can be used (ANSI, ansi, Ansi).

SET DirectIdentifierQuotestyle="GoogleBQ";
For example, ANSI quoting is used in the following SELECT statement:

SELECT [Quarter] FROM [qvTest].[sales] GROUP BY [Quarter]
When DirectldentifierQuoteStyle is set to "GoogleBQ", the SELECT statement would use quoting
as follows:

SELECT [Quarter] FROM [gvTest.sales] GROUP BY [Quarter]

DirectldentifierQuoteChar

You can specify a character to control the quoting of identifiers in a generated query. This can be
set to either one character (such as a double quotation mark) or two (such as a pair of square
brackets). The default is a double quotation mark.

SET DirectIdentifierqQuotechar="[]";
SET DirectIdentifierQuoteChar='""";
SET DirectIdentifierQuotechar=" "';
SET DirectIdentifierQuotechar="""";

Script syntax and chart functions - Qlik Sense, May 2024 273

4 Working with variables in the data load editor

DirectTableBoxListThreshold

When Direct Discovery fields are used in a Table visualization, a threshold is set to limit the number
of rows displayed. The default threshold is 1000 records. The default threshold setting can be
changed by setting the DirectTableBoxListThreshold variable in the load script. For example:

SET DirectTableBoxListThresho1d=5000;

The threshold setting applies only to Table visualizations that contain Direct Discovery fields. Table
visualizations that contain only in-memory fields are not limited by the
DirectTableBoxListThreshold setting.

No fields are displayed in the Table visualization until the selection has fewer records than the
threshold limit.

Direct Discovery number interpretation variables

DirectMoneyDecimalSep

The decimal separator defined replaces the decimal symbol for currency in the SQL statement
generated to load data using Direct Discovery. This character must match the character used in
DirectMoneyFormat.

Default valueis '.'
Example:

Set DirectMoneyDecimalSep='.";

DirectMoneyFormat
The symbol defined replaces the currency format in the SQL statement generated to load data
using Direct Discovery. The currency symbol for the thousands separator should not be included.

Default value is '#.0000"
Example:
Set DirectMoneyFormat="#.0000";

DirectTimeFormat
The time format defined replaces the time format in the SQL statement generated to load data
using Direct Discovery.

Example:

Set DirectTimeFormat="hh:mm:ss"';

DirectDateFormat
The date format defined replaces the date format in the SQL statement generated to load data
using Direct Discovery.

Example:

Set DirectDateFormat='MM/DD/YYYY';

Script syntax and chart functions - Qlik Sense, May 2024 274

4 Working with variables in the data load editor

DirectTimeStampFormat
The format defined replaces the date and time format in the SQL statement generated in the SQL
statement generated to load data using Direct Discovery.

Example:

Set DirectTimestampFormat='M/D/YY hh:mm:ss[.fff]"';

4.10 Error variables

The values of all error variables will exist after the script execution. The first variable, ErrorMode, is
input from the user, and the last three are output from Qlik Sense with information on errors in the
script.

Error variables overview

Each variable is described further after the overview. You can also click the variable name in the
syntax to immediately access the details for that specific variable.

Refer to the Qlik Sense online help for further details about the variable.

ErrorMode
This error variable determines what action is to be taken by Qlik Sense when an error is
encountered during script execution.

ErrorMode

ScriptError
This error variable returns the error code of the last executed script statement.

ScriptError

ScriptErrorCount
This error variable returns the total number of statements that have caused errors during the
current script execution. This variable is always reset to 0 at the start of script execution.

ScriptErrorCount

ScriptErrorList
This error variable will contain a concatenated list of all script errors that have occurred during the
last script execution. Each error is separated by a line feed.

ScriptErrorList

ErrorMode

This error variable determines what action is to be taken by Qlik Sense when an error is
encountered during script execution.

Syntax:
ErrorMode

Script syntax and chart functions - Qlik Sense, May 2024 275

4 Working with variables in the data load editor

Arguments:
Arguments
Argument Description
ErrorMode=1 The default setting. The script execution will halt and the user will be

prompted for action (non-batch mode).

ErrorMode =0 Qlik Sense will simply ignore the failure and continue script execution at the
next script statement.

ErrorMode =2 Qlik Sense will trigger an "Execution of script failed..." error message
immediately on failure, without prompting the user for action beforehand.

Example:

set ErrorMode=0;

ScriptError
This error variable returns the error code of the last executed script statement.

Syntax:
ScriptError

This variable will be reset to 0 after each successfully executed script statement. If an error occurs
it will be set to an internal Qlik Sense error code. Error codes are dual values with a numeric and a
text component. The following error codes exist:

Script error codes
Error code Description

0 No error. Dual value
textis empty.

—_

General error.

2 Syntax error.

3 General ODBC error.

4 General OLE DB error.

5 General custom
database error.

6 General XML error.

7 General HTML error.

8 File not found.

Script syntax and chart functions - Qlik Sense, May 2024 276

4 Working with variables in the data load editor

Error code Description

9 Database not found.

10 Table not found.

1 Field not found.

12 File has wrong format.

16 Semantic error.
Example:

set ErrorMode=0;

LOAD * from abc.qvf;
if ScriptError=8 then
exit script;

//no file;

end if

ScriptErrorCount

This error variable returns the total number of statements that have caused errors during the
current script execution. This variable is always reset to 0 at the start of script execution.

Syntax:
ScriptErrorCount

ScriptErrorList

This error variable will contain a concatenated list of all script errors that have occurred during the
last script execution. Each error is separated by a line feed.

Syntax:
ScriptErrorList

Script syntax and chart functions - Qlik Sense, May 2024 277

S Script expressions

5 Script expressions

Expressions can be used in both LOAD statements and SELECT statements. The
syntax and functions described here apply to the LOAD statement, and not to the
SELECT statement, since the latter is interpreted by the ODBC driver and not by Qlik
Sense. However, most ODBC drivers are often capable of interpreting a number of the
functions described below.

Expressions consist of functions, fields and operators, combined in a syntax.

All expressions in a Qlik Sense script return a number and/or a string, whichever is appropriate.
Logical functions and operators return O for False and -1 for True. Number to string conversions and
vice versa are implicit. Logical operators and functions interpret O as False and all else as True.

The general syntax for an expression is:

Expression

expression ::= (constant
expression ::= (constant
expression ::= (constant
expression ::= (constant
expression ::= (constant

expression ::= (constant

where:

General syntax
Fields

constant

fieldref

operator1 expression

expression operator2 expression
function

(expression)

Operator
|
|
|
|
|

)

» constant is a string (a text, a date or a time) enclosed by single straight quotation marks, or a
number. Constants are written with no thousands separator and with a decimal point as the

decimal separator.

» fieldref is a field name of the loaded table.

» operator1is a unary operator (working on one expression, the one to the right).

» operator2 is a binary operator (working on two expressions, one on each side).

» function ::= functionname(parameters)

* parameters ::= expression {, expression }

The number and types of parameters are not arbitrary. They depend on the function used.

Expressions and functions can thus be nested freely, and as long as the expression returns an
interpretable value, Qlik Sense will not give any error messages.

Script syntax and chart functions - Qlik Sense, May 2024

278

6 Chart expressions

6 Chart expressions

A chart (visualization) expression is a combination of functions, fields, and
mathematical operators (+ * / =), and other measures. Expressions are used to process
data in the app in order to produce a result that can be seen in a visualization. They are
not limited to use in measures. You can build visualizations that are more dynamic and
powerful, with expressions for titles, subtitles, footnotes, and even dimensions.

This means, for example, that instead of the title of a visualization being static text, it
can be made from an expression whose result changes depending on the selections
made.

For detailed reference regarding script functions and chart functions, see the Script
syntax and chart functions.

6.1 Defining the aggregation scope

There are usually two factors that together determine which records are used to define
the value of aggregation in an expression. When working in visualizations these factors
are:

» Dimensional value (of the aggregation in a chart expression)
e Selections

Together, these factors define the scope of the aggregation. You may come across situations
where you want your calculation to disregard the selection, the dimension or both. In chart
functions, you can achieve this by using the TOTAL qualifier, set analysis or a combination of the
two.

Script syntax and chart functions - Qlik Sense, May 2024 279

6 Chart expressions

Aggregation: Method and description
Method Description

TOTAL Using the total qualifier inside your aggregation function disregards the dimensional
qualifier value.

The aggregation will be performed on all possible field values.

The TOTAL qualifier may be followed by a list of one or more field names within
angle brackets. These field names should be a subset of the chart dimension
variables. In this case, the calculation is made disregarding all chart dimension
variables except those listed, that is, one value is returned for each combination of
field values in the listed dimension fields. Also, fields that are not currently a
dimension in a chart may be included in the list. This may be useful in the case of
group dimensions, where the dimension fields are not fixed. Listing all of the
variables in the group causes the function to work when the drill-down level
changes.

Set Using set analysis inside your aggregation overrides the selection. The aggregation
analysis will be performed on all values split across the dimensions.

TOTAL Using the TOTAL qualifier and set analysis inside your aggregation overrides the
qualifier selection and disregards the dimensions.

and set

analysis

ALL Using the ALL qualifier inside your aggregation disregards the selection and the
qualifier dimensions. The equivalent can be achieved with the {1} set analysis statement and
the TOTAL qualifier:

=sum(A11 sales)

=sum({1} Total Sales)

Example: TOTAL qualifier

The following example shows how TOTAL can be used to calculate a relative share. Assuming that
Q2 has been selected, using TOTAL calculates the sum of all values disregarding the dimensions.

Example: Total qualifier

Year Quarter Sum Sum(TOTAL Sum(Amount)/Sum(TOTAL
(Amount) Amount) Amount)
3000 3000 100%

2012 Q2 1700 3000 56,7%

2013 Q2 1300 3000 43,3%

Script syntax and chart functions - Qlik Sense, May 2024 280

6 Chart expressions

Example: Set analysis

To show the numbers as a percentage, in the properties panel, for the measure you want
to show as a percentage value, under Number formatting, select Number, and from
Formatting, choose Simple and one of the % formats.

The following example shows how set analysis can be used to make a comparison between data
sets before any selection was made. Assuming that Q2 has been selected, using set analysis with
the set definition {1} calculates the sum of all values disregarding any selections but split by the

dimensions.
Year Quarter
2012 Q1
2012 Q3
2012 Q4
2012 Q2
2013 Q1
2013 Q3
2013 Q4
2013 Q2

Example: Set analysis

Sum(Amount)

3000

1300

Sum({1} Amount)
10800

1100

1400

1800

1700

1000

1100

1400

1300

Example: TOTAL qualifier and set analysis

Sum(Amount)/Sum({1} Amount)
27,8%

0%

0%

0%

100%

0%

0%

0%

100%

The following example shows how set analysis and the TOTAL qualifier can be combined to make a
comparison between data sets before any selection was made and across all dimensions. Assuming
that Q2 has been selected, using set analysis with the set definition {1} and the TOTAL qualifier
calculates the sum of all values disregarding any selections and disregarding the dimensions.

Year

2012
2013

Data used in examples:

Quarter

Q2
Q2

AggregationScope:

LOAD *

inline [

Example: TOTAL qualifier and set analysis

Sum
(Amount)

3000
1700
1300

Sum({1} TOTAL
Amount)

10800
10800
10800

Sum(Amount)/Sum({1} TOTAL
Amount)

27,8%
15,7%
12%

Script syntax and chart functions - Qlik Sense, May 2024

281

6 Chart expressions

Year Quarter Amount

2012 Q1 1100

2012 Q2 1700

2012 Q3 1400

2012 Q4 1800

2013 Q1 1000

2013 Q2 1300

2013 Q3 1100

2013 Q4 1400] (delimiter is ' ');

6.2 Setanalysis

When you make a selection in an app, you define a subset of records in the data.
Aggregation functions, such as sum(, max(), MinQ, Avg(), and count() are calculated based
on this subset.

In other words, your selection defines the scope of the aggregation, it defines the set of records on
which calculations are made.

Set analysis offers a way of defining a scope that is different from the set of records defined by the
current selection. This new scope can also be regarded as an alternative selection.

This can be useful if you want to compare the current selection with a particular value, for example
last year’s value or the global market share.

Set expressions

Set expressions can be used inside and outside aggregation functions, and are enclosed in curly
brackets.

Example: Inner set expression
sum({$<vear={2021}>} sales)
Example: Outer set expression

{<Year={2021}>} sum(Sales) / Count(distinct Customer)
A set expression consists of a combination of the following elements:

» Identifiers. A set identifier represents a selection, defined elsewhere. It also represents a
specific set of records in the data. It could be the current selection, a selection from a
bookmark, or a selection from an alternate state. A simple set expression consists of a single
identifier, such as the dollar sign, {$}, which means all records in the current selection.
Examples: §, 1, Bookmarkl, state2

» Operators. A set operator can be used to create unions, differences or intersections
between different set identifiers. This way, you can create a subset or a superset of the
selections defined by the set identifiers.

Examples: +, -, *, /

Script syntax and chart functions - Qlik Sense, May 2024 282

6 Chart expressions

» Modifiers. A set modifier can be added to the set identifier to change its selection. A modifier
can also be used on its own and will then modify the default identifier. A modifier must be
enclosed in angle brackets <..>.

Examples: <year={2020}>, <Supplier={ACME}>

The elements are combined to form set expressions.

Elements in a set expression

Set expression
|

S?t modifierl's
Sum ({$|< 2{2021}>|+1|< ={'Sweden'}>|} Sales)

|
Set identifiers LSet operator

The set expression above, for example, is built from the aggregation sum(sales).

The first operand returns sales for the year 2021 for the current selection, which is indicated by the $
set identifier and the modifier containing the selection of year 2021. The second operand returns
sales for sweden, and ignores the current selection, which is indicated by the 1 set identifier.

Finally, the expression returns a set consisting of the records that belongs to any of the two set
operands, as indicated by the + set operator.

Examples

Examples that combine the set expression elements above are available in the following topics:

Natural sets

Usually, a set expression represents both a set of records in the data model, and a selection that
defines this subset of data. In this case, the set is called a natural set.

Set identifiers, with or without set modifiers, always represent natural sets.

However, a set expression using set operators also represents a subset of the records, but can
generally still not be described using a selection of field values. Such an expression is a non-natural
set.

For example, the set given by {1-$} cannot always be defined by a selection. It is therefore not a
natural set. This can be shown by loading the following data, adding it to a table, and then making
selections using filter panes.

Load * Inline
[Diml, Dim2, Number
A, X, 1

A, Y, 1
B, X, 1

Script syntax and chart functions - Qlik Sense, May 2024 283

6 Chart expressions

B, Y, 1];

By making selections for pim1 and pim2, you get the view shown in the following table.

Table with natural and non-natural sets

Dim1 . Dim2
Z]"11i Q. Dim2 Q. Sum({5} Number Sum({1-5} Number
B A X 1 0
A ¥]

B ¥ 0

B Y 0

The set expression in the first measure uses a natural set: it corresponds to the selection that is
made {$3.

The second measure is different. It uses {1-$}. It is not possible to make a selection that
corresponds to this set, so it is a non-natural set.

This distinction has a number of consequences:

» Set modifiers can only be applied to set identifiers. They cannot be applied to an arbitrary set

expression. For example, it is not possible to use a set expression such as:
{ (BMO1 * BMO02) <Field={x,y}> }

Here, the normal (round) brackets imply that the intersection between w01 and Bm02 should
be evaluated before the set modifier is applied. The reason is that there is no element set
that can be modified.

» You cannot use non-natural sets inside the p() and () element functions. These functions
return an element set, but it is not possible to deduce the element set from a non-natural set.
« A measure using a non-natural set cannot always be attributed to the right dimensional value

if the data model has many tables. For example, in the following chart, some excluded sales
numbers are attributed to the correct Country, whereas others have NULL as Country.

Script syntax and chart functions - Qlik Sense, May 2024 284

6 Chart expressions

Chart with non-natural set

. ProductCategory

y ProductCategory O = Country O Values

Chil 5 .
el © Baby Clothes 127781.28 o
- © Children's Clothes Q 158154
Q@ Men's Clothes] 140987.45

L, gar
© Men's Footwear o 232T4T.44
Swirmwear © Sportswear 0 270272.78
= © Swimwear [29545.6
© Women's Clothes o} 549548.5
o ooty Al

& Women's Footwear o 14065444

<>

Whether or not the assignment is made correctly depends on the data model. In this case,
the number cannot be assigned if it pertains to a country that is excluded by the selection.
Identifier Description

1 Represents the full set of all the records in the application, irrespective of any
selections made.

$ Represents the records of the current selection. The set expression {$} is thus
the equivalent to not stating a set expression.

$1 Represents the previous selection. $2 represents the previous selection-but-
one, and so on.

$1 Represents the next (forward) selection. $_2 represents the next selection-but-
one, and so on.

BMO1 You can use any bookmark ID or bookmark name.

MyAltState You can reference the selections made in an alternate state by its state name.

Example Result

sum ({1} Sales) Returns total sales for the app, disregarding selections but not the
dimension.

sum ({$} Sales) Returns the sales for the current selection, that is, the same as sum(Sales).

sum ({$1} Sales) Returns the sales for the previous selection.

sum ({BMO1} Returns the sales for the bookmark named BMO1.

Sales)

Script syntax and chart functions - Qlik Sense, May 2024 285

6 Chart expressions

Example Result

sum({$<OrderDate = Returns the sales for the current selection where OrderDate =
DeliveryDate>} Sales) DeliveryDate.

sum({1<Region = {US}>} Returns the sales for region US, disregarding the current
Sales) selection.

sum({$<Region = >} Sales) Returns the sales for the selection, but with the selection in

Region removed.

sum({<Region = >} Sales) Returns the same as the example above. When the set to
modify is omitted, $ is assumed.

sum({$<Year={2000}, Returns the sales for the current selection, but with new
Region={"U*"}>} Sales) selections both in Yearand in Region.

Set identifiers

A set identifier represents a set of records in the data; either all the data or a subset of
the data. It is the set of records defined by a selection. It could be the current selection,
all data (no selection), a selection from a bookmark, or a selection from an alternate
state.

In the example sum({$<vear = {2009}>} sales), theidentifier is the dollar sign: $. This represents
the current selection. It also represents all the possible records. This set can then altered by the
modifier part of the set expression: the selection 2009 in vear is added.

The $ set identifier is the same as not stating a set identifier. For instance, with the example above,
the expression sum({$<vear = {2009}>} sales) is equivalentto sum({<vear = {2009}>} sales).

In a more complex set expression, two identifiers can be used together with an operator to form a
union, a difference, or an intersection of the two record sets.

The following table shows some common identifiers.

Examples with common identifiers

Identifier Description

1 Represents the full set of all the records in the application, irrespective of any
selections made.

$ (or no set Represents the records of the current selection in the default state. The set
identifier) expression {$} is thus usually the equivalent to not stating a set expression.
$1 Represents the previous selection in the default state. $2 represents the

previous selection-but-one, and so on.

$_1 Represents the next (forward) selection. $_2 represents the next selection-
but-one, and so on.

Script syntax and chart functions - Qlik Sense, May 2024 286

6 Chart expressions

Identifier Description
BMO1 You can use any bookmark ID or bookmark name.
Altstate You can reference an alternate state by its state name.

Altstate::BMO1 A bookmark contains the selections of all states, and you can reference a
specific bookmark by qualifying the bookmark name.

The following table shows examples with different identifiers.
Examples with different identifiers
Example Result

sum ({1} sales) Returns total sales for the app disregarding selections
but not the dimension.

sum ({$} sales) Returns the sales for the current selection, that is, the
same as sum(Sales).

sum ({$1} sales) Returns the sales for the previous selection.

sum ({BMO1} Returns the sales for the bookmark named Bm01.
sales)

Set operators

Set operators are used to include, exclude, or intersect data sets. All operators use sets as
operands and return a set as result.

You can use set operators in two different situations:

» To perform a set operation on set identifiers, representing sets of records in data.
» To perform a set operation on the element sets, on the field values, or inside a set modifier.

The following table shows the operators that can be used in set expressions.
Operators

Operator Description

+ Union. This binary operation returns a set consisting of the records or elements
that belong to any of the two set operands.

- Exclusion. This binary operation returns a set consisting of the records or elements
that belong to the first but not the other of the two set operands. Also, when used
as a unary operator, it returns the complement set.

Intersection. This binary operation returns a set consisting of the records or
elements that belong to both set operands.

/ Symmetric difference (xor). This binary operation returns a set consisting of the
records or elements that belong to either, but not both set operands.

The following table shows examples with operators.

Script syntax and chart functions - Qlik Sense, May 2024 287

6 Chart expressions

Examples with operators

Example Result
sum ({1-3} sales) Returns sales for everything excluded by current selection.
sum ({$*BMO1} sales) Returns sales for the intersection between the selection and

bookmark #160;8m01.

sum ({-($+BMO1)} Returns sales excluded by the selection and bookmark svo1.
Sales)
sum ({$<vear= Returns sales for the year 2009 associated with the current selections
{2009}>+1<Country= and add the full set of data associated with the country sweden across
{'Sweden'}>} sales)
all years.
sum ({$<Country= Returns the sales for countries that begin with s or end with 1and.
("s+ 4" *1and"}>}
Sales)

Set modifiers

Set expressions are used to define the scope of a calculation. The central part of the
set expression is the set modifier that specifies a selection. This is used to modify the
user selection, or the selection in the set identifier, and the result defines a new scope
for the calculation.

The set modifier consists of one or more field names, each followed by a selection that should be
made on the field. The modifier is enclosed by angled brackets: < >

For example:

e Sum ({$<vear = {2015}>} sales)
e Count ({l<Country = {Germany}>} distinct OrderiD)

e Sum ({$<vear = {2015}, country = {Germany}>} Sales)

Element sets

An element set can be defined using the following:
« Alist of values
e Asearch

« Areference to another field
e A setfunction

If the element set definition is omitted, the set modifier will clear any selection in this field. For
example:

sum({$<vear = >} sales)

Script syntax and chart functions - Qlik Sense, May 2024 288

6 Chart expressions

Examples: Chart expressions for set modifiers based on element sets

Examples - chart expressions

Load script

Load the following data as an inline load in the data load editor to create the chart expression
examples below.

MyTable:

Load * InTline [

Country, Year, Sales
Argentina, 2014, 66295.03
Argentina, 2015, 140037.89
Austria, 2014, 54166.09
Austria, 2015, 182739.87
Belgium, 2014, 182766.87
Belgium, 2015, 178042.33
Brazil, 2014, 174492.67
Brazil, 2015, 2104.22
Canada, 2014, 101801.33
Canada, 2015, 40288.25
Denmark, 2014, 45273.25
Denmark, 2015, 106938.41
Finland, 2014, 107565.55
Finland, 2015, 30583.44
France, 2014, 115644.26
France, 2015, 30696.98
Germany, 2014, 8775.18
Germany, 2015, 77185.68
1;

Chart expressions

Create a table in a Qlik Sense sheet with the following chart expressions.

Table - Set modifiers based on element sets

Sum
Sum Sum Sum ({1<Year=
1<Country= 1<Country= -
Country Sum(Sales) :{I;:I I::?}:‘}' :{*;*O}L:; v ({1<Country= {$(=Max
9 {"A*"}>} Sales) (Year))}>}

Sales) Sales)

Sales)
Totals 1645397.3 360809.2 1284588.1 443238.88 788617.07
Argentina 206332.92 0 206332.92 206332.92 140037.89
Austria 236905.96 0 236905.96 236905.96 182739.87
Belgium 360809.2 360809.2 0 0 178042.33

Script syntax and chart functions - Qlik Sense, May 2024

289

6 Chart expressions

Country

Brazil
Canada
Denmark
Finland
France

Germany

Explanation

Sum Sum Sum
Sum ({1<Year=
1 = 1 =
Sum(Sales) :;;ci‘:;f}t:‘}' :f*f\f..o}f}'"y ({1<Country= {$(=Max
9 {"A*"}>} Sales) (Year))}>}
Sales) Sales)
Sales)
176596.89 0 176596.89 0 2104.22
142089.58 0 142089.58 0 40288.25
152211.66 0 152211.66 0 106938.41
138148.99 0 138148.99 0 30583.44
146341.24 0 146341.24 0 30696.98
85960.86 0 85960.86 0 77185.68

+ Dimensions:

o

country

¢ Measures:

(o]

sum(Sales)

Sum sales with no set expression.

sum({1l<Country={Belgium}>}sales)

Select Belgium, and then sum corresponding sales.
sum({1<Country={"*A*"}>}Sales)

Select all countries that have an A, and then sum corresponding sales.
sum({1<Country={"A*"}>}sales)

Select all countries that begin with an A, and then sum corresponding sales.
sum({1l<vear={$(=Max(Yvear))}>}sales)

Calculate the max(year), which is 2015, and then sum corresponding sales.

Script syntax and chart functions - Qlik Sense, May 2024

290

6 Chart expressions

Set modifiers based on element sets

e

Sum({1=Country = Sum({1=Country = Sum({1=Country = Sum({1<Year=
Coungy Q Sum (Sales) {Belgium}=} Sales) {"*A*"}=} Sales) {"A*"}=} Sales) {S(=Max(Year))}>=} Sales)
Totals 1645397.3 360809.2 1284588.1 443238.88 788617.07
Argentina 206332.92 0 206332.92 206332.92 140037.89
Austria 236905.96 0 236905.96 236905.96 182739.87
Belgium 360809.2 360809.2 0 0 178042.33
Brazil 176596.89 0 176596.89 0 2104.22
Canada 142089.58 0 142089.58 0 40288.25
Denmark 152211.66 0 152211.66 0 106938.41
Finland 138148.99 0 138148.99 0 30583.44
France 146341.24 0 146341.24 0 30696.98
Germany 85960.86 0 85960.86 0 77185.68

Listed values

The most common example of an element set is one that is based on a list of field values enclosed
in curly brackets. For example:
e {$<Country = {Canada, Germany, Singapore}>}

e {$<vear = {2015, 2016}>}
The inner curly brackets define the element set. The individual values are separated by commas.

Quotes and case sensitivity

If the values contain blanks or special characters, the values need to be quoted. Single quotes will
be a literal, case-sensitive match with a single field value. Double quotes imply a case-insensitive
match with one or several field values. For example:

e <Country = {'New Zealand'}>
Matches New zealand only.
e <Country = {"New Zealand"}>
Matches New zealand, NEW ZEALAND, and new zealand.

Dates must be enclosed in quotes and use the date format of the field in question. For example:
e <ISO_Date = {'2021-12-31'}>

{'12/31/2021'}>

{'31/12/2021'}>

e <US_Date

e <UK_Date

Double quotes can be substituted by square brackets or by grave accents.

Searches

Element sets can also be created through searches. For example:

Script syntax and chart functions - Qlik Sense, May 2024 291

6 Chart expressions

e <Country = {"c*"}>
e <Ingredient = {"*garlic*"}>
o <vear = {">2015"}>
{">12/31/2015"}>

e <Date

Wildcards can be used in text searches: An asterisk (*) represents any number of characters, and a
question mark (?) represents a single character. Relational operators can be used to define numeric
searches.

You should alway